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Abstract

We fair and fit planar point sets by minimal-energy arc splines. The fairing process consists of two steps: computing the optimal tangents
for curve interpolation and adjusting the point positions by smoothing the discrete curvatures. To fit the point set with minimal-energy arc
curve, a simple linear algorithm is given for computing the optimal tangents. The discrete curvatures derived from the optimal tangents can
be made smooth by low-pass filtering. These two linear and local algorithms are combined to generate a fair point set together with a fair G'
arc curve within a given tolerance of the original data. The method can be used for fair shape design and measured data processing.
Numerical examples are given to show the efficiency of this method. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A curve is said to be fair if the curve has few inflexions
and the curvature plot consists of relatively few monotone
pieces. A set of points is fair if there is a fair curve passing
through all these points (see the definitions in Refs. [1,2]).
Though the definition of fairness is application dependent, a
curve with minimal energy, i.e. a curve along which the
integral of the square of the curvature is minimal, is consid-
ered to be a fair one [3-5]. Curve fairing and point set
fairing play important roles in designs and some manufac-
turing processes [6—10]. This paper addresses the problem
of planar point set fairing and fitting by minimal-energy arc
splines. The method serves two purposes: generating fair
point set for further applications [6,7] and generating fair
smooth-arc curve for direct applications such as fair shape
design, CNC machining and robot path planning [4,11,12].

The problem of curve fairing and point set fairing have
attracted much attention in the fields of computer-aided
design during the past few decades, and most fairing algo-
rithms are designed to fair parametric spline curves. We
refer interested readers to Refs. [8—10] and references
therein. In fact, designing efficient algorithms for point set
fairing has great significance; Feldman [6] has introduced
some backgrounds of this topic. Algorithms for point set
fairing are based either on divided difference of the point
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set [13] or on smoothed discrete curvatures that are
computed based on fitting circles [6,7]. Optimization tech-
niques are often employed to solve the fairing problem by
existing algorithms. The result of the fairing process is still a
set of points, which may not imply a fair smooth passing
curve. Our work differs from these algorithms in that we
estimate the discrete curvatures based on minimal-energy
arc curve model and obtain a smooth interpolating curve
simultaneously.

Instead of estimating the discrete curvatures based on
fitting circles, we fit the point set with a set of constrained
arc segments. The energy function of the fitting arc
segments is quadratic and the optimal tangents can be
obtained by solving a system of linear equations. The
discrete curvatures can then be computed based on a smooth
interpolating biarc curve. We smooth the discrete curvatures
by low-pass filtering principle, and adjust the point positions
to obtain a fair curve simultaneously. Even more,
constraints such as with fixed points, or with permitted
error tolerance can be considered in the fairing process.

In the following text, we will discuss the three steps for
point set fairing and fitting in detail: optimal tangents
computing, discrete fairing algorithm and fair arc curve
construction.

2. Optimal tangents computation

A curve of minimal energy is a curve along which the
integral of the square of the curvature is minimal. The strain
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Fig. 1. Two smooth connected arc segments interpolate points P;_;, P; and
P;. and the candidate tangent vector 7; at point P;.

energy E of the curve is given by
:szw, Q)

where £ is the curvature function of the arc length s.

Let Py, Py, ..., P, be an ordered set of planar points with
given end tangents T, and 7,. By integrating the square of
the curvature along the curve, the strain energy of an inter-
polating biarc spline becomes

=3 (7 2)

where ¢,; and ¢,; are the angles in radians and ry; and r,; are
the radii for the ith biarc panel. To minimize E is equivalent
to finding a set of suitable values for all the angles and radii
of the biarc panels. Optimization procedures are needed to
solve this non-linear problem. However, it requires a suita-
ble library algorithm and is subject to long run times and
frequent failures due to discontinuity of the energy function
and difficulties associated with defining suitable constraints
on the gradients (see Ref. [4]).

