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A new method of free-form deformation,
w-TFFD, is proposed, for which an orig-
inal shape is deformed using weighted T-
spline volumes. We generalize T-splines to
weighted T-spline volumes that also permit
T-junctions. Weighted T-spline volumes are
a natural generalization of NURBS volumes
but permit more flexible control lattices.
Thus, w-TFFD holds many virtues of tradi-
tional FFDs and is more adaptive to objects
with arbitrary topology or complex shape.
The lattices can be automatically generated
and approximate the shape of the object arbi-
trarily close by octree subdivision.

Besides constructing and deforming a mul-
tiresolution lattice, users can also sculpt spe-
cific local details to their required shape by
modifying weights. A set of direct-acting
tools that are similar to previously proposed
techniques can be applied to w-TFFD.
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1 Introduction

Free-form deformation (FFD), as introduced by
Sederberg and Parry [23], is known to be a powerful
shape modification method that has been extensively
applied to computer animation [4,7,14] and geo-
metric modeling [8, 11]. This technique deforms an
object by embedding it within a solid defined with
a control lattice. A change of the lattice deforms the
solid and hence the object. People have proposed
various FFD methods. All of these methods solve
the main problems of local and global free-form de-
formation of an object. The matters for FFD are the
form of control points, parametrization and user ma-
nipulation. However, few of the existing methods
satisfy user demand in all aspects.

In this paper, we present a new free-form deforma-
tion method using weighted T-spline volumes to pro-
vide users with fine control lattices and flexible ways
of deformation. We name this method w-TFFD. The
main contributions of this paper are as follows:

1. Definition of weighted T-spline volumes and us-
ing weighted T-splines as parametric volumes for
free-form deformation;

2. Automatic generation of multiresolution lattices
for weighted T-spline volumes;

3. Direct deformation for arbitrary shape by com-
bining weights change and lattice manipulation.

Compared with previous FFD methods, the main ad-
vantage of the proposed method is that any com-
plex shapes can be approximated by multiresolution
control lattices tightly and automatically. Combining
weights with the lattices, w-TFFD provides an easy-
to-use interface.

T-splines were proposed by Sederberg et al. [24].
T-spline control grids permit T-junctions, so lines
of control points need not traverse the entire con-
trol grid [24]. Weighted T-spline volumes inherit this
virtue. Therefore, control lattices for w-TFFD are
more flexible than for traditional FFDs [10, 16, 23].
Moreover, the generation of control lattices is not
complex and we adopt octree subdivision for initial
lattice construction. Weighted T-spline volumes are
C? continuous. With the technique of octree subdivi-
sion and T-junctions, the control lattice approximates
the shape of an object efficiently while the internal
lattice has been simplified effectively. We need only
manipulate the control points that define nonempty
cells (see Fig. 1b) in the octree subdivision lattice for
deformation. The rest of the control points are hid-
den for users, since their influence on shape change
is always negligible when their weights are set to
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Fig. 1a,b. Octree subdivision lattice generated for a pot. a The whole control lattice; b The control points used for deforma-

tion interference

Fig. 2a—c. The hammer tool acting on a pot. a Original mesh; b, ¢ Sculpted mesh

2c

very small values. The whole lattice (see Fig. 1a) is
used for parametrization and relocation. Users can
do any level of deformation with ease and intuition.
Figure 1 shows two examples with the whole control
lattice and the control points belonging to nonempty
cells. We can see that the internal control points of
the pot have been reduced greatly and the control
points used for deformation interference are even
less (see Fig. 1).

w-TFFD can also be used to sculpt objects directly
by changing weights. Users can interact with w-
TFFD through a set of direct-acting tools such as
the hammer tool and crimp tool [21], removing the
need to manipulate the mesh directly. The hammer
tool changes the height of a peak without changing

its shape and the crimp tool changes the shape of
a peak without altering its height [21]. Those tools
that only need two weights across the object for de-
formation can be applied to w-TFFD. Analysis of the
technique is similar to Noble et al. [21]. It provides
users a new method of free-form deformation. Fig-
ure 2 shows the effect of the hammer tool on a pot.

