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This paper proposes to define a family of spatial algebraic–trigonometric Pythagorean
Hodograph (ATPH) curves by integrals of scaled unit tangent vector fields which are
originally defined as sphere curves. The obtained ATPH curves have only polynomial
parametric speeds but the curves can be employed to represent several typical non-
polynomial curves without rational form. A simple algorithm for geometric Hermite
interpolation by the proposed spatial ATPH curves without or with arc length constraint
has been given. Given two boundary points and two unit tangents at the points, possibly
with a prescribed arc length, a unique interpolating ATPH curve can be obtained by
solving a simple linear system.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Among all parametric curves those with polynomial parametric speeds or polynomial arc lengths play particular roles in
eometric modeling and CNC machining [1–3]. In the past few decades polynomial curves with Pythagorean Hodographs
shortly PH curves) and their applications in geometric modeling have been studied extensively [4–8]. More theories and
lgorithms about PH curves can be found in the book [9] or a recent survey paper [10].
Though non-uniform rational B-spline (NURBS) as well as B-spline, Bézier or rational Bézier curves are popular tools for

eometric modeling, they have to represent typical curves like circles in rational form [11]. Transcendental curves such as
ycloid, catenary, etc. even cannot be represented exactly by NURBS or other polynomial based curves. To represent circles
nd other transcendental curves simply and exactly, Pottmann [12,13] defined a class of helix splines over a mixed space
f polynomials and trigonometric functions. Straight lines, circles and helices can be represented by helix splines with
rc-length parametrization. Similarly, Zhang [14,15] introduced the C–B-splines in the space Ω = span{1, t, cos t, sin t},

as the extensions of cubic uniform B-splines. Several types of non-polynomial curves for shape preserving design have
been given in [16–19].

Similar to PH curves constructed in polynomial spaces, PH-like curves can also be constructed in non-polynomial
spaces. Romani et al. [20] introduced the ATPH curves defined over a mixed algebraic–trigonometric space Ω =

span{sin t, cos t, sin 2t, cos 2t, 1, t}. ATPH curves have similar properties as conventional PH curves and can be used for
C1 Hermite interpolation. While polynomial PH curves have rational offsets and polynomial arc lengths, the arc-lengths
of ATPH curves are trigonometric functions and their offsets are rational curves represented by mixed algebraic–
trigonometric functions. ATPH curves can also be used for possible applications in CNC machining or other modeling
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purposes. Besides single curve segments, González et al. [21] employed the ATPH curves for the construction of a planar
C2 spline curve. By exploring algebraic conditions similar to polynomial space PH curves, ATPH space curves represented
by algebraic and trigonometric polynomials have been proposed in [22].

Besides satisfying algebraic conditions, ATPH curves can also be constructed in a geometric way. Wu and Yang [23]
ntroduced a family of intrinsically defined planar curves within space Ω = span{1, sin θ, cos θ, θ sin θ, . . . , θn cos θ}. The
urves are locally convex and the offsets to the curves lie in the same space. When the curvature radius functions are
olynomials in terms of the tangent angle, the Cartesian coordinates of the curves can be explicitly obtained by the integral
f scaled tangent vector fields. If the prescribed unit tangent vector fields are represented by rational Bézier curves, convex
H curves or PH curves with single inflection points can be constructed by integrals of the scaled tangent vector fields [8].
In this paper we propose to construct spatial ATPH curves by integrals of hodographs which are originally given as

caled unit tangent vector fields in 3D space. These types of ATPH curves have only polynomial parametric speeds and
olynomial arc lengths. Since the curves are defined in a mixed space of polynomials and trigonometric functions, several
ypical non-polynomial curves can be represented by the proposed model exactly. Based on their definition, geometric
ermite interpolation by the proposed spatial ATPH curves without or with arc length constraint can be implemented in
wo steps: unit tangent vector field construction and scaling function computation. For both of the two steps, only simple
inear systems should be solved and unique interpolating curves can be obtained.

The remainder of the paper is organized as follows: In Section 2, we define a family of spatial integral curves with
olynomial arc lengths. Section 3 introduces the technique of G1 Hermite interpolation by the proposed curve model.
iven G1 Hermite data together with an arc-length, algorithm for construction of an interpolating PH curve with the
rescribed arc-length will be presented in Section 4. Section 5 concludes the paper.