Instead of constructing a biarc spline with minimal
energy directly, we will first estimate the optimal tangents
for a set of points using energy minimization technique. Let
T; be the unit tangent vector at the point P;, and let the angle
from tangent 7;_, to the chord P;_, P; and the angle from the
same chord to the tangent 7; be «; and SB;, respectively; i =
1,...,n (see Fig. 1). The angle is positive if it is counter-

Fig. 2. Two arc segments, both join points P;_; and P; and match two
tangents at the points, respectively.

clockwise and negative otherwise. The end angles «; and 3,
are known since the end tangents 7y and 7, are given. Let
A6; be the turning angle from the chord P;_, P; to the chord
P;P;,, then fori=1,...,n — 1, we have

Bi + iy = A6, 3)

To compute the intermediate tangent 7;, we first fit a biarc
panel interpolating the points P;_;, P; and P;;; and match
the tangent 7; at point P; (see Fig. 1). Let the two arc
segments of the biarc be C,, and C;; with radii Ry, and
R;;, respectively. Then the radii of these two arc segments
are

1P = P

Ry = Wi~ il 4

O 2sin @
Pi - Pi

Ry = ”2“7” )
SIn o4

where ||| denotes the Euclidean norm of a vector. The

angles, in radians, for the arcs C;, and C; are 23; and
2a;41, respectively. From Eq. (2), the strain energy of
these two adjacent arc segments is

Bl Qi+ )
=2 .
( Ry Ry ©
By substituting Egs. (4) and (5) into Eq. (6), we get
_ 4( B; sin B; Qg SIN @y ) 7
1P; = Picyll 1Py — P

Hence the total energy of all the fitting arc segments is

arc Zn | 1

Fori=2,...,n — 1, there is one biarc panel interpolating
points P;_,, P,_; and P;, and another panel interpolating
points P;_;, P; and P;, . Then there are two arc segments
joining points P;_; and P; simultaneously and matching
tangents 7;_; and T;, respectively (see Fig. 2). For the first
panel, there is only one arc segment interpolating P, and P;
that matches 7). An additional arc segment is obtained by
interpolating P, and P, that matches the given tangent 7. In
the same way, there are two arc segments interpolating P,,_;
and P,, one of which is obtained by matching the given
tangent 7,. The difference of the curvatures of the two
segments joining P, ; and P; is 2|sin ; — sin B;|/||P; —
P;_|l. This difference vanishes if «; and B; are equal. In
this case, the two arc segments coincide.

The total energy of the fitting arcs E,. will be roughly
two times the energy of a smooth-fitting arc curve when the
curvature differences for every two arc segments joining
consecutive points are small enough. Then the tangents
derived in this way will resemble the optimal tangents by
a smooth curve with minimal energy. To eliminate the abso-
lute operator in the curvature difference and establish a
quadratic objective function, we compute the integral of
the square of the curvature difference along the fitting
arcs. By integrating along the arc segments piecewise, we
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have the total integral as

. JP’ 4(sin a; — sin B;)° i, ®
i—1

i=1 IP; = P,y
Since the curvature difference of every two arc segments
joining points P;,_; and P; is constant, and approximating
the length of an arc segment joining these two points as the
chord length ||P; — P;_,
by

. (sin o; — sin B;)°
E,=4) ——+ — 9
; 1P: = Pizill ©

The tangents for fair curve fitting can then be obtained when
E,. and E_., are both low values. Consequently, we use a
linear combination of these two functions as the objective
function for optimal tangent computation. The optimal
tangents can be found by minimizing the following formula:

E.. + AE.,, = min, (10)

where A is a scalar factor. Although we cannot assert which
A can yield the optimal result, the experiments show that
tangents with different values of A in the range of 1-2
cannot be distinguished explicitly. Then the suggested
choice is A = 1.5, which can serve for the optimal tangents
and construction of low-energy and fair arc spline curves.