The rest of the paper is organized in the following
manner. In Sect. 2 we introduce some related work.
Section 3 briefly reviews T-splines [24] and presents
weighted T-spline volumes. Section 4 shows how to
generate the T-lattice. Section 5 solves the inverse
point problem, that is, parametric coordinates for
each point. Section 6 shows the deformation algo-
rithm. Section 7 describes the implementation and
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discusses the performance. Conclusions and future
work are given in Sect. 8.

2 Related work

The pioneering FFD method proposed by Sederberg
and Parry [23] restricts the parametric volume to
a regular parallelepiped with uniform divisions and
Bernstein polynomial bases. Davis and Burton used
rational Bernstein bases [8] and later Griessmair and
Purgathofer used a trivariate B-spline [10]. Lam-
ousin and Waggenspack used NURBS volumes [16].
Hsu, Hughes, and Kaufman [12] proposed an FFD
that allowed users to manipulate points on the sur-
face of the embedded object directly. However, all
of these methods require that the control lattice for
deformation should be a regular parallelepiped or
a uniformly arranged shape. This requirement makes
it difficult to approximate objects with arbitrary
shapes.

People also proposed many FFDs that use control
lattices with arbitrary topology. In some of these
FFDs, the control lattice can be automatically gen-
erated. Coquillart [6] presented a more robust ver-
sion of FFD that did not restrict the enclosing solid
to a parallelepiped solid. Arbitrarily shaped lattices
are built by combining several tricubic Bézier vol-
umes. It needs to keep the continuous constraints
between Bézier volumes and solve the inverse-point
problem [6]. Thus, it incurs the significant compu-
tational expense of resolving the inverse-point prob-
lem. MacCracken and Joy [18] extended FFD fur-
ther by using subdivision technique, which is a vol-
ume extension version of Catmull-Clark subdivision
surfaces. Their control lattice has arbitrary topol-
ogy, which can approximate the object shape more
tightly. However, in each subdivision step, a cell of
the lattice is subdivided into eight subcells. Obvi-
ously, it costs too much space and time.

Bechmann et al. [1] proposed continuous FFD
(CFFD). CFFD is based on barycentric coordinates
and Bézier tetrahedrons. Combining tetrahedrons
allows one to build control lattices of any shape,
but keeping the deformation continuous between
tetrahedrons requires defining constraints on the dis-
placement of control points.

Dirichlet FFD [20] is an approach based on the
Voronoi structure defined within the convex hull of
a set of points. While there is no restriction on the
shape of the volume, the deformations are controlled

solely by the parametrization defined by natural
neighbor interpolants. These interpolating functions
have singularities that result in unwanted deforma-
tion artifacts. In DFFD, the influence is predefined
by the control lattice set. It is hard to manipulate the
influence of a single control point.

Ono et al. [22] proposed an FFD method with au-
tomatic generation of multiresolution lattices. They
employ the Catmull-Clark subdivision method for
lattice generation, and then parameterize the mini-
mal cell. The method must save topological informa-
tion of the Catmull-Clark subdivision volumes, so it
is memory intensive and can subdivide only a few
steps for most practical objects.

FFDs based on two-dimensional manifold control
meshes have recently been proposed. Shao et al. [25]
presents a FFD method by using arbitrary topolog-
ical meshes. Kazuya et al. proposed t-FFD [15],
which uses a set of triangles with arbitrary topology
and geometry as the control mesh. The control mesh
can be generated from the original shape or be de-
fined manually. Both methods show that the shape of
the control mesh is approximating the shape of the
model. However, they can hardly generate multireso-
lution control mesh on a single hierarchical “level.”
Recently skeleton-driven free-form shape deforma-
tions have drawn much attention [2, 3, 17,26, 27] be-
cause they are well suited for large-scale shape de-
formations and, therefore, can be used in numerous
applications in the computer game industry. How-
ever, these methods are not suitable for local defor-
mation.

