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1. Introduction

Among all parametric curves those with polynomial parametric speeds or polynomial arc lengths play particular roles in
geometric modeling and CNC machining [1-3]. In the past few decades polynomial curves with Pythagorean Hodographs
(shortly PH curves) and their applications in geometric modeling have been studied extensively [4-8]. More theories and
algorithms about PH curves can be found in the book [9] or a recent survey paper [10].

Though non-uniform rational B-spline (NURBS) as well as B-spline, Bézier or rational Bézier curves are popular tools for
geometric modeling, they have to represent typical curves like circles in rational form [11]. Transcendental curves such as
cycloid, catenary, etc. even cannot be represented exactly by NURBS or other polynomial based curves. To represent circles
and other transcendental curves simply and exactly, Pottmann [12,13] defined a class of helix splines over a mixed space
of polynomials and trigonometric functions. Straight lines, circles and helices can be represented by helix splines with
arc-length parametrization. Similarly, Zhang [14,15] introduced the C-B-splines in the space £2 = span{1, t, cost, sint},
as the extensions of cubic uniform B-splines. Several types of non-polynomial curves for shape preserving design have
been given in [16-19].

Similar to PH curves constructed in polynomial spaces, PH-like curves can also be constructed in non-polynomial
spaces. Romani et al. [20] introduced the ATPH curves defined over a mixed algebraic-trigonometric space 2 =
span{sint, cost, sin 2t, cos 2t, 1, t}. ATPH curves have similar properties as conventional PH curves and can be used for
C! Hermite interpolation. While polynomial PH curves have rational offsets and polynomial arc lengths, the arc-lengths
of ATPH curves are trigonometric functions and their offsets are rational curves represented by mixed algebraic-
trigonometric functions. ATPH curves can also be used for possible applications in CNC machining or other modeling
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purposes. Besides single curve segments, Gonzalez et al. [21] employed the ATPH curves for the construction of a planar
C? spline curve. By exploring algebraic conditions similar to polynomial space PH curves, ATPH space curves represented
by algebraic and trigonometric polynomials have been proposed in [22].

Besides satisfying algebraic conditions, ATPH curves can also be constructed in a geometric way. Wu and Yang [23]
introduced a family of intrinsically defined planar curves within space £2 = span{1, siné, cos9, 0 sin@, ..., 0" cos8}. The
curves are locally convex and the offsets to the curves lie in the same space. When the curvature radius functions are
polynomials in terms of the tangent angle, the Cartesian coordinates of the curves can be explicitly obtained by the integral
of scaled tangent vector fields. If the prescribed unit tangent vector fields are represented by rational Bézier curves, convex
PH curves or PH curves with single inflection points can be constructed by integrals of the scaled tangent vector fields [8].

In this paper we propose to construct spatial ATPH curves by integrals of hodographs which are originally given as
scaled unit tangent vector fields in 3D space. These types of ATPH curves have only polynomial parametric speeds and
polynomial arc lengths. Since the curves are defined in a mixed space of polynomials and trigonometric functions, several
typical non-polynomial curves can be represented by the proposed model exactly. Based on their definition, geometric
Hermite interpolation by the proposed spatial ATPH curves without or with arc length constraint can be implemented in
two steps: unit tangent vector field construction and scaling function computation. For both of the two steps, only simple
linear systems should be solved and unique interpolating curves can be obtained.

The remainder of the paper is organized as follows: In Section 2, we define a family of spatial integral curves with
polynomial arc lengths. Section 3 introduces the technique of G! Hermite interpolation by the proposed curve model.
Given G! Hermite data together with an arc-length, algorithm for construction of an interpolating PH curve with the
prescribed arc-length will be presented in Section 4. Section 5 concludes the paper.

2. A family of spatial ATPH curves with non-rational unit tangents

In this section, we propose to define a family of spatial ATPH curves that have non-rational unit tangent vectors. Par-
ticularly, the unit tangent vectors are represented by spherical curves using spherical coordinates. When the magnitudes
of hodographs of the curves are chosen simple elementary functions, explicit Cartesian coordinates of the curves are
obtained.