To simplify and speed up the computation, we use only
the linear term in the Taylor series expansion of the sine
function. If the turning angles of the chords joining the
points are relatively small, i.e. when the angles A6; are
small, then the higher terms in the series are negligible.
This is the case in many practical applications. Then objec-
tive function (10) can be approximated by

n-1 g o2
E=4 + !
2 (IIP Pl P - P,-n)

R ,|| an

Let [; =||P, — P,_y|, i=1,...,n. Since the multiple 4
does not play any role in the minimization, Eq. (11) can
be simplified to

n—1 _
U= Z( l“)+)\z(a B’. (12)

t+1 z

Then the optimal tangents can be obtained by minimizing
the quadratic objective function U.

From Eq. (3) we have B; = Af; — «;,. By substituting
Bi = A6; — a4, into Eq. (12), we get a quadratic function
U with (n — 1) unknowns o, ..., ,,. Minimizing the objec-
tive function U is equivalent to the solution of the system of
equations dU/da; = 0. For i = 2,...,n — 1, these yield the

linear equations

A A+1 A+ A
Tt + Q + iy

lioy li-y l; l;
A+1 A
- AH,',I + —AO, (13)
li- l;
For i = n we have the linear equation
A A+l A+ A+
= a_ + =—A + —B,.
ln—l Gt ( ln—l ln ) " ln 1 6" ] n Bn
(14)

These combine into a system of (n — 1) linear equations in
(n — 1) unknowns. This system of linear equations can be
written in the matrix form

MZ =H, (15)

where Z is a vector of (n — 1) unknown variables and H is a
constant vector associated with the lengths and the turning
angles of the chords. The coefficient matrix M is a tridiago-
nal matrix. The «; can be solved by LU factorization. Once
the ¢; is known, the ; can be computed immediately.

3. Automatic fairing algorithm

The process of point set fairing or curve fairing often
consists of two phases: inflexion reduction and convexity
preserving fairing or fine fairing [6,8]. To reduce redundant
inflexions, the “tight string method” proposed by Feldman
[6] is an efficient method for discrete point set. In this
section, we will focus on the fine fairing of point set using
discrete curvatures that are derived from minimal-energy
arc curves. The following algorithm is based on the assump-
tion that the redundant inflexions of the point set have been
eliminated.

3.1. Discrete curvature computation

With the optimal tangents obtained by Eq. (15), we can
now estimate the discrete curvatures at every point by a
spline of the biarc curve interpolating the point set and the
tangents at the points. To decide a biarc curve interpolating
points P;_; and P; and the tangents 7;_; and T;, we cite here
the formula proposed in Ref. [2]. If the angles «; and SB; have
the same signs, a C-shaped biarc panel can be constructed,
and the radii for two arc segments are

[; sin(B;/2)

T 2 sin((a + B)2) sin(a2)’ (16

B l; sin(a,/2)
T 2sin((ey + B)2) sin(B2)

A7)

By approximating the sine value of an angle with the angle
itself, the curvatures for the left and the right arc segment
abutting point P; are ki = (o; + BBy and k' =
(a1 + Bir1)@ir1/li11Bi+1- If pairs of angles «; and 3; or
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Fig. 3. Adjusting point position based on smoothed curvature.

a;+1 and B;; have different signs, there are inflexions in a
smooth-fitting curve at the left- or at the right-side of point
P;. The left-curvature at point P; can be computed using
the curvature of the circle owning tangent 7; at point P;
and interpolating P;_;, while the right-curvature can be
computed by another circle interpolating point P, ;.
From Eqgs. (4) and (5) we have k; = 2B/, and k; =
2a11/l;4 1. The discrete curvature at point Py or P, can be
chosen as kg or k, , and at the other point can be chosen as
ki = (ki + k2.

3.2. Low-pass filtering

Smooth discrete curvatures can help in yielding a fair
fitting curve. The discrete curvatures can be made smoother
by the low-pass filtering principle.

Supposing that the sequence of discrete curvatures is
ki, ks, ..., k,, by applying the Discrete Fourier Transforma-
tion (DFT), the frequency of the curvature sequence is

fr= ke 2mm, r=1,2,...n. (18)
=1

where j = +/—1. The discrete curvatures can be recovered
by the inverse DFT

1 n i .
k= — g/?mirin. i=1,2,...,n. 19
; n;fr i n (19)

Now the discrete curvature sequence k can be made
smoother by discarding some high-frequency terms of the
sum. When implemented, the method of DFT is computa-
tionally expensive; even with fast Fourier transformation
the computational complexity is in the order of n log(n)
operations.