Based on this background, we propose w-TFFD by
extending the previous FFDs and providing a more
flexible and adaptive FFD method. The details are
given in the following sections.

3 T-splines and weighted T-spline
volumes

3.1 T-splines

T-splines were introduced by Sederberg et al. in [24].
A T-spline is a PB-spline for which some order has
been imposed on the control points by means of
a control grid called a T-mesh. First, a PB-spline is
defined as

Yo PiBi(s, 1)

P(s, 1) = Z;lzl B D)

(s,neD, 1)
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Fig. 3. Knot lines for basis function B;(s, )
Fig.4. T-junction P;

where the P; are control points. The B; (s, ¢) are basis
functions given by

Bi(s, 1) = N ()N (1), 2)

where Nl.3 (s) is the cubic B-spline basis function as-
sociated with the knot vector

s = [Si0, Si1, Si2» Si3, Sial (3)
and Nl.3 (1) is associated with the knot vector

ti = [tio, ti, tia, 13, tia] “4)

as illustrated in Fig. 3.

A PB-spline is point-based instead of grid-based
and satisfies the convex-hull property. Every con-
trol point has its influence domain D; = (s, $i4) X
(t;0, t;4). The knot vectors s; and ¢; for each basis
function are deduced from the T-mesh. A T-mesh
is simply a rectangular grid with T-junctions and is
constrained by two rules. Each edge in a T-mesh
(see Fig. 4) is a line segment of constant s (which
is called an s-edge) or of constant t (which is called
at-edge) [24]. A T-junction is a vertex shared by one
s-edge and two t-edges, or by one t-edge and two s-
edges. For example, P; (see Fig. 4) is a T-junction.
The details can be found in [24].

T-splines permit T-junctions [24]. It is very use-
ful to build multiresolution control grids, which are
denser on the boundary of the object (see Fig. 5).
The control grid still satisfies the two rules and is

a T-mesh [24]. When T-splines are generalized to 3D
space, it is also possible to build multiresolution lat-
tices.

3.2 Weighted T-spline volumes

T-splines [24] can be easily generalized to weighted
T-spline volumes. A weighted T-spline volume is de-
fined as a weighted 3D PB-spline for which some
order has been imposed on the control points by
means of a T-lattice. We first define weighted 3D PB-
splines.

3.2.1 Weighted 3D PB-splines

We define the equation for a weighted 3D PB-spline
as

Z?:] a)iPiBi(ua U, w)

P(u,v, w) = -
( ) Zilzl w; Bi(u, v, w)

(u,v,w)ye D,

S))

where the P; are the control points and the w; are the
positive weights. The B;(u, v, w) are basis functions
given by

B;(u, v, w) = Ny (u)Ni)(v) Nip(w), (6)

where N?(u), N7 (v) and N?(w) are the cubic B-
spline basis functions associated with the knot
vectors

& = [&io, &i1, &2, i3, Sial, (7
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Fig. 5. The contour and the control grids

spline domain; b The 3D PB-spline volume

Fig. 6a,b. A 3D PB-spline with four control points. a A 3D PB-
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for & = u, v, w, respectively. The influence do-
main of B;(u, v, w) is D; = (u;g, u;s) X (vVjg, Vig) X
(wjp, wiy) and it is clear that D; is a regular subdi-
vided lattice.

B;(u, v, w) and its first and second order derivatives
all vanish on the bounding box of (and outside of)
the D;. It can be easily proved that weighted 3D PB-
splines satisfy the convex-hull property. D in Eq. (5)
is the domain over which the entire weighted 3D
PB-splines are defined. Weights are introduced for
the purpose of providing a new deformation way by
changing weights. If all weights are equal, weighted
3D PB-splines reduce to 3D PB-splines. The re-
striction on D is that X7, B;(u, v, w) > 0 for all
(u, v, w) € D and D is a single connected compo-
nent. It is advisable to have each point in D lie in at
least four influence domains D;.