. A family of spatial ATPH curves with non-rational unit tangents

In this section, we propose to define a family of spatial ATPH curves that have non-rational unit tangent vectors. Par-
icularly, the unit tangent vectors are represented by spherical curves using spherical coordinates. When the magnitudes
f hodographs of the curves are chosen simple elementary functions, explicit Cartesian coordinates of the curves are
btained.
Assume that a0, a1, b0 and b1 are real numbers and a21 + b21 ̸= 0, a spherical curve is given by

T(ξ ) =

⎛⎝ cos(a1ξ + a0) cos(b1ξ + b0)
cos(a1ξ + a0) sin(b1ξ + b0)
sin(a1ξ + a0)

⎞⎠ , ξ ∈ [0, 1]. (2.1)

Based on the definition of T(ξ ) we know that T(0) = (cos a0 cos b0, cos a0 sin b0, sin a0)T and T(1) = (cos(a1 + a0) cos(b1 +

b0), cos(a1 + a0) sin(b1 + b0), sin(a1 + a0))T , where the upper letter ‘‘T" means the transpose of a vector or a matrix. When
T(ξ ) is obtained, a spatial curve that has prescribed unit tangent vector field T(ξ ) is given by

r(ξ ) =

∫ ξ

0
ρ(t)T(t)dt + r0, ξ ∈ [0, 1], (2.2)

where ρ(t) can be chosen any integrable real function and r0 is an arbitrary point in R3. From the definition of r(ξ ) we
know that the curve r(ξ ) is a planar curve if and only if the unit tangent vector field T(ξ ) lies on a plane. Particularly, it
can be easily verified that the unit tangent vector field given by Eq. (2.1) lies on a plane that passes through the origin
when a1 = a0 = 0 or b1 = 0. Techniques for constructing a ATPH curve from a planar tangent vector field can be found
in [23].

Let A1 = a1 + b1, A0 = a0 + b0, B1 = a1 − b1, B0 = a0 − b0. The Cartesian coordinates of the curve r(ξ ) are formulated
as

r(ξ ) =

⎛⎝ x(ξ )
y(ξ )
z(ξ )

⎞⎠
=

⎛⎜⎝
∫ ξ

0 ρ(t) cos(a1t + a0) cos(b1t + b0)dt∫ ξ

0 ρ(t) cos(a1t + a0) sin(b1t + b0)dt∫ ξ

0 ρ(t) sin(a1t + a0)dt

⎞⎟⎠ + r0

=

⎛⎜⎝
1
2

∫ ξ

0 ρ(t) cos(A1t + A0)dt +
1
2

∫ ξ

0 ρ(t) cos(B1t + B0)dt
1
2

∫ ξ

0 ρ(t) sin(A1t + A0)dt −
1
2

∫ ξ

0 ρ(t) sin(B1t + B0)dt∫ ξ

0 ρ(t) sin(a1t + a0)dt

⎞⎟⎠ + r0.

(2.3)

articularly, the coordinates of r(ξ ) can be explicitly computed when ρ(t) is chosen as any elementary function. Because
r′(ξ )∥ = |ρ(ξ )|, the arc length of the spatial curve r(ξ ) is obtained as L(ξ ) =

∫ ξ
|ρ(t)|dt .
0

2
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From Eq. (2.2), the unit normal N(ξ ) and the binormal B(ξ ) of the curve are derived as

N(ξ ) =
T′(ξ )

∥T′(ξ )∥
,

B(ξ ) = T(ξ ) × N(ξ ) =
T(ξ ) × T′(ξ )

∥T(ξ ) × T′(ξ )∥
.

The curvature and the torsion of the curve r(ξ ) are obtained as follows:

k(ξ ) =
∥r′(ξ ) × r′′(ξ )∥

∥r′(ξ )∥3 =
∥T(ξ ) × T′(ξ )∥

|ρ(ξ )|

nd

τ (ξ ) =
det(r′(ξ ), r′′(ξ ), r′′′(ξ ))

∥r′(ξ ) × r′′(ξ )∥2 =
det(T(ξ ), T′(ξ ), T′′(ξ ))
|ρ(ξ )|∥T(ξ ) × T′(ξ )∥2 .

ased on the curvature and torsion formulae, the regularity of the curve r(ξ ) can be checked by the sign of ρ(t) directly.

roposition 1. If ρ(t) ̸= 0, for 0 ≤ t ≤ 1, then the spatial ATPH curve defined by Eq. (2.2) is non-singular.

In this paper we choose ρ(t) as quadratic or cubic polynomials such that the obtained ATPH curves have enough
egrees of freedom to interpolate prescribed Hermite data or arc lengths. Firstly, the integral function ρ(t) is chosen as a
uadratic function

ρ(t) = ρII (t) = bt2 + ct + d, t ∈ [0, 1], (2.4)

here b, c and d are real constants. Substituting Eq. (2.4) into Eq. (2.3), the coordinates of the curve can be computed as
ollows:

r(ξ ) =

⎛⎜⎝
1
2 (Bx(ξ )b + Cx(ξ )c + Dx(ξ )d)
1
2 (By(ξ )b + Cy(ξ )c + Dy(ξ )d)
Bz(ξ )b + Cz(ξ )c + Dz(ξ )d

⎞⎟⎠ + r0, (2.5)

here

Bx(ξ ) = ( 1
A1

ξ 2
−

2
A31
) sin(A1ξ + A0) +

2
A21

ξ cos(A1ξ + A0) +
2
A31

sin(A0)