Assume that ag, a;, bg and b; are real numbers and a% + b% # 0, a spherical curve is given by

cos(ai& + ag) cos(b1& + bg)
T(E) = | cos(ai& + ap)sin(bi& +bo) |, £ e][0,1]. (2.1)
sin(a;& + ag)
Based on the definition of T(£) we know that T(0) = (cos g cos by, cos ag sin by, sin ag)” and T(1) = (cos(a; + dg) cos(b; +

bo), cos(a; + ag) sin(by + bg), sin(a; + ag))", where the upper letter “T" means the transpose of a vector or a matrix. When
T(&) is obtained, a spatial curve that has prescribed unit tangent vector field T(¢) is given by

3
’(e) = / p(OT(0)dE +10, & € [0, 1], 22)
0

where p(t) can be chosen any integrable real function and rq is an arbitrary point in R>. From the definition of r(¢) we
know that the curve r(&¢) is a planar curve if and only if the unit tangent vector field T(¢) lies on a plane. Particularly, it
can be easily verified that the unit tangent vector field given by Eq. (2.1) lies on a plane that passes through the origin
when a; = ag = 0 or by = 0. Techniques for constructing a ATPH curve from a planar tangent vector field can be found
in [23].

Let Ay = a; + b1, Ao = ap + bg, B = a; — by, Bo = ag — bo. The Cartesian coordinates of the curve r(¢) are formulated
as

X(€)
§) = ¥(&)

Z(E)
fo p(t)cos(ast + ag) cos(bit + bg)dt

)
= fo p(t)cos(ait + ag)sin(bqt + by)dt | + 1o (2.3)
fo p(t)sin(ast + ao)dt
LIS p(t) cos(Art + Ag)dt + 1 fj o(t) cos(Bit + Bo)dt
= LIS p(¢)sin(Art + Ag)dt — 1 [ p(¢)sin(Bit + Bo)dt | +To.
fo t)sin(ait + ap)dt

Particularly, the coordinates of r(¢) can be explicitly computed when p(t) is chosen as any elementary function. Because
Ir'(E)|l = |p(&)], the arc length of the spatial curve r(&) is obtained as L(§) = fo |p(t)|dt.
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From Eq. (2.2), the unit normal N(¢) and the binormal B(§) of the curve are derived as
_TE)
TN

~ _ TE)xTE)
BE) =TE) xNE) = ey Ty

The curvature and the torsion of the curve r(£) are obtained as follows:

k) = IME XTI _ ITE) x T(E))
HGIE ()]

N(§)

’

and

o(6) = det(r'(§), r'(§), r"(§)) _ det(T(§), T(£), T'(§))
(&) x r"(§)II2 lp(ENITE) x T

Based on the curvature and torsion formulae, the regularity of the curve r(¢) can be checked by the sign of p(t) directly.

Proposition 1. If p(t) # O, for 0 <t < 1, then the spatial ATPH curve defined by Eq. (2.2) is non-singular.

In this paper we choose p(t) as quadratic or cubic polynomials such that the obtained ATPH curves have enough
degrees of freedom to interpolate prescribed Hermite data or arc lengths. Firstly, the integral function p(t) is chosen as a
quadratic function

o(t) = py(t) =bt? +ct +d, tel0,1], (2.4)

where b, ¢ and d are real constants. Substituting Eq. (2.4) into Eq. (2.3), the coordinates of the curve can be computed as
follows:

3(B(£)b + C(§)c + Dx(£)d)
r(E)=| 3By +C(E)c +Dy(§)d) | + o (2.3)
B:(§)b + C;(&§)c + D,(§)d

where
Bu(§)= (56— A%)Sin(Alf +Ao) + Al%s cos(A1€ + Ao) + é sin(Ao)
+(p8 - é)sin(&s + Bo) + ég cos(Bi& + Bo) + %sin(Bo),
GU§) = 7 Sin(ArE +Ao) + 7 cos(Ar§ + Ao) — 75 Cos(Ao)
+ %S sin(B1§ + Bo) + é cos(B1& + By) — é cos(By),
Dy(&) = A% sin(A;£ + Ag) — A% sin(Ao) + % sin(B1& + Bo) — % sin(By),
(—Ag2+ é)cos(ms +Ag) + és sin(A€ + Ag) — Al? cos(Ao)
_ [(—%52 + é)cos(BﬁE + Bo) + éé sin(B1£ + By) — B%COS(BO)],
G(§) = —7-§cos(Ai§ +Ag) + Ai% sin(A+& + Ag) — AL% sin(Ay)

= [= 5,5 cos(Big + Bo) + g5 sin(Bi§ + Bo) — 5 sin(Bo)l.

Dy(£) = —ﬁ cos(A€ + Ag) + A% cos(Ag) — [—% cos(Bi& + Bg) + é cos(By )1,
B,(§)= (—5&+ %)cos(alé + ap) + éé sin(a€ + ap) — écos(ao),
G(§)= —g&cos(aé +ap)+ % sin(a;& + ag) — é sin(a),

D,(&) = —é cos(a & + ag) + é cos(dg).

Secondly, we choose p(t) as a cubic function p(t) = py(t) = at? + bt? + ct + d. By a simple computation it yields
(Ax(&)a + Bx(£)b + Gu(&)c + Dy(£)d)

1

2

1(€) = | 3(A/(&)a+By(§)b+ G§)c + Dy(£)d) | + o, (26)
Az(§)a+B,(§)b+ C(§)c + D,(&)d
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where
A(E) = (%153 - A%S)sin(AlE +Ao) + (%EZ - A%)COS(Alé +Ao) + A%COS(Ao)

+ (5,87 = FE)sin(Beg + Bo) + (87 — ) cos(Bag + Bo) + 3 cos(Bo),

5
AB) = (—5&+ %S)COS(A@' + Ao) + (A%Ez - A%)Sin(/\lé + Ao) + A% sin(Ao)
—(—5&+ %E)COS(&S + Bo) + (%52 - %)Siﬂ(Blé + Bo) + % sin(Bo)],

AE)= (=28 + S&)cos(it +ao) + (382 — §)sin(asg + ao) + & sin(a).

and the remaining terms are as defined in Eq. (2.5).

In Egs. (2.5) and (2.6), we assume that a; # 0, A; # 0 and B; # 0. When one of them is zero, it is simple to recompute
the formulae of the integral curve.

We reformulate the quadratic function p(t) as follows:

ou(t) =bt> +ct +d

2.7
= poB3(t) + p1Bi(t) + p2B5(t), t € [0, 1], 27

where pg =d, py =d+ 3¢, p =d+c+band BXt) = i!(zzii)!ti(l —t)*7,i=0, 1, 2, are the Bernstein basis functions.

Substituting Eq. (2.7) into Eq. (2.5), the coordinates of the curve can be computed as follows:
3(B§)02 + (—2B,(&) + 2G{£D)p1 + (Bul§) — 266) + Dul))oo)

&)= 1 3(BUE)o2 + (~2B,(6) + 2G(6)p1 + (B(§) — 2G(€) + Dy(€)po) | +To- (28)

B(§)p2 + (—2B;(§) + 2C;(§))p1 + (Bz(§) — 2C;(§) + D2(§))po
Similarly, the cubic function py(t), t € [0, 1], can be represented in Bernstein-Bézier form as follows:

om(t) = loB3(t) + 11B3(t) + LB3(t) + LB3(t), t € [0, 1], (2.9)
where
lo=d,
h=d+ ic,

L =d+3c+3b,
b=d+c+b+a.