Figure 6a shows a parameter space in which D; has
been drawn for a 3D PB-spline comprised of four
blending functions. The resulting volume is shown
on the right. A possible choice for D is the inter-
val contained in the intersection of D;s. Like T-
splines [24], a weighted 3D PB-spline has no notion
of a control lattice. The knot vectors for each basis
function are completely independent of the knot vec-
tors for any other basis function.

3.2.2 T-lattice

A T-lattice is a rectangular parallelepiped, that al-
lows T-junctions. Like a T-mesh [24], a T-lattice
serves two purposes. Firstly, it provides a friendlier
user interface than the control points does by an ar-
bitrary weighted 3D PB-splines. Secondly, the knot
vectors u;, v;, w; for each basis function are deduced
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Fig.7a,b. A minimal cell of a T-lattice. a T-junction P; shared by one edge in one direction and two edges in the other two
directions; b T-junction P; shared by one edge in two directions and two edges in the other direction
Fig.8a,b. An edge in a T-lattice. a Edge ay is not a cell edge; b Edge ag is a cell edge

from the T-lattice. If a T-lattice is simply a rectangu-
lar parallelepiped with no T-junctions, the weighted
T-spline volume reduces to a NURBS volume. Fur-
ther, if all weights are equal, the weighted T-spline
volume reduces to a B-spline volume. For example,
Fig. 7 shows a minimal cell of T-lattice in (u, v, w)
space, and each color denotes an axis.

We call line segments of three directions u-edge, v-
edge, and w-edge, respectively. A T-junction is a ver-
tex shared by one edge in some direction and two
edges in other directions at the same time. For exam-
ple, P; in Figs. 7a and b are T-junctions. Each edge
in a minimal cell of T-lattice denotes a knot interval
constrained by the following rules:

Rule 1. In each minimal cell, the sum of knot inter-
vals in the same direction must be equal.

The rule is analogous to that for T-splines [24]. Thus
for the cell in Figs. 7a or b in the vertical direction
we have

Qpp +ap1 = ajp = axp = asp +das; = d4o+aqy, O
Qapp = ajo = Axp = a3zp+ Az = dqo + aq.

The constraints for the edges in remaining directions
may be deduced similarly.

Rule 2. Any edge must be a cell edge.

In Fig. 8a ay is an invalid edge because a is not a cell
edge. In Fig. 8b, ay is a cell edge, and therefore ay is
avalid edge.

Rule 3. In our method, there are no zero edges in T-
lattices.
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Fig. 9a—c. T-lattice generated by octree subdivision. a The initial T-lattice; b An intermediate T-lattice; ¢ The final T-lattice

C

From Egs. (6) and (7) we know that each P; cor-
responds to a basis function B;(u, v, w) defined in
terms of knot vectors u;, v;, and w;. We now explain
how to infer these knot vectors from the T-lattice.
The knot coordinates of P; are (u;2, viz, wiz). The
knots u;3 and u;4 are found by considering a ray in
the parameter space R(a) = (u;; +a, vz, w;z). Then
u;3 and u;4 are the u coordinates of the first two u-
edges intersected by the ray (not including the initial
(uiz, vz, wip)) with v x w planes. The other knots in
v and w directions are found in a similar manner.
Weighted T-spline volumes keep C? continuous in
the whole parametric volume. Therefore, no conti-
nuity problem should be considered for deformation.
However, the continuity problem must be handled
seriously by some traditional FFDs [1, 6]. Itis easy to
prove that any octree-subdivided lattice satisfies the
above three rules and is a valid T-lattice. Therefore,
we can use octree subdivision lattices as T-lattices
directly.