+ ( 1
B1

ξ 2
−

2
B31
) sin(B1ξ + B0) +

2
B21

ξ cos(B1ξ + B0) +
2
B31

sin(B0),

Cx(ξ ) =
1
A1

ξ sin(A1ξ + A0) +
1
A21

cos(A1ξ + A0) −
1
A21

cos(A0)

+
1
B1

ξ sin(B1ξ + B0) +
1
B21

cos(B1ξ + B0) −
1
B21

cos(B0),

Dx(ξ ) =
1
A1

sin(A1ξ + A0) −
1
A1

sin(A0) +
1
B1

sin(B1ξ + B0) −
1
B1

sin(B0),

By(ξ ) = (− 1
A1

ξ 2
+

2
A31
) cos(A1ξ + A0) +

2
A21

ξ sin(A1ξ + A0) −
2
A31

cos(A0)

− [(− 1
B1

ξ 2
+

2
B31
) cos(B1ξ + B0) +

2
B21

ξ sin(B1ξ + B0) −
2
B31

cos(B0)],

Cy(ξ ) = −
1
A1

ξ cos(A1ξ + A0) +
1
A21

sin(A1ξ + A0) −
1
A21

sin(A0)

− [−
1
B1

ξ cos(B1ξ + B0) +
1
B21

sin(B1ξ + B0) −
1
B21

sin(B0)],

Dy(ξ ) = −
1
A1

cos(A1ξ + A0) +
1
A1

cos(A0) − [−
1
B1

cos(B1ξ + B0) +
1
B1

cos(B0)],

Bz(ξ ) = (− 1
a1

ξ 2
+

2
a31
) cos(a1ξ + a0) +

2
a21

ξ sin(a1ξ + a0) −
2
a31

cos(a0),

Cz(ξ ) = −
1
a1

ξ cos(a1ξ + a0) +
1
a21

sin(a1ξ + a0) −
1
a21

sin(a0),

Dz(ξ ) = −
1
a1

cos(a1ξ + a0) +
1
a1

cos(a0).

Secondly, we choose ρ(t) as a cubic function ρ(t) = ρIII (t) = at3 + bt2 + ct + d. By a simple computation it yields

r(ξ ) =

⎛⎜⎝
1
2 (Ax(ξ )a + Bx(ξ )b + Cx(ξ )c + Dx(ξ )d)
1
2 (Ay(ξ )a + By(ξ )b + Cy(ξ )c + Dy(ξ )d)

⎞⎟⎠ + r0, (2.6)
Az(ξ )a + Bz(ξ )b + Cz(ξ )c + Dz(ξ )d
3
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where
Ax(ξ ) = ( 1

A1
ξ 3

−
6
A31

ξ ) sin(A1ξ + A0) + ( 3
A21

ξ 2
−

6
A41
) cos(A1ξ + A0) +

6
A41

cos(A0)

+ ( 1
B1

ξ 3
−

6
B31

ξ ) sin(B1ξ + B0) + ( 3
B21

ξ 2
−

6
B41
) cos(B1ξ + B0) +

6
B41

cos(B0),

Ay(ξ ) = (− 1
A1

ξ 3
+

6
A31

ξ ) cos(A1ξ + A0) + ( 3
A21

ξ 2
−

6
A41
) sin(A1ξ + A0) +

6
A41

sin(A0)

− [(− 1
B1

ξ 3
+

6
B31

ξ ) cos(B1ξ + B0) + ( 3
B21

ξ 2
−

6
B41
) sin(B1ξ + B0) +

6
B41

sin(B0)],

Az(ξ ) = (− 1
a1

ξ 3
+

6
a31

ξ ) cos(a1ξ + a0) + ( 3
a21

ξ 2
−

6
a41
) sin(a1ξ + a0) +

6
a41

sin(a0),

nd the remaining terms are as defined in Eq. (2.5).
In Eqs. (2.5) and (2.6), we assume that a1 ̸= 0, A1 ̸= 0 and B1 ̸= 0. When one of them is zero, it is simple to recompute

he formulae of the integral curve.
We reformulate the quadratic function ρ(t) as follows:

ρII (t) = bt2 + ct + d

= ρ0B2
0(t) + ρ1B2

1(t) + ρ2B2
2(t), t ∈ [0, 1],

(2.7)

here ρ0 = d, ρ1 = d +
1
2 c , ρ2 = d + c + b and B2

i (t) =
2!

i!(2−i)! t
i(1 − t)2−i, i = 0, 1, 2, are the Bernstein basis functions.