Substituting Eq. (2.9) into Eq. (2.6), the coordinates of the curve can be computed as follows:

3(G11(&)ls + G12(&)lr + Gi3(E)l1 + G1a(§)lo)
(€)= | 3(Ga(&)s + Gaa(€)la + Gos(§)y + Ga(§)lo) | + o, (2.10)
G31(8)l3 + G32(8)l + G33(8)l1 + G3a(8)lo
where
Gu§) = A8),
Ga(§) = —3A«(§) + 3B«(8),
Gi3(§) = 3Ax(E) — 6Bx(§) + 3G(§),
Gua(§) = —Ax(&) 4 3Bu(&) — 3Gi(§) + Dx(8),
Ga(§) = Ay(8),
Ga(§) = —3A/(8)+3By(8),
)
)
)
)
)

Gxs(§) = 3A,(8§) —6By(§) +3G(§).

Gul(E) = —Ay(E)+ 3By(&) — 3Cy(&) + Dy(&),
G1(§) = Aq(8),

G(§) = —3AL(8)+ 3B,(§),

G33(§) = 3A.(§) — 6B,(§) + 3C(8),

G34(E) = —AL(E) + 3B,(§) — 3C,(§) + D,(&).

Fig. 1 illustrates a family of spatial integral curves which are defined by quadratic polynomial and trigonometric
functions. Given a unit tangent vector field in advance, three ATPH curves are obtained by Eq. (2.5) when different
polynomial functions p(t) have been chosen for the integral. Particularly, the curves in red, green or blue colors are
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0.5+

-0.5 4

Fig. 1. (a) The unit tangent vector field constructed by Eq. (2.1) with a; = 0.2%, ap = 0, by = 0.4, by = 0, t € [0, 1]; (b) spatial ATPH curves
computed by integrals of scaled tangent vector fields. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

obtained by choosing p(t) = (0.00272)t? 4 (0.017 )t 4 0.3, p(t) = (0.0017%)t? + (0.067 )t + 0.2 or p(t) = (0.00372)t> +
(0.02m)t + 0.4, respectively, all with ry = 0. This example shows that it is possible to interpolate an ATPH curve to G'
Hermite data by first interpolating the boundary tangent vectors and then computing a scaling function for the integral.

3. G' Hermite Interpolation

In this section we present concrete algorithm steps for solving the G' Hermite interpolation problem using the spatial
ATPH curves defined in Section 2. Suppose that {P1, T1; P, T>} are the given boundary points and the unit tangents at the
points, we construct an interpolating spatial ATPH curve by choosing a quadratic polynomial py(¢) for the integral (2.2).
The algorithm consists of two main steps. First, we compute a unit tangent vector field based on the two given boundary
tangent vectors. After then, we compute the unknown parameters within py;(£) based on the end interpolation condition.

3.1. Compute the interpolating unit tangent vector field

As a first step of the proposed Hermite interpolation algorithm, we compute a spherical curve T(£¢) that interpolates
given tangents T; and T, at the ends. Assume the Cartesian coordinates of the given tangent vectors are T; = (tj1, tj2, ti3),
i = 1, 2, we represent the vectors by spherical coordinates as T; = (cos 6; cos ¢;, cos 0; sin ¢;, sin6;), i = 1, 2. Particularly,
the angle 6; is computed by 6; = arcsin(t;3) and the angle ¢; is given by

arctan(i’%), if tq>0,
1
5 arctan(%) +m, if ty <O,
i = !
+3, if t1=0,tp>0,
—3 if th=0tp <0,

fori =1, 2. If tjj = tp = 0, the unit tangent vector T; becomes T; = (0, 0, 1) or T; = (0, 0, —1). In this case, the angle ¢;
can be chosen any real number.

Based on the assumption that a unit tangent vector curve T(§) interpolates given boundary tangents, i.e.,, T(0) = T;
and T(1) = T,, we have

ap = 01,
a; + ap = 6,
bo = ¢1,
b1 + by = ¢,
The solution to the linear system is
ap = 61,
a; =6, — 6y,
bo = ¢1,
b1 = ¢ — ¢1.

When ay, a;, bg and b; have been obtained, the interpolating unit tangent vector field is computed by Eq. (2.1).