4 Automatic generation of T-lattice

Before the generation of a T-lattice, we should first
determine the initial region of the model to be de-
formed. The initial region can be an axis-aligned
bounding box (AAB), an oriented bounding box
(OBB) [9], or a minimum-volume bounding box.
The region may cover the whole model or just some
parts of it. Given the region to be deformed, we
will make a T-lattice approximating the shape of
the object by octree subdivision. The steps for T-

lattice generation using octree subdivision are as
follows:

1. Define the initial lattice to be deformed.

2. If the cell contains any vertex of the model, subdi-
vide it by applying the octree subdivision.

3. Repeat steps 2 and 3 until a user-specified thresh-
old is reached.

Figure 9 shows the T-lattices, which approximate the
shape of the model hierarchically by octree subdi-
vision. In [22], Ono et al. employed Catmull-Clark
subdivision to generate the control points and param-
eterize the minimal cells. The memory required to
keep topological information of the Catmull-Clark
subdivision volume for parametrization increases by
a factor of eight with each subdivision step. There-
fore, it is almost impossible to generate high-level
subdivision lattices. In this paper, we use weighted
T-spline volumes as parametric volumes. It need not
keep the topological information of each subdivision
level. We only keep the T-lattice subdivided by oc-
tree. The data structure of the octree is simple and
consumes less memory. When the control lattice has
been subdivided by octree subdivision, it needs much
less space than uniformly subdivided lattices. An-
other virtue is that it greatly reduces the internal con-
trol points that cannot be easily seen or used. We can
see that only the region close to the object is sub-
divided at higher level (see Fig. 9), and the control
points are mostly concentrated on the boundary of
the object.

The initial weights of control points belonging to
nonempty cells are set much larger than the other
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Fig. 10a—c. Control points belonging to the nonempty cells. a The initial lattice; b An intermediate lattice; ¢ The final lattice

for deformation

ones. The ratio of them is 100:1. Therefore, the con-
trol points close to the object weigh heavily and have
evident influence on the small region containing the
boundary. We can achieve the deformation by ma-
nipulating the control points only close to the shape.
Thus, we use only the control points that belong
to the nonempty cells for deformation and hide the
rest of the control points from user interference (see
Fig. 10). We will show that w-TFFD is well-suited
for local and global deformation.

We make it clear that the control lattice can be sub-
divided into arbitrary topological structure as long as
it satisfies the three rules presented in Sect. 3.2.2. In
our paper, we use octree subdivision only for the pur-
pose of simpleness and practice.

5 Parametrization

w-TFFD deforms objects by embedding them within
the solid and identifies the parametric coordinates as-
sociated with the point set that represents the object
to be deformed. Therefore, we should calculate the
parametric coordinates for each point before defor-
mation. Let Q = (x, y, z) be an arbitrary point of the
original object, w-TFFD parameterizes the point Q
by the T-lattice which includes Q. With the parame-
ters calculated, the point Q will be mapped to a new
point Q" according to the modified lattice or the mod-
ified weights. When the object is embedded into the
T-lattice, w-TFFD parameterizes the point Q by the
following equation

Z?:l a)iPiBi(u7 va w)

0=
S wiBi(u, v, w)

(u,v,w)ye D. (8)

The cells of octree-subdivided lattice are generally
not uniform, or aligned with the data axes. Therefore,
the equation cannot be solved directly as previously
proposed methods [8, 10, 11], nor can the problem be
separated into three independent parts, one for each
parametric variable like NFFD [16]. Equation (8) is
a nonlinear equation and we can solve the equation
numerically.