Substituting Eq. (2.7) into Eq. (2.5), the coordinates of the curve can be computed as follows:

r(ξ ) =

⎛⎜⎜⎝
1
2

(
Bx(ξ )ρ2 + (−2Bx(ξ ) + 2Cx(ξ ))ρ1 + (Bx(ξ ) − 2Cx(ξ ) + Dx(ξ ))ρ0

)
1
2

(
By(ξ )ρ2 + (−2By(ξ ) + 2Cy(ξ ))ρ1 + (By(ξ ) − 2Cy(ξ ) + Dy(ξ ))ρ0

)
Bz(ξ )ρ2 + (−2Bz(ξ ) + 2Cz(ξ ))ρ1 + (Bz(ξ ) − 2Cz(ξ ) + Dz(ξ ))ρ0

⎞⎟⎟⎠ + r0, (2.8)

Similarly, the cubic function ρIII (t), t ∈ [0, 1], can be represented in Bernstein–Bézier form as follows:

ρIII (t) = l0B3
0(t) + l1B3

1(t) + l2B3
2(t) + l3B3

3(t), t ∈ [0, 1], (2.9)

where⎧⎪⎪⎪⎨⎪⎪⎪⎩
l0 = d,

l1 = d +
1
3 c,

l2 = d +
2
3 c +

1
3b,

l3 = d + c + b + a.

Substituting Eq. (2.9) into Eq. (2.6), the coordinates of the curve can be computed as follows:

r(ξ ) =

⎛⎜⎝
1
2 (G11(ξ )l3 + G12(ξ )l2 + G13(ξ )l1 + G14(ξ )l0)
1
2 (G21(ξ )l3 + G22(ξ )l2 + G23(ξ )l1 + G24(ξ )l0)
G31(ξ )l3 + G32(ξ )l2 + G33(ξ )l1 + G34(ξ )l0

⎞⎟⎠ + r0, (2.10)

here
G11(ξ ) = Ax(ξ ),
G12(ξ ) = −3Ax(ξ ) + 3Bx(ξ ),
G13(ξ ) = 3Ax(ξ ) − 6Bx(ξ ) + 3Cx(ξ ),
G14(ξ ) = −Ax(ξ ) + 3Bx(ξ ) − 3Cx(ξ ) + Dx(ξ ),
G21(ξ ) = Ay(ξ ),
G22(ξ ) = −3Ay(ξ ) + 3By(ξ ),
G23(ξ ) = 3Ay(ξ ) − 6By(ξ ) + 3Cy(ξ ),
G24(ξ ) = −Ay(ξ ) + 3By(ξ ) − 3Cy(ξ ) + Dy(ξ ),
G31(ξ ) = Az(ξ ),
G32(ξ ) = −3Az(ξ ) + 3Bz(ξ ),
G33(ξ ) = 3Az(ξ ) − 6Bz(ξ ) + 3Cz(ξ ),
G34(ξ ) = −Az(ξ ) + 3Bz(ξ ) − 3Cz(ξ ) + Dz(ξ ).

Fig. 1 illustrates a family of spatial integral curves which are defined by quadratic polynomial and trigonometric
functions. Given a unit tangent vector field in advance, three ATPH curves are obtained by Eq. (2.5) when different
polynomial functions ρ(t) have been chosen for the integral. Particularly, the curves in red, green or blue colors are
4
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Fig. 1. (a) The unit tangent vector field constructed by Eq. (2.1) with a1 = 0.2π , a0 = 0, b1 = 0.4π , b0 = 0, t ∈ [0, 1]; (b) spatial ATPH curves
computed by integrals of scaled tangent vector fields. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

obtained by choosing ρ(t) = (0.002π2)t2 + (0.01π )t + 0.3, ρ(t) = (0.001π2)t2 + (0.06π )t + 0.2 or ρ(t) = (0.003π2)t2 +

(0.02π )t + 0.4, respectively, all with r0 = 0. This example shows that it is possible to interpolate an ATPH curve to G1

Hermite data by first interpolating the boundary tangent vectors and then computing a scaling function for the integral.

3. G1 Hermite Interpolation

In this section we present concrete algorithm steps for solving the G1 Hermite interpolation problem using the spatial
ATPH curves defined in Section 2. Suppose that {P1, T1; P2, T2} are the given boundary points and the unit tangents at the
points, we construct an interpolating spatial ATPH curve by choosing a quadratic polynomial ρII (ξ ) for the integral (2.2).
The algorithm consists of two main steps. First, we compute a unit tangent vector field based on the two given boundary
tangent vectors. After then, we compute the unknown parameters within ρII (ξ ) based on the end interpolation condition.