5
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1-

0.5

(b)

Fig. 2. A sphere curve that interpolates two given unit vectors lying at north pole or south pole of the Gaussian sphere. (a) Azimuthal angles
¢1 = 0.37 and ¢, = 0.37; (b) azimuthal angles ¢y = 0.37 and ¢, = 1.4x.

From the above process we know that there exists an interpolating sphere curve for any two distinct points T; and
T, on the unit sphere. Particularly, the interpolating curve is part of a latitude when 6; = 6,, or the curve is part of a
longitude when ¢ = ¢,. If T; and T, are located at the north pole and south pole, respectively, the interpolating curve is
a longitude when the angles ¢; and ¢, are chosen the same value. Fig. 2 illustrates two spherical curves that interpolate
two sphere poles with different choices of angles ¢ and ¢,.

As discussed in Section 2, the unit tangent vector field T(¢) lies on a plane that passes through the origin only when
61 = 6, = 0 or ¢; = ¢,. If this is the case, a planar interpolating ATPH curve can be computed by the method presented
in [23]. In the following subsection we construct G' interpolating ATPH curves under the assumption that the boundary
parameters satisfy 912 + 922 # 0 and ¢ # ¢, such that T(§) is not a planar tangent vector field.

3.2. Compute the G interpolating spatial ATPH curve

When the non-planar unit tangent vector field T(£) has been obtained, the G! interpolating spatial ATPH curve can
be determined by solving equations r(0) = Py and r(1) = P,. Because r(0) = rqg = Py, the unknown coefficients of p(&)
within Eq. (2.2) are to be solved based on the following linear system

By —2By+2C; By — 2G+ Dy P2 2(xy — x1)
B, —2By+2C, By —2G +Dy e | =1 202-y1) |, (3.1)
B, —2B,+2C, B,—2C +D, 0o Z— 71

where By, G, Dy, By, Gy, Dy, B, C;, and D, are computed by Eq. (2.5) with £ = 1.
Denote M, the coefficient matrix of the linear system (3.1). Let

B, G Dy
m=det| B, C D,
B, C D,
It yields that det(M,) = 2m. If m # 0, we have the solution to the linear system (3.1) as follows:
P2 By —2B,+2G B, —2G+Dy \ ' [ 2% —x1)
o |=| B —2B,+2C, B,—2C +D, 202 —y1) |- (32)
0o B, —2B,+2C, B, —2C,+D, Z; — 274

In practice, the coefficient matrix of linear system (3.1) always satisfies det(M;) # 0 and the unique solution to the
system can be computed by (3.2). This can be roughly explained as follows: From Egs. (2.4) and (2.5) we have

1B(&) | = /0 t¥T(t)dt, 66 | = /0 tT(t)dt, iDy(E) | = /O T(t)dt.
B,(§) C(8) D, (%)

6
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Fig. 3. G' Hermite interpolation: P; = (0, 0, 0), P, = (9.75, 47, 20.5), 6; = 0, 6, = 0.4, ¢; = /3, ¢, = 0.7x. (a) The sphere curve that interpolates
the given unit tangent vectors on the Gaussian sphere; (b) the G' Hermite interpolating curve; (c) the curvature and the torsion plots of the
interpolating curve.

It is clear that the functions on the right side of the above three equations are linear independent. Let

1B(&) 1C(&) 1DyE)
my(§) =det | 1B,(&) 1G(8) 1Dy(8)
B.(£§) G(§)  Dy(&)

Then, the function my;(£) does not identically equal to zero for any parameter interval. Finding the zeros of my(¢) is
complex and is beyond the algorithm proposed in this paper. In all examples we have experimented we have my(1) =
%m # 0 and the interpolating curves can be obtained by the proposed algorithm. In case my(1) vanishes, one can still
construct an interpolating curve from the equation r(§;) = P, with & # 1.