It can be easily verified that the solution to Eq. (8)
is unique, and the solution can be obtained by
solving an equivalent scalar function F(u, v, w) =
| P(u, v, w) — Q||*> = 0. Then, we solve the scalar
equation by employing nonlinear conjugate gradient
method [13]. Let g, = (uy, vi, wy) be the approxi-
mate solution after k times of calculation and dj be
the descent direction at gy, then the solution can be
improved further by searching along the direction d.
With this search, we have gy+1 = g + o dy, and o
satisfies the strong Wolfe conditions [13]:

F(ge+axdy) < Fqo) + 1o VFT (i) dy ©)
|V F(gy + ondi) " dy| < c2|VF(q)" di] (10)

where 0 < c; < ¢y <1/2and VF, = (F, (uy, v, wi),
Fy(uy, v, wy), Fu(ug, v, we))7 is the gradient vec-
tor of F(u, v, w) at g;. With g, obtained and for
further computation, the descent direction dj,; at
gi+1 can be computed as

diy1 = =V Fypr + Brdy, (11)
T
where f; = 7vg;;rvvz,l .

From Eq. (9)—(11), we can see that the gradient
of F(u,v,w) should be computed for each iter-
ation. For the purpose of efficiency, we compute
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points belonging to nonempty cells

Fig. 11a,b. Part of the lattice is subdivided by octree subdivision. a The T-lattice by local octree subdivision; b The control

F)(u,v,w), F)(u,v, w) and F, (u, v, w) before de-
formation. As to the initial solution and the descent
direction, because the parametric domain D is identi-
cal with the bounding box of the T-lattice, we choose
the initial solution gg(uq, vy, wo) equal to the point
Q itself and the descent direction dy = —V Fj,.

At present, we cannot prove the convergence of the
numerical algorithm theoretically. If the solution
does not converge within limited steps, we can reset
a new initial solution and solve the equation again.
Because weighted T-spline volumes are not very dis-
torted or eccentric, we have obtained all solutions
without any recomputation. In fact, when we choose
the precision | P(qx) — Q| < 0.001, it needs no more
than 15 iterations to solve the equation.

6 Deformation algorithm

With the construction of weighted T-spline volumes
and by manipulating the control lattice or the weights
of T-spline, we can then deform any object embed-
ded in the volume. The main steps for the w-TFFD
algorithm are as follows:

Step 1. Define the initial region of the model to be
deformed.

Step 2. Generate the multiresolution lattices and set
initial weights for T-spline volumes.

Step 3. Calculate the parametric coordinates (u, v, w)
for each point.

Step 4. Modify the control points or weights and
evaluate the new locations of the points.

In step two, users can only apply octree subdivision
to user-specified cells. Figure 11 shows that part of
the lattice has been subdivided. It is similar to the lo-
cal subdivision proposed in [19]. The result of the
control lattice still satisfies the three rules proposed
in Sect 3.2.2 and is a valid T-lattice (see Fig. 11a).
w-TFFD supports direct manipulation. Some direct
acting tools, such as the hammer tool and crimp tool
proposed in [21], can also be applied to w-TFFD,
even though there are still some differences between
their methods of manipulation. Because the control
lattice of w-TFFD needn’t be aligned with the data
axes, we cannot operate one row of the control lat-
tice in some directions as large tools [21] do. In our
method, we only need to operate the weights of those
control points belonging to nonempty cells. From
Eq. (5), itis clear that increasing a weight at a point,
will move all affected points within the volume to-
wards that point. It is similar to the result proposed
by Noble et al. [21].

7 Discussions and implementation
results

In this section, we present several examples to show
the efficiency of global and local deformation by w-
TFFD.
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d

Fig. 12a—f. “Pot” example: global and local deformation. a The original mesh of pot; b The control lattice; ¢ Deformation by
changing control lattice; d The result of ¢; e Adding local details; £ The result of e

The first example is for “Pot” deformation (see
Fig. 12). It demonstrates global and local deforma-
tion by w-TFFD. The entire shape of the pot is mod-
ified by manipulating all the control points. The user
can easily do such global deformation with less con-
trol points, pulling the rim of the pot out by varying
the weights and displacements of the control points
marked red. In Fig. 12e, we combine the two ways of
deformation and achieve a better effect with ease.
The second example, “Tree” deformation (see
Fig. 13), demonstrates deformation of objects with
complex geometry. Octree subdivision can be used
to approximate the shape of the tree efficiently and
all tree branches are deformed in a single w-TFFD.
However, some traditional FFDs, using Bézier vol-
umes, B-spline volumes, or NURBS volumes, will
have to separate the deformation into several inde-
pendent ones. These methods then suffer either high
computational cost or great inconvenience.