3.1. Compute the interpolating unit tangent vector field

As a first step of the proposed Hermite interpolation algorithm, we compute a spherical curve T(ξ ) that interpolates
given tangents T1 and T2 at the ends. Assume the Cartesian coordinates of the given tangent vectors are Ti = (ti1, ti2, ti3),
i = 1, 2, we represent the vectors by spherical coordinates as Ti = (cos θi cosφi, cos θi sinφi, sin θi), i = 1, 2. Particularly,
the angle θi is computed by θi = arcsin(ti3) and the angle φi is given by

φi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
arctan( ti2ti1 ), if ti1 > 0,

arctan( ti2ti1 ) + π, if ti1 < 0,

+
π
2 , if ti1 = 0, ti2 > 0,

−
π
2 , if ti1 = 0, ti2 < 0,

for i = 1, 2. If ti1 = ti2 = 0, the unit tangent vector Ti becomes Ti = (0, 0, 1) or Ti = (0, 0, −1). In this case, the angle φi
an be chosen any real number.
Based on the assumption that a unit tangent vector curve T(ξ ) interpolates given boundary tangents, i.e., T(0) = T1

nd T(1) = T2, we have⎧⎪⎪⎨⎪⎪⎩
a0 = θ1,

a1 + a0 = θ2,

b0 = φ1,

b1 + b0 = φ2,

he solution to the linear system is⎧⎪⎪⎨⎪⎪⎩
a0 = θ1,

a1 = θ2 − θ1,

b0 = φ1,

b1 = φ2 − φ1.

hen a , a , b and b have been obtained, the interpolating unit tangent vector field is computed by Eq. (2.1).
0 1 0 1

5



W. Wu and X. Yang Journal of Computational and Applied Mathematics 388 (2021) 113296

φ

T
l
a
t

θ

i
p

3

b
w

w

I

s

Fig. 2. A sphere curve that interpolates two given unit vectors lying at north pole or south pole of the Gaussian sphere. (a) Azimuthal angles
1 = 0.3π and φ2 = 0.3π ; (b) azimuthal angles φ1 = 0.3π and φ2 = 1.4π .

From the above process we know that there exists an interpolating sphere curve for any two distinct points T1 and
2 on the unit sphere. Particularly, the interpolating curve is part of a latitude when θ1 = θ2, or the curve is part of a
ongitude when φ1 = φ2. If T1 and T2 are located at the north pole and south pole, respectively, the interpolating curve is
longitude when the angles φ1 and φ2 are chosen the same value. Fig. 2 illustrates two spherical curves that interpolate
wo sphere poles with different choices of angles φ1 and φ2.

As discussed in Section 2, the unit tangent vector field T(ξ ) lies on a plane that passes through the origin only when
1 = θ2 = 0 or φ1 = φ2. If this is the case, a planar interpolating ATPH curve can be computed by the method presented
n [23]. In the following subsection we construct G1 interpolating ATPH curves under the assumption that the boundary
arameters satisfy θ2

1 + θ2
2 ̸= 0 and φ1 ̸= φ2 such that T(ξ ) is not a planar tangent vector field.

.2. Compute the G1 interpolating spatial ATPH curve

When the non-planar unit tangent vector field T(ξ ) has been obtained, the G1 interpolating spatial ATPH curve can
e determined by solving equations r(0) = P1 and r(1) = P2. Because r(0) = r0 = P1, the unknown coefficients of ρ(ξ )
ithin Eq. (2.2) are to be solved based on the following linear system⎛⎝ Bx −2Bx + 2Cx Bx − 2Cx + Dx

By −2By + 2Cy By − 2Cy + Dy

Bz −2Bz + 2Cz Bz − 2Cz + Dz

⎞⎠⎛⎝ ρ2

ρ1

ρ0

⎞⎠ =

⎛⎝ 2(x2 − x1)
2(y2 − y1)
z2 − z1

⎞⎠ , (3.1)

here Bx, Cx, Dx, By, Cy, Dy, Bz , Cz , and Dz are computed by Eq. (2.5) with ξ = 1.
Denote Ma the coefficient matrix of the linear system (3.1). Let

m = det

⎛⎝ Bx Cx Dx

By Cy Dy

Bz Cz Dz

⎞⎠ .

t yields that det(Ma) = 2m. If m ̸= 0, we have the solution to the linear system (3.1) as follows:⎛⎝ ρ2

ρ1

ρ0

⎞⎠ =

⎛⎝ Bx −2Bx + 2Cx Bx − 2Cx + Dx

By −2By + 2Cy By − 2Cy + Dy

Bz −2Bz + 2Cz Bz − 2Cz + Dz

⎞⎠−1 ⎛⎝ 2(x2 − x1)
2(y2 − y1)
z2 − z1

⎞⎠ . (3.2)

In practice, the coefficient matrix of linear system (3.1) always satisfies det(Ma) ̸= 0 and the unique solution to the
ystem can be computed by (3.2). This can be roughly explained as follows: From Eqs. (2.4) and (2.5) we have⎛⎜⎝

1
2Bx(ξ )
1
2By(ξ )

⎞⎟⎠ =

∫ ξ

0
t2T(t)dt,

⎛⎜⎝
1
2Cx(ξ )
1
2Cy(ξ )

⎞⎟⎠ =

∫ ξ

0
tT(t)dt,

⎛⎜⎝
1
2Dx(ξ )
1
2Dy(ξ )

