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Abstract

We fair and ®t planar point sets by minimal-energy arc splines. The fairing process consists of two steps: computing the optimal tangents

for curve interpolation and adjusting the point positions by smoothing the discrete curvatures. To ®t the point set with minimal-energy arc

curve, a simple linear algorithm is given for computing the optimal tangents. The discrete curvatures derived from the optimal tangents can

be made smooth by low-pass ®ltering. These two linear and local algorithms are combined to generate a fair point set together with a fair G1

arc curve within a given tolerance of the original data. The method can be used for fair shape design and measured data processing.

Numerical examples are given to show the ef®ciency of this method. q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A curve is said to be fair if the curve has few in¯exions

and the curvature plot consists of relatively few monotone

pieces. A set of points is fair if there is a fair curve passing

through all these points (see the de®nitions in Refs. [1,2]).

Though the de®nition of fairness is application dependent, a

curve with minimal energy, i.e. a curve along which the

integral of the square of the curvature is minimal, is consid-

ered to be a fair one [3±5]. Curve fairing and point set

fairing play important roles in designs and some manufac-

turing processes [6±10]. This paper addresses the problem

of planar point set fairing and ®tting by minimal-energy arc

splines. The method serves two purposes: generating fair

point set for further applications [6,7] and generating fair

smooth-arc curve for direct applications such as fair shape

design, CNC machining and robot path planning [4,11,12].

The problem of curve fairing and point set fairing have

attracted much attention in the ®elds of computer-aided

design during the past few decades, and most fairing algo-

rithms are designed to fair parametric spline curves. We

refer interested readers to Refs. [8±10] and references

therein. In fact, designing ef®cient algorithms for point set

fairing has great signi®cance; Feldman [6] has introduced

some backgrounds of this topic. Algorithms for point set

fairing are based either on divided difference of the point

set [13] or on smoothed discrete curvatures that are

computed based on ®tting circles [6,7]. Optimization tech-

niques are often employed to solve the fairing problem by

existing algorithms. The result of the fairing process is still a

set of points, which may not imply a fair smooth passing

curve. Our work differs from these algorithms in that we

estimate the discrete curvatures based on minimal-energy

arc curve model and obtain a smooth interpolating curve

simultaneously.

Instead of estimating the discrete curvatures based on

®tting circles, we ®t the point set with a set of constrained

arc segments. The energy function of the ®tting arc

segments is quadratic and the optimal tangents can be

obtained by solving a system of linear equations. The

discrete curvatures can then be computed based on a smooth

interpolating biarc curve. We smooth the discrete curvatures

by low-pass ®ltering principle, and adjust the point positions

to obtain a fair curve simultaneously. Even more,

constraints such as with ®xed points, or with permitted

error tolerance can be considered in the fairing process.

In the following text, we will discuss the three steps for

point set fairing and ®tting in detail: optimal tangents

computing, discrete fairing algorithm and fair arc curve

construction.

2. Optimal tangents computation

A curve of minimal energy is a curve along which the

integral of the square of the curvature is minimal. The strain
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energy E of the curve is given by

E �
Z

k2 ds; �1�

where k is the curvature function of the arc length s.

Let P0;P1;¼;Pn be an ordered set of planar points with

given end tangents T0 and Tn. By integrating the square of

the curvature along the curve, the strain energy of an inter-

polating biarc spline becomes

E �
Xn

i�1

f1i

r1i

1
f2i

r2i

� �
; �2�

where f1i and f2i are the angles in radians and r1i and r2i are

the radii for the ith biarc panel. To minimize E is equivalent

to ®nding a set of suitable values for all the angles and radii

of the biarc panels. Optimization procedures are needed to

solve this non-linear problem. However, it requires a suita-

ble library algorithm and is subject to long run times and

frequent failures due to discontinuity of the energy function

and dif®culties associated with de®ning suitable constraints

on the gradients (see Ref. [4]).

Instead of constructing a biarc spline with minimal

energy directly, we will ®rst estimate the optimal tangents

for a set of points using energy minimization technique. Let

Ti be the unit tangent vector at the point Pi; and let the angle

from tangent Ti21 to the chord Pi21Pi and the angle from the

same chord to the tangent Ti be ai and bi; respectively; i �
1;¼; n (see Fig. 1). The angle is positive if it is counter-

clockwise and negative otherwise. The end angles a1 and bn

are known since the end tangents T0 and Tn are given. Let

Dui be the turning angle from the chord Pi21Pi to the chord

PiPi11; then for i � 1;¼; n 2 1; we have

bi 1 ai11 � Dui: �3�
To compute the intermediate tangent Ti; we ®rst ®t a biarc

panel interpolating the points Pi21; Pi and Pi11 and match

the tangent Ti at point Pi (see Fig. 1). Let the two arc

segments of the biarc be Ci0 and Ci1 with radii Ri0 and

Ri1; respectively. Then the radii of these two arc segments

are

Ri0 � iPi 2 Pi21i
2 sin bi

; �4�

Ri1 � iPi11 2 Pii
2 sin ai11

; �5�

where i i denotes the Euclidean norm of a vector. The

angles, in radians, for the arcs Ci0 and Ci1 are 2bi and

2ai11; respectively. From Eq. (2), the strain energy of

these two adjacent arc segments is

Ei � 2
bi

Ri0

1
ai11

Ri1

� �
: �6�

By substituting Eqs. (4) and (5) into Eq. (6), we get

Ei � 4
bi sin bi

iPi 2 Pi21i
1

ai11 sin ai11

iPi11 2 Pii

� �
�7�

Hence the total energy of all the ®tting arc segments is

Earc �
Pn 2 1

i�1 Ei:

For i � 2;¼; n 2 1; there is one biarc panel interpolating

points Pi22; Pi21 and Pi; and another panel interpolating

points Pi21; Pi and Pi11: Then there are two arc segments

joining points Pi21 and Pi simultaneously and matching

tangents Ti21 and Ti; respectively (see Fig. 2). For the ®rst

panel, there is only one arc segment interpolating P0 and P1

that matches T1: An additional arc segment is obtained by

interpolating P0 and P1 that matches the given tangent T0: In

the same way, there are two arc segments interpolating Pn21

and Pn; one of which is obtained by matching the given

tangent Tn: The difference of the curvatures of the two

segments joining Pi21 and Pi is 2usin ai 2 sin biu=iPi 2
Pi21i: This difference vanishes if ai and bi are equal. In

this case, the two arc segments coincide.

The total energy of the ®tting arcs Earc will be roughly

two times the energy of a smooth-®tting arc curve when the

curvature differences for every two arc segments joining

consecutive points are small enough. Then the tangents

derived in this way will resemble the optimal tangents by

a smooth curve with minimal energy. To eliminate the abso-

lute operator in the curvature difference and establish a

quadratic objective function, we compute the integral of

the square of the curvature difference along the ®tting

arcs. By integrating along the arc segments piecewise, we
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Fig. 1. Two smooth connected arc segments interpolate points Pi21; Pi and

Pi11 and the candidate tangent vector Ti at point Pi:

Fig. 2. Two arc segments, both join points Pi21 and Pi and match two

tangents at the points, respectively.



have the total integral as

Xn

i�1

ZPi

Pi 2 1

4�sin ai 2 sin bi�2
iPi 2 Pi21i2

ds: �8�

Since the curvature difference of every two arc segments

joining points Pi21 and Pi is constant, and approximating

the length of an arc segment joining these two points as the

chord length iPi 2 Pi21i; integral (8) can be approximated

by

Ecrv � 4
Xn

i�1

�sin ai 2 sin bi�2
iPi 2 Pi21i

: �9�

The tangents for fair curve ®tting can then be obtained when

Earc and Ecrv are both low values. Consequently, we use a

linear combination of these two functions as the objective

function for optimal tangent computation. The optimal

tangents can be found by minimizing the following formula:

Earc 1 lEcrv � min; �10�
where l is a scalar factor. Although we cannot assert which

l can yield the optimal result, the experiments show that

tangents with different values of l in the range of 1±2

cannot be distinguished explicitly. Then the suggested

choice is l � 1:5; which can serve for the optimal tangents

and construction of low-energy and fair arc spline curves.

To simplify and speed up the computation, we use only

the linear term in the Taylor series expansion of the sine

function. If the turning angles of the chords joining the

points are relatively small, i.e. when the angles Dui are

small, then the higher terms in the series are negligible.

This is the case in many practical applications. Then objec-

tive function (10) can be approximated by

E � 4
Xn 2 1

i�1

b2
i

iPi 2 Pi21i
1

a2
i11

iPi11 2 Pii

 !

1 4l
Xn

i�1

�ai 2 bi�2
iPi 2 Pi21i

: �11�

Let li � iPi 2 Pi21i; i � 1;¼; n: Since the multiple 4

does not play any role in the minimization, Eq. (11) can

be simpli®ed to

U �
Xn 2 1

i�1

b2
i

li
1

a2
i11

li11

 !
1 l

Xn

i�1

�ai 2 bi�2
li

: �12�

Then the optimal tangents can be obtained by minimizing

the quadratic objective function U.

From Eq. (3) we have bi � Dui 2 ai11: By substituting

bi � Dui 2 ai11 into Eq. (12), we get a quadratic function

U with �n 2 1� unknowns a2;¼;an: Minimizing the objec-

tive function U is equivalent to the solution of the system of

equations 2U=2ai � 0: For i � 2;¼; n 2 1; these yield the

linear equations

l

li21

ai21 1
l 1 1

li21

1
l 1 1

li

� �
ai 1

l

li

ai11

� l 1 1

li21

Dui21 1
l

li
Dui: �13�

For i � n we have the linear equation

l

ln21

an21 1
l 1 1

ln21

1
l 1 1

ln

� �
an � l 1 1

ln21

Dun21 1
l

ln

bn:

�14�
These combine into a system of �n 2 1� linear equations in

�n 2 1� unknowns. This system of linear equations can be

written in the matrix form

MZ � H; �15�
where Z is a vector of �n 2 1� unknown variables and H is a

constant vector associated with the lengths and the turning

angles of the chords. The coef®cient matrix M is a tridiago-