The last example, “Rhino” deformation (see Fig. 14)
demonstrates deformation with local subdivision.

The control lattice of each part is subdivided into dif-
ferent levels and that of the Rhino head is subdivided
at a higher level. Therefore, we can do finer deforma-
tion on the head.

We evaluate the performance of w-TFFD system
by calculating the number of control points and
the parametrization time, on a PC with Pentium-IV
2.8 GHz CPU and 1 GB memory.

The results are shown in Table 1, including a com-
parison between the numbers of control points gen-
erated by octree subdivision and by regular subdi-
vision. From Table 1, we see that with the same
depth of subdivision, the new method can be used
to reduce the control points greatly. Here the con-
trol points are the whole points for T-lattice. If we
preclude the control points that are not manipu-
lated by users, the number will be even less. So
our method provides easy manipulation for users.
The memory that w-TFFD requires is only used
to store the control lattice and the octree. It con-
sumes less memory than regular subdivision. The
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Fig. 13a—d. “Tree” example: deformation of objects with complex topology. a The original mesh of tree; b The control

Fig. 14a—c. “Rhino” example: local subdivision. a The original mesh of rhino; b, ¢ Deformation results

most time-consuming step is the process for cal-
culating the parametric coordinates. Obviously, the
parametrization time depends heavily on the point
number of models, as well as the octree depth. In
this paper, we solve the nonlinear Eq. (8) by em-
ploying nonlinear conjugate gradient method. The
efficiency depends greatly on the initial solutions.
We can use heuristic evaluation by the point’s ad-
jacency to reduce the time. The times for multires-

olution lattice generation and point relocation are
negligible.

8 Conclusions and future work

From all the examples we have presented, we can
see that w-TFFD has greater deformation ability than
previous FFDs. Moreover, it combines more defor-

Table 1. Performance of w-TFFD. CPNOS: the

number of control points generated by octree subdi- Model . Octree CPNOS CPNRS PT ()
vision; CPNRS: the number of control points gen- (number of points) depth
e{ratesi by regular subdivision; PT: the parametriza- 3 346 729 62.5
tion time Tree 4 1141 4913 97.3
(8738) 5 4002 35937 162.5
3 421 729 83.2
Tusker 4 1556 4913 122.5
(9555) 5 5725 35937 240.3
3 678 729 131.2
Pot 4 3511 4913 210.7
(14737) 5 15825 35937 405.7
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mation techniques than previous FFDs in a consis-
tent framework. The main features of w-TFFD are
that it provides multiresolution lattices and supports
direct manipulation in a consistent framework. The
control lattice can be automatically generated and
approximate arbitrary shape more tightly with less
memory increase. People can do any level of defor-
mation and manipulate the control points close to the
shape easily. Due to direct manipulation by chang-
ing weights, potential difficulties of the FFD men-
tioned in [21] can be avoided, and some tools based
on NURBS [21] can be applied to w-TFFD and pro-
vide greater versatility of sculpting.

Several desirable extensions need to be studied in the
future. These include:

e To generate control lattices with arbitrary topol-
ogy that is better than octree subdivision lattices;

e To support hierarchical deformation;

e To import T-spline surfaces by creating a T-spline
volume in which the surface is an isosurface; and

e To implement w-TFFD by hardware acceleration
as proposed in [5].
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