⎞⎟⎠ =

∫ ξ

0
T(t)dt.
Bz(ξ ) Cz(ξ ) Dz(ξ )
6
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Fig. 3. G1 Hermite interpolation: P1 = (0, 0, 0), P2 = (9.75, 47, 20.5), θ1 = 0, θ2 = 0.4π , φ1 = π/3, φ2 = 0.7π . (a) The sphere curve that interpolates
he given unit tangent vectors on the Gaussian sphere; (b) the G1 Hermite interpolating curve; (c) the curvature and the torsion plots of the
nterpolating curve.

t is clear that the functions on the right side of the above three equations are linear independent. Let

mII (ξ ) = det

⎛⎜⎝
1
2Bx(ξ ) 1

2Cx(ξ ) 1
2Dx(ξ )

1
2By(ξ ) 1

2Cy(ξ ) 1
2Dy(ξ )

Bz(ξ ) Cz(ξ ) Dz(ξ )

⎞⎟⎠ .

hen, the function mII (ξ ) does not identically equal to zero for any parameter interval. Finding the zeros of mII (ξ ) is
omplex and is beyond the algorithm proposed in this paper. In all examples we have experimented we have mII (1) =
1
4m ̸= 0 and the interpolating curves can be obtained by the proposed algorithm. In case mII (1) vanishes, one can still
onstruct an interpolating curve from the equation r(ξ1) = P2 with ξ1 ̸= 1.
To check whether or not the interpolating ATPH curve is regular, we should only check the sign of the quadratic

function ρII (ξ ) = ρ0B2
0(ξ ) + ρ1B2

1(ξ ) + ρ2B2
2(ξ ), ξ ∈ [0, 1]. Because min{ρ0, ρ1, ρ2} ≤ ρII (ξ ) ≤ max{ρ0, ρ1, ρ2} for

0 ≤ ξ ≤ 1, we have ρII (ξ ) > 0 for ξ ∈ [0, 1], when all ρ0, ρ1 and ρ2 are positive numbers, or, ρII (ξ ) < 0 over the
omain [0, 1], when all of ρ0, ρ1 and ρ2 are negative. Based on Proposition 1, the obtained interpolating spatial PH curve
s regular when the signs of ρ0, ρ1 and ρ2 are the same. It should be noted that the obtained ATPH curves have opposite
tangent direction with T(ξ ) when all coefficients ρ0, ρ1 and ρ2 are negative.

Fig. 3 illustrates an example of G1 Hermite interpolation by the proposed algorithm. A sphere curve is first obtained
y interpolating two prescribed points on the unit sphere (see Fig. 3(a)). Then, based on the position condition, a regular
nterpolating spatial ATPH curve is obtained by solving a simple linear system; see Fig. 3(b) for the obtained interpolating
urve. Fig. 3(c) shows the curvature and torsion of the interpolating curve.
Given the Hermite data, P1 ̸= P2, and T1 = T2, if T1 and T2 are parallel to the vector P2 − P1, it is obvious that the

nit tangent vector field T(ξ ) ≡ T1. Therefore, the interpolating curve is just a straight line. Otherwise, if T1 = T2 is not
arallel to the vector P2 −P1, we assume that φ2 −φ1 = 2π and θ1 = θ2 ̸= 0. Thus, the interpolating sphere curve is just

a latitude other than the equator (see Fig. 4(a)). Fig. 4(b) illustrates the final interpolating ATPH curve.

4. G1 Hermite Interpolation by ATPH curves with prescribed arc lengths

In this section, we consider the problem of G1 Hermite interpolation subject to arc length constraint. Besides the G1

Hermite data {P1, T1; P2, T2}, the arc length L of an interpolating curve has also been given. Using the same technique of
tangent vector interpolation described in Section 3, we first construct a sphere curve T(ξ ) that interpolates vectors T1 and
T2 at the ends. After then, we choose ρIII (ξ ) = l0B3

0(ξ )+ l1B3
1(ξ )+ l2B3

2(ξ )+ l3B3
3(ξ ) for the construction of G1 interpolating

ATPH curve with arc length constraint.
After the interpolation of unit tangent vector field, the G1 Hermite interpolation subject to arc length constraint can

be formulated as r(0) = r0 = P1, r(1) = P2 and
∫ 1
0 ρ(t)dt = L. The equations can be further reformulated as follows:⎛⎜⎜⎝

G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

⎞⎟⎟⎠
⎛⎜⎜⎝

l3
l2
l1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2(x2 − x1)
2(y2 − y1)
z2 − z1

⎞⎟⎟⎠ , (4.1)
1 1 1 1 l0 4L
7
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i
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w
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1

S
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Fig. 4. G1 Hermite interpolation: P1 = (0, 0, 0), P2 = (4, 4.75, 29.25), θ1 = 0.2π , θ2 = 0.2π , φ1 = 0.2π , φ2 = 2.2π . (a) The sphere curve that
nterpolates the given unit tangent vectors on the Gaussian sphere; (b) the G1 Hermite interpolating curve; (c) the curvature and torsion plot of the
nterpolating curve.