To check whether or not the interpolating ATPH curve is regular, we should only check the sign of the quadratic
function py(§) = poB3(§) + p1Bi(§) + p2B5(§), & € [0, 1]. Because min{po, p1, p2} < pu(§) < max{po, p1, p2} for
0 < & < 1, we have py(§) > 0 for & € [0, 1], when all pg, p1 and p, are positive numbers, or, poy(§) < O over the
domain [0, 1], when all of py, p1 and p, are negative. Based on Proposition 1, the obtained interpolating spatial PH curve
is regular when the signs of pg, p1 and p, are the same. It should be noted that the obtained ATPH curves have opposite
tangent direction with T(&) when all coefficients pg, p1 and p, are negative.

Fig. 3 illustrates an example of G' Hermite interpolation by the proposed algorithm. A sphere curve is first obtained
by interpolating two prescribed points on the unit sphere (see Fig. 3(a)). Then, based on the position condition, a regular
interpolating spatial ATPH curve is obtained by solving a simple linear system; see Fig. 3(b) for the obtained interpolating
curve. Fig. 3(c) shows the curvature and torsion of the interpolating curve.

Given the Hermite data, P; # P,, and T; = Ty, if T; and T, are parallel to the vector P, — Py, it is obvious that the
unit tangent vector field T(¢) = T;. Therefore, the interpolating curve is just a straight line. Otherwise, if T; = T is not
parallel to the vector P, — P;, we assume that ¢, — ¢ = 2 and 6; = 6, # 0. Thus, the interpolating sphere curve is just
a latitude other than the equator (see Fig. 4(a)). Fig. 4(b) illustrates the final interpolating ATPH curve.

4. G! Hermite Interpolation by ATPH curves with prescribed arc lengths

In this section, we consider the problem of G! Hermite interpolation subject to arc length constraint. Besides the G!
Hermite data {Pq, Ty; P, T»}, the arc length L of an interpolating curve has also been given. Using the same technique of
tangent vector interpolation described in Section 3, we first construct a sphere curve T(£) that interpolates vectors T; and
T, at the ends. After then, we choose py(§) = loB3(§) + [1B3(§) + L,B3(£) + 13B3(£) for the construction of G! interpolating
ATPH curve with arc length constraint.

After the interpolation of unit tangent vector field, the G' Hermite interpolation subject to arc length constraint can
be formulated as r(0) = rp = P, r(1) = P, and fol p(t)dt = L. The equations can be further reformulated as follows:

Gi1 Gz Gi3 Gu l3 2(xy — x1)

Gy1 G Gz Gy b _ 2(y2 — y1) (4.1)
G31 G G333 Gag h z — 273 ’ '

1 1 1 1 Io 4L



W. Wu and X. Yang Journal of Computational and Applied Mathematics 388 (2021) 113296

1 30
20
curvature
0.4 torsion |
N N
_ 03f
s
10 £ o2 1
2
& o1 A
®
0 g o ]
3 01
-5 10 0zl
0.5
0.5 b= 0 0 5 03
X : 5 0 01 02 03 04 05 06 07 08 09 1
y X y €
(a) (b) (©

Fig. 4. G! Hermite interpolation: P; = (0,0, 0), P, = (4,4.75,29.25), 6; = 0.27, 6, = 0.27w, ¢; = 0.27, ¢, = 2.27w. (a) The sphere curve that
interpolates the given unit tangent vectors on the Gaussian sphere; (b) the G' Hermite interpolating curve; (c) the curvature and torsion plot of the
interpolating curve.

where Gn. Gu, G13, G14. G21, Gzz, 623, G24. G31, G32, G33. and G34 are computed by Eqs. (2.5), (26) and (2.]0) with
E=1

Denote M the coefficient matrix of the linear system (4.1). Let ¢ = det(M;). If ¢ # O, the solution to the linear
system (4.1) is given by
-1