An alternative efficient smoothing algorithm is to do the
projection onto the space of low frequencies only approxi-
mately. According to Lindeberg [14], a set of discrete
signals can be smoothed based on diffusion equation. Let
Ak; = ((kj—y — k)/2) + ((kjry — k;)/2); in the simplest
form, the curvature can be smoothed by the following itera-

tion formula
ki =k + ulk;, (20)

where 0 < w = 1/2 is a scale factor.

When the discrete curvatures have been smoothed, we
can keep the tangents unchanged and disturb the point posi-
tions to obtain a set of fair points with these new curvatures.
We may fair the point set by choosing the discrete curvature
at point P; as k; = k; , k; = ki or k; = (ki + k; )/2. The
last choice may give better results, but the computation is
somewhat complex and costly. For the convenience and
efficiency of computation, we choose here k; = k; . The
tests we have experimented show that this choice will
give satisfying results. Since «; are far less than the chord
length /;, the direction of tangent 7;_; at point P;_; can be
kept unchanged. The smoothed discrete curvatures will
yield modified tangent chord angles {&;} and the point
P;_{ can be moved to a new position with tangent chord
angle &; (i = 2,...,n).

If every two elements in angle pairs (a;—1, B;—1), (a;, B;)
and (o4, B;+1) have the same sign, the discrete curvatures
can be estimated by interpolating biarc curves, i.e. k; =
(aj+1 + Bir1)er1/li+1Bi+1; otherwise, we compute the
curvatures by fitting circles and k; = 2a;11/l;11. If the first
case holds, let wp = ((a;—1 + Bi-1)Bi(e; + B)Bi-1)
(lifl;i-1) and w; = (41 + B+ )Bil(a; + B)Bi+ Uil li41),
else let wyy = [;/l;_y and w; = [;/l;;,. The new angle &;
corresponding to angle «; can be derived from Eq. (20):

_ "
a;=a; (0 * a1 + oy * o — 2a;) * 5 21

As for the scalar coefficient u, the tests we have experimen-
ted show that u = 0.2 is the suggested choice.

When the tangent chord angle ¢; has been modified, the
point P;_; should be adjusted in the permitted range simul-
taneously. If V is the unit vector rotated by +7/2 from the
tangent 7;_; and the tangent 7;_; is supposed to be
unchanged, we can move point P;_; in the direction V for
dH, to get the desired new tangent chord angle &; (see Fig.
3), where dH,, can be formulated as

d Hy = —[;(cos a; * tan(@;) — sin «;). (22)

To guarantee that the mth faired point PET)I is adjusted

within tolerance 7 of initial point Pg(i)l, the upper and lower

bounds for dH should be computed. Let A = Pg'fl_l) - Pl@l,
then dH should satisfy the inequality

(A +dH-V)? = 7. (23)

From Eq. (23), we can conclude that dH; = dH = dH,,

where dH,, = —A-VF\/(A-V)? — A> + 7. Now, if dH, <
dH, or dH, > dH,, then dH can be chosen as dH; or dH,,
otherwise dH = dH,,. The new position for point P;_; is

P =pP" Y +dHV (24)

We can fair the point set by adjusting the point positions
one by one. When position for point P;_; has been changed,
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P, N, T,

i [ i-1

Fig. 4. Biarc curve construction.

the angle «; should be replaced by ;. If point P, is a fixed
one, no movement should be done.

3.3. The algorithm

There are two strategies for fairing a planar point set by
the above two algorithms. The first one is to compute the
tangents only once and smooth the discrete curvatures using
the low-pass filtering algorithm repeatedly, and the other
method is to compute the optimal tangents and filter the
discrete curvatures alternately. It seems that the second
method has more computational costs than the first one,
but the convergence of the first method is much slower
than the second one. In fact, computing the new optimal
tangents, when the points position have been changed,
will give a more concise estimate of the discrete curvatures
for every iteration. The curvature plot of the faired point set
by the second method always consists of fewest monotone
segments while the first method does not. Then, the second
strategy is the preferred one.