here G11, G12, G13, G14, G21, G22, G23, G24, G31, G32, G33, and G34 are computed by Eqs. (2.5), (2.6) and (2.10) with
= 1.
Denote ML the coefficient matrix of the linear system (4.1). Let q = det(ML). If q ̸= 0, the solution to the linear

ystem (4.1) is given by⎛⎜⎜⎝
l3
l2
l1
l0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

1 1 1 1

⎞⎟⎟⎠
−1 ⎛⎜⎜⎝

2(x2 − x1)
2(y2 − y1)
z2 − z1
4L

⎞⎟⎟⎠ . (4.2)

We now explain roughly that Eq. (4.2) does work well for practical curve interpolation. Let T̄(t) = (Tx(t), Ty(t), Tz(t),
)T . The Cartesian coordinates and arc length of an integral defined curve with tangent vector field T(t) are given by

r̄(ξ ) =

⎛⎜⎜⎝
x(ξ )
y(ξ )
z(ξ )
L(ξ )

⎞⎟⎟⎠
=

∫ ξ

0 ρIII (t)T̄(t)dt

= l3
∫ ξ

0 B3
3(t)T̄(t)dt + l2

∫ ξ

0 B3
2(t)T̄(t)dt + l1

∫ ξ

0 B3
1(t)T̄(t)dt + l0

∫ ξ

0 B3
0(t)T̄(t)dt.

(4.3)

ince functions B3
i (t), i = 0, 1, 2, 3, are linear independent, the vector functions

∫ ξ

0 B3
i (t)T̄(t)dt , i = 0, 1, 2, 3, are also

inear independent. On the other hand, using the notations of Eqs. (2.10), (4.3) can be reformulated as

r̄(ξ ) =

⎛⎜⎜⎜⎝
1
2G11(ξ ) 1

2G12(ξ ) 1
2G13(ξ ) 1

2G14(ξ )
1
2G21(ξ ) 1

2G22(ξ ) 1
2G23(ξ ) 1

2G24(ξ )
G31(ξ ) G32(ξ ) G33(ξ ) G34(ξ )
J3(ξ ) J2(ξ ) J1(ξ ) J0(ξ )

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

l3
l2
l1
l0

⎞⎟⎟⎠ ,

here Ji(ξ ) =
∫ ξ

0 B3
i (t)dt , i = 0, 1, 2, 3.

Let

mIII (ξ ) = det

⎛⎜⎜⎜⎝
1
2G11(ξ ) 1

2G12(ξ ) 1
2G13(ξ ) 1

2G14(ξ )
1
2G21(ξ ) 1

2G22(ξ ) 1
2G23(ξ ) 1

2G24(ξ )
G31(ξ ) G32(ξ ) G33(ξ ) G34(ξ )
J3(ξ ) J2(ξ ) J1(ξ ) J0(ξ )

⎞⎟⎟⎟⎠ .

ince the four column vectors within the above matrix are linear independent, the function mIII (ξ ) is not identically equal
o zero when ξ belongs to any parameter interval. With simple computation we know that m (1) =

1 det(M ). Therefore,
III 16 L

8
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Fig. 5. G1 Hermite interpolation with prescribed arc lengths. The boundary data are P1 = (0, 0, 0), P2 = (1.5, 4, 2), T1 = (1, 0, 0), and
T2 = (−3, 2, 3)/

√
22. (a) The sphere curve that interpolates the given boundary tangents on the Gaussian sphere; (b) the interpolating curves

ith various prescribed arc lengths; (c) the curvature and torsion plots of the interpolating curve with arc length L = 6.

f mIII (1) does not vanish, the linear system (4.1) has a unique solution. Due to its complexity, the zeros of mIII (ξ ) can only
e obtained by numerical method at present. Instead of estimating the zeros of mIII (ξ ) in advance, we compute mIII (1)
r det(ML) directly. In our experiments, mIII (1) does not vanish and the interpolation curves with prescribed arc lengths
an always be obtained by solving linear system (4.1). In case mIII (1) = 0, one can compute the interpolating curve by
hoosing a different parameter for interpolation of the boundary data.
An interpolating curve with prescribed arc length is obtained by Eqs. (2.10) and (4.2) when the linear system (4.1) has a

olution. However, based on Proposition 1 we know that the interpolating curve is regular over the domain only when the
ubic function ρ(ξ ) satisfies ρ(ξ ) ̸= 0 for all ξ ∈ [0, 1]. We present here a sufficient condition for checking the regularity
f the obtained interpolating ATPH curve. Recall that the scaling function is ρIII (ξ ) = l0B3