I3 Gnn G2 Giz Gu 2(x3 — x1)

b _ Gy Gp Gz G 2(y2 —y1) . (42)
hL G31 G G3z3 Gy Z =2

Iy 1 1 1 1 4L

We now explain roughly that Eq. (4.2) does work well for practical curve interpolation. Let T(t) = (Ty(t), T, (t), T,(t),
1). The Cartesian coordinates and arc length of an integral defined curve with tangent vector field T(t) are given by

x(§)
y(&)
z(§)
L(&)
=[5 pu()(e)de
= L[S B(OT()E + L[5 BT + Iy fF BTt + lo [ B(¢)T(t)de.

r¢) =
(4.3)

Since functions B?(t), i = 0,1,2,3, are linear independent, the vector functions f(f B;"(t)’i‘(t)dt, i =0,1,2,3, are also
linear independent. On the other hand, using the notations of Egs. (2.10), (4.3) can be reformulated as

5G11(€)  3Gia(§) 3Gis(§)  5Gu(§) I3
f(e) = 3Ga1(E)  3Gn(&) 3Gx(E)  3Gau(E) lh 7
G31(8)  G3n(§)  Gss(§)  Gsal8) h
J3(§) J(&) J1(&) Jo(§) lo
where Ji(§) = [5 B3(t)dt, i =0, 1,2, 3.
Let

3G11(&)  3Gia(8) 3Gu3(§) 3Gua(§)
1Gu(E) 1Gn(E) 1Gus(E) 1Gu(&)
G31(§)  G(§)  G3(8) Gaa(8)
J3(&) J(§) J1(§) Jo(&)

Since the four column vectors within the above matrix are linear independent, the function my;(£) is not identically equal
to zero when & belongs to any parameter interval. With simple computation we know that my;(1) = %det(ML). Therefore,

my(§) = det

8
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Fig. 5. G' Hermite interpolation with prescribed arc lengths. The boundary data are P; = (0,0,0), P, = (1.5,4,2), T, = (1,0,0), and
T, = (—3,2,3)/4/22. (a) The sphere curve that interpolates the given boundary tangents on the Gaussian sphere; (b) the interpolating curves
with various prescribed arc lengths; (c) the curvature and torsion plots of the interpolating curve with arc length L = 6.

if my;(1) does not vanish, the linear system (4.1) has a unique solution. Due to its complexity, the zeros of my;(£) can only
be obtained by numerical method at present. Instead of estimating the zeros of my; (&) in advance, we compute my;(1)
or det(M;) directly. In our experiments, my;(1) does not vanish and the interpolation curves with prescribed arc lengths
can always be obtained by solving linear system (4.1). In case my;(1) = 0, one can compute the interpolating curve by
choosing a different parameter for interpolation of the boundary data.

An interpolating curve with prescribed arc length is obtained by Eqs. (2.10) and (4.2) when the linear system (4.1) has a
solution. However, based on Proposition 1 we know that the interpolating curve is regular over the domain only when the
cubic function p(&) satisfies p(&) # O for all & € [0, 1]. We present here a sufficient condition for checking the regularity
of the obtained interpolating ATPH curve. Recall that the scaling function is p (&) = loB3(§) + 1B3(§) + LB3(§) + 13B3(§),
& €[0,1]. If Iy, I3, I, and I5 are all positive numbers, the inequality p(£) > 0 holds over the domain. Similarly, if Iy, [1, I,
and I3 are negative numbers, p(§) < 0 for £ € [0, 1]. Consequently, when one of the above conditions is satisfied, it is
guaranteed that the integral curve is regular.

Fig. 5 illustrates an example of G' Hermite interpolation with arc length constraint. For the given boundary data, a
sphere curve that interpolates given boundary tangents on the Gaussian sphere is first computed. Then, interpolating
ATPH curves are obtained by solving linear system (4.1) under the constraint of prescribed arc lengths. From Fig. 5(b) we
know that the interpolating curves are regular when the sign of the function py (&) does not change for & € [0, 1]. It is
also known that the function pp (&) can have zeros within the interval [0,1] and the interpolating ATPH curve can have
singular points when the arc length has not been properly chosen. Fig. 5(c) illustrates the curvature plot and torsion plot
of the interpolating ATPH curve with arc length L = 6.