When fairing a set of points, the objective function U will
decrease steadily just after a few iterations. The function U
will reach a smallest value and waver around it after tens of
iterations. For uniform data we can obtain satisfying results
with about 20 iterations, and for other data only 60-80
iterations will give a set of faired points together with a
fair arc spline curve. To fair a set of points, we can choose
the iteration number manually according to the quality of
the curvature plot or stop the fairing procedure automati-
cally. To decide when to stop, we can check if the objective
function U is still decreasing from the 10th iteration or stop
the iteration procedure when the iteration number has
exceeded a predefined number such as 80. Because there
are only linear operations in the fairing procedures, we
can always fair a point set in real-time. The fairing algo-
rithm is as follows:

Geometric fairing algorithm

input: a set of planar points and the error tolerance 7;
output: the faired point set and the optimal tangents at the
points.

Step 0. Remove redundant inflexions;

Step 1. Compute the optimal tangents;

Step 2. Compute the discrete curvature;

Step 3. Curvature smoothing and points adjusting;

Step 4. If the termination condition has been achieved
stop else go to Step 1.

4. Fair arc spline curve fitting

With the faired point set associated with the optimal
tangents at these points, we can now fit the point set
with a smooth-arc spline curve by choosing one of the
biarc fitting methods. There are many ways to construct
a biarc curve interpolating two points and two tangents
at the points [2,15]. This section will introduce a brief
idea for fast biarc curve construction for fair curve fitting
purpose.

An arc spline interpolating the point set can be obtained
by constructing biarc curves interpolating every two points
P;,_; and P; and tangents 7;_; and T;, (i = 1,...,n). The
angle from the tangent 7;_; to the chord P;_;P; and the
angle from the same chord to the tangent 7; are ¢; and f3;,
respectively. Since we will have to decide three variables to
decide a circle (two components of the center and the radius
of the circle), there are six freedoms to decide two circles.
But, there are only five constraints for the construction of
two connected and mutually tangent arc segments matching
the above data (see Fig. 4). One additional free parameter
has to be set aside for the construction of a biarc panel. A
plethora of methods have been given to choose this free
variable [2,15].

Let the angle 6 from the direction 7;_; to the tangent line
U at the connecting point be the free variable. Once the
angle 6 is decided, a biarc curve interpolating the points
and the tangents can be constructed. We here employ the
fast algorithm proposed by Jin [16] for biarc curve construc-
tion. The biarc curve is supposed to be constructed in a local
right-handed coordinate system with origin at P;,_; and x
coordinate axis paralleling 7;_, (see Fig. 4). The conversion
of points or vectors in one coordinate system to another can
be achieved by direct transformation. Let O; and O, be the
centers of two arc segments with radii r; and r,, respec-
tively, and let P. be the contact point of these two arcs. In
this local coordinate system the unit normal vector N; at
point P;,_; is Ny = (0 1), and the unit tangent vector U at
point P, is U = (cos 0 sin ), then the unit normal vector V
at point P, is V = (—sin fcos 6). Let L=P, — P;_, G =
U — T, and W = N; — V, then the radius and center for the
first arc are, respectively,

r, = L-GIW-G,

01 :Pifl + 7’1N1~

The contact point is P, = P;_; + r,W. Let Q =P; — P,
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Fig. 5. Fairing the disturbed points sampled from a Bézier curve: (a) the fitting arc spline within tolerance 0.04; (b) circle curvature plots before (uniform dash)
and after (non-uniform dash) fairing and curvature plot for arc spline (solid) by the circle-based method; (c) circle curvature plot after fairing (non-uniform
dash) and curvature plots of fitting arc splines before (uniform dash) and after (solid) fairing by the arc-based method.

then the second arc can be determined as:

r = Q°20-V,

02:P6+V2V.