0(ξ )+ l1B3
1(ξ )+ l2B3

2(ξ )+ l3B3
3(ξ ),

∈ [0, 1]. If l0, l1, l2 and l3 are all positive numbers, the inequality ρ(ξ ) > 0 holds over the domain. Similarly, if l0, l1, l2
nd l3 are negative numbers, ρ(ξ ) < 0 for ξ ∈ [0, 1]. Consequently, when one of the above conditions is satisfied, it is
uaranteed that the integral curve is regular.
Fig. 5 illustrates an example of G1 Hermite interpolation with arc length constraint. For the given boundary data, a

phere curve that interpolates given boundary tangents on the Gaussian sphere is first computed. Then, interpolating
TPH curves are obtained by solving linear system (4.1) under the constraint of prescribed arc lengths. From Fig. 5(b) we
now that the interpolating curves are regular when the sign of the function ρIII (ξ ) does not change for ξ ∈ [0, 1]. It is
lso known that the function ρIII (ξ ) can have zeros within the interval [0,1] and the interpolating ATPH curve can have
ingular points when the arc length has not been properly chosen. Fig. 5(c) illustrates the curvature plot and torsion plot
f the interpolating ATPH curve with arc length L = 6.

. Examples

In this section, we present several examples for the construction of G1 Hermite interpolating ATPH curves. Given a
equence of points Pi ∈ R3, i = 0, . . . , n, and unit tangents Ti, i = 0, . . . , n, at the points, we construct a G1 interpolating
TPH curve to each pair of consecutive points and tangents. As a result, an interpolating spatial ATPH spline curve with
1 continuity is obtained.
First, we sample points and unit tangents on a cylinder curve r(t) = (4 cos t, 4 sin t, 0.2t2), t ∈ [0, 2π ]. The Hermite

ata are sampled from the curve at ti =
2iπ
n , i = 0, . . . , n. Particularly, we chose n = 2, 4, 8, 16 for the construction

f interpolating ATPH spline curves by the algorithm given in Section 3. Fig. 6 illustrates two examples of ATPH spline
urve interpolation when n = 2 or n = 4. The maximum approximation errors and the maximum angle differences of
tangent vectors between the interpolating curves and the original curve are given in Table 1. From the table we can see
that more accurate approximating results can be obtained when many more sampled points and tangents are interpolated
by regular ATPH curves. As a comparison, we have also interpolated the same set of sampled points and tangents by G1

ubic polynomial PH spline curves [24]. It can be observed that the ATPH curves can approximate the original curve with
ven higher accuracy than the cubic PH curves. The curvature plots and the torsion plots of the interpolating curves also
how the higher quality of the proposed ATPH curves.
Second, we construct ATPH spline curves by interpolating points and tangents sampled from a segment of helix on the

lliptic cylinder r(t) = (2 cos t, 2.5 sin t, t), t ∈ [0, 2π ]. Assume that points and unit tangent vectors have been sampled
rom the curve at ti =

2iπ
4 , i = 0, 1, 2, 3, 4. Fig. 7 illustrates the interpolating spline curves consisting of 4 pieces of spatial

TPH curves or 4 pieces of cubic PH curves. Though both of the two types of interpolating curves approximate the original
urve very well, it is observed that the interpolating ATPH curves are fairer than the cubic PH curves because the former
ave even fewer number of curvature extremes or torsion extremes.
9
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Fig. 6. Interpolation of points and tangents sampled from a spatial curve on a cylinder by splines of ATPH curves or splines of cubic PH curves.
(a) The 2 pieces of interpolating curves; (b) the corresponding plot of the curvature of (a); (c) the corresponding plot of the torsion of (a); (d) the 4
pieces of interpolating curves; (e) the corresponding plot of the curvature of (d); (f) the corresponding plot of the torsion of (d). ATPH curves, cubic
PH curves and original curves are drawn in red, green, and black, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 1
The maximum approximation errors and the maximum angle differences
of tangent vectors for different sets of interpolating ATPH curves.
#segments Max approx. error Max tangent angle difference

2 0.137872 0.007688
4 0.061317 0.001995
8 0.029884 5.003854E−4
16 0.014849 1.251672E−4

6. Conclusions and discussions

In this paper we have defined a family of spatial ATPH curves based on the integral of scaled unit tangent vector fields.
sing sphere curves represented by sphere coordinates and polynomial scaling functions, the Cartesian coordinates of
he ATPH curves can be computed explicitly. These types of ATPH curves have polynomial arc lengths and can be used
o represent several types of typical curves in non-rational form. For given G1 Hermite boundary data together with or
ithout a prescribed arc length, the interpolating ATPH curves can be obtained by solving simple linear systems. Unlike
ermite interpolation by conventional PH curves, the proposed geometric Hermite interpolation has unique solutions
nd the regularity of the interpolating curves can be checked easily just based on the signs of the obtained scaling factors
ithin the hodographs. For practical applications, if an obtained interpolating ATPH curve is not regular, one can adjust
he input data to compute a new interpolation curve or use other types of curves such as space biarcs to interpolate the
eometric Hermite data.
10
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Fig. 7. (a) G1 ATPH spline curve or G1 cubic PH spline curve that interpolate points and tangents sampled from a helix on an elliptic cylinder;
(b) the curvature plots of the interpolating curves; (c) the torsion plots of the interpolating curves.
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