5. Examples

In this section, we present several examples for the construction of G! Hermite interpolating ATPH curves. Given a
sequence of points P; € R?,i =0, ..., n, and unit tangents T;, i = 0, . .., n, at the points, we construct a G' interpolating
ATPH curve to each pair of consecutive points and tangents. As a result, an interpolating spatial ATPH spline curve with
G! continuity is obtained.

First, we sample points and unit tangents on a cylinder curve r(t) = (4cost, 4sint, 0.2t2), t € [0, 2m]. The Hermite
data are sampled from the curve at t; = an i = 0,...,n. Particularly, we chose n = 2, 4, 8, 16 for the construction
of interpolating ATPH spline curves by the algorithm given in Section 3. Fig. 6 illustrates two examples of ATPH spline
curve interpolation when n = 2 or n = 4. The maximum approximation errors and the maximum angle differences of
tangent vectors between the interpolating curves and the original curve are given in Table 1. From the table we can see
that more accurate approximating results can be obtained when many more sampled points and tangents are interpolated
by regular ATPH curves. As a comparison, we have also interpolated the same set of sampled points and tangents by G!
cubic polynomial PH spline curves [24]. It can be observed that the ATPH curves can approximate the original curve with
even higher accuracy than the cubic PH curves. The curvature plots and the torsion plots of the interpolating curves also
show the higher quality of the proposed ATPH curves.

Second, we construct ATPH spline curves by interpolating points and tangents sampled from a segment of helix on the
elliptic cylinder r(t) = (2 cost, 2.5sint, t), t € [0, 27r]. Assume that points and unit tangent vectors have been sampled

from the curve at t; = %, i=0, 1,2, 3, 4. Fig. 7 illustrates the interpolating spline curves consisting of 4 pieces of spatial

ATPH curves or 4 pieces of cubic PH curves. Though both of the two types of interpolating curves approximate the original
curve very well, it is observed that the interpolating ATPH curves are fairer than the cubic PH curves because the former
have even fewer number of curvature extremes or torsion extremes.

9
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Fig. 6. Interpolation of points and tangents sampled from a spatial curve on a cylinder by splines of ATPH curves or splines of cubic PH curves.
(a) The 2 pieces of interpolating curves; (b) the corresponding plot of the curvature of (a); (c) the corresponding plot of the torsion of (a); (d) the 4
pieces of interpolating curves; (e) the corresponding plot of the curvature of (d); (f) the corresponding plot of the torsion of (d). ATPH curves, cubic
PH curves and original curves are drawn in red, green, and black, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 1

The maximum approximation errors and the maximum angle differences
of tangent vectors for different sets of interpolating ATPH curves.

#segments

Max approx. error

Max tangent angle difference

2
4
8
16

0.137872
0.061317
0.029884
0.014849

0.007688
0.001995
5.003854E—4
1.251672E—4

6. Conclusions and discussions

In this paper we have defined a family of spatial ATPH curves based on the integral of scaled unit tangent vector fields.
Using sphere curves represented by sphere coordinates and polynomial scaling functions, the Cartesian coordinates of
the ATPH curves can be computed explicitly. These types of ATPH curves have polynomial arc lengths and can be used
to represent several types of typical curves in non-rational form. For given G! Hermite boundary data together with or
without a prescribed arc length, the interpolating ATPH curves can be obtained by solving simple linear systems. Unlike
Hermite interpolation by conventional PH curves, the proposed geometric Hermite interpolation has unique solutions
and the regularity of the interpolating curves can be checked easily just based on the signs of the obtained scaling factors
within the hodographs. For practical applications, if an obtained interpolating ATPH curve is not regular, one can adjust
the input data to compute a new interpolation curve or use other types of curves such as space biarcs to interpolate the

geometric Hermite data.
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Fig. 7. (a) G' ATPH spline curve or G' cubic PH spline curve that interpolate points and tangents sampled from a helix on an elliptic cylinder;
(b) the curvature plots of the interpolating curves; (c) the torsion plots of the interpolating curves.
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