If angles «; and B3; have the same signs, we can construct
a C-shaped biarc curve, otherwise construct an S-shaped
biarc curve by choosing appropriate values for the angle
0. As demonstrated by Su and Liu [2], we choose 0 = «;
for C-shaped biarc curve construction. A key reason for this
choice is that the choice can keep the monotony of the
curvature plot of a cubic curve. This property will guarantee
the global fairness of the fitting curve. Let the curvatures of

Table 1

a cubic curve at two points P;_; and P; be k; and k,, and the
radii of two arcs of a biarc curve that interpolates points P;_;
and P; and the tangents at these two points be r; and r,
respectively. If k; < k,, thenk; < 1/r; < U/ry, < ky. If k; >
k, then the inequality should be turned over. For the S-
shaped biarc curve the angle 6 can be chosen as § = 3a; —
B)/2 (see Ref. [16]).

5. Examples

We have done a lot of experiments to test the new fairing
algorithm and the fair arc curve fitting method. The program

The unit tangent vectors at the sampled points estimated by our method and the circle-based method. p; is the angle between unit tangent vectors of the

estimated and the Bézier curves at b(z;)

Parameter (;)

Bézier tangents

Arc-based tangents

pr (rad) (x 107%)

Circle-based tangents

pi (rad) (X 1072

th=20

f, = 0.125
5, =025
13 = 0.375
1y = 0.5

ts = 0.625
te =0.75
1, = 0.875

tg =1

0.7682, 0.6402
0.8137, 0.5812
0.8742, 0.4856
0.9487, 0.3162
1,0

0.8742, —0.4856
0.5145, —0.8575
0.1961, —0.9806
0, —1

0.7682, 0.6402
0.8126, 0.5828
0.8731, 0.4876
0.9465, 0.3227
0.9999, 0.0048
0.8737, —0.4864
0.5124, —0.8587
0.1877, —0.9822
0, —1

0 0.7682, 0.6402 0

0.189 0.8192, 0.5735 0.9415
0.227 0.8825, 0.4702 1.7529
0.680 0.9588, 0.2840 3.3763
0.481 0.9987, —0.0506 5.0632
0.086 0.8717, —0.4899 0.4944
0.239 0.5568, —0.8306 5.0115
0.861 0.2315, —0.9728 3.6270
0 0, —1 0
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Table 2

The discrete curvatures at the sampled points estimated by our method and the circle-based method. §; is the curvature difference between the discrete
curvatures of the estimated and the Bézier curves at b(r;)

Parameter (#;) Bézier curvature Arc-based curvature 5; (X 1073 Circle-based curvature 8; (X 1073
th=0 0.0629 0.0706 0.762 0.0756 1.269

t; =0.125 0.1117 0.1139 0.223 0.1127 0.098

t, = 0.25 0.2199 0.2254 0.547 0.2221 0.219

t; = 0.375 0.4857 0.4969 1.123 0.4879 0.226

t, =05 1.1111 1.1238 1.266 1.0797 —3.142

ts = 0.625 1.7593 1.7616 0.233 1.6289 —13.04

te = 0.75 1.2106 1.2223 1.169 1.1684 —4.22

t; = 0.875 0.5364 0.5503 1.393 0.5379 0.15

g =1 0.24 0.2847 4.475 0.3116 7.156

(c)

Fig. 6. Shoe-like shape modeling: (a) the fitting arc spline within tolerance 0.04; (b) circle curvature plots before (uniform dash) and after fairing (non-uniform
dash) and curvature plot for arc spline (solid) by the circle-based method; and (c) arc spline curvature plots before (dash) and after fairing (solid) by the arc-
based method.
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(b)

Fig. 7. Strophoid curve reconstruction: (a) the smooth-fitting arc spline
consisting of 10 segments within tolerance 0.06; and (b) curvature plot of
fair fitting arc spline before (dash) and after (solid) data reduction by the
arc-based fairing method.

is implemented on an SGI Indigo2 workstation with MIPS
R4000 and 96 Mb memory. The noisy data are generated by
several different ways. A few examples dealing with convex
polyline or polylines with inflexions are cited here. Discrete
curvature plots before and after fairing have been drawn to
show the results of fairing. To illustrate the curvature plots
more clearly, we have connected the discrete curvatures at
the points or the curvatures at the midpoints of arc segments
into continuous polylines. The horizontal coordinate of the
curvature plot is the accumulated length of the polyline or
the arc length of the curve while the vertical value is the
curvature of every arc segment.

To illustrate the efficiency of the arc-based fairing
method, we have compared our method with the circle-
based fairing method. The way we fair a set of points by
the circle-based method is similar to that of the arc-based
method. We modify the point positions based on smoothed
discrete curvatures that have been estimated by fitting
circles, and construct the fitting arc spline curve using the
tangents of the fitting circles at the points. The curvatures of
the fitting circles for the faired points by these two methods
cannot be distinguished explicitly; but, the curvature plots
show that the fitting arc spline for a point set faired by the
biarc-based method is superior to the arc spline by the
circle-based method.

The first example employs a Bézier curve (Fig. 5) with
control points (1,1), (4,3.5) and (4,1); nine points are
sampled uniformly with parameter step Ar = 0.125. Data
in Tables 1 and 2 show that the approximate tangents and
curvatures by the arc-based method are more concise and
accurate than by the circle-based method.

The second example uses 21 points sampled from the
same Bézier curve as in example 1. We first sample the
points uniformly with parameter step Az = 0.05 and then
disturb the coordinates of point P (P, P,) as ((int)(P, *
20 + 0.5)/20, (int)(P, * 20 + 0.5)/20),  where  function
int(x) is equal to the integer part of number x. The point
sets are faired within tolerance 0.04. A set of faired points
together with a fair arc spline curve is obtained after 18
iterations within 0.03 s.

For the third example, we would like to design a shoe-like
shape (Fig. 6). We first design the raw shape by sampling a
set of points on the screen using the mouse. To form a closed
shape, the last and the first points are defined coincident. It is
clear that there are several inflexions in the polyline; we
disturb all point positions within tolerance 0.04 using
formula (21). Though the initial points are so noisy, we
obtain a set of faired points together with a fair arc spline
after 18 iterations within 0.06 s.

In the last example we test our program by a set of non-
uniform sampled points. We have sampled 33 points on the
strophoid curve (Fig. 7)

F—1(t

The sampling parameter interval is At = 0.125, but the
parameters of the inner 29 points are disturbed randomly
with magnitude 0.05. Even more, the positions of each of
the inner 29 sampled point have been disturbed randomly
inside the circle centered at the sampled point and with
radius 0.05. After 80 iterations, we obtain a fair fitting arc
spline in 0.17 s. There are 64 arc segments in the final biarc
spline, and because the curvature plot consists of just a few
monotone pieces, we can simplify the fair arc spline further.
By employing our latest result for arc spline optimization in
Ref. [17], we can simplify the fair arc spline into 10
segments within tolerance 0.01. A smooth fair arc spline
fitting the original noisy data within tolerance 0.06 is
achieved.

6. Conclusions and future work

In this paper, we present a very simple and efficient
method for planar point set fairing and fitting by arc splines.
The main contribution of the paper lies in three aspects: (a)
efficient algorithm for planar point set fairing; (b) simple
formula for optimal tangents computation for biarc curve
interpolation; and (c) fitting noisy data by fair arc curve
within the prescribed tolerance. The advantages of the
algorithm are that the discrete curvatures estimated by
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minimal-energy curve model are more accurate and reliable
than the circle-based method; a set of faired points and a fair
fitting arc curve within a given tolerance are obtained in
real-time. The result of the algorithm can be used directly
for fair shape design, CNC machining, robot path
planning, etc.

There are still some problems that deserve further study
in the future. The first problem is under what conditions can
the algorithm achieve the fewest monotone segments for the
curvature plot. The second problem is how to construct arc
splines with curvature plots having the prescribed proper-
ties. Finally, the method presented in this paper should be
extended to fair a sequence of spatial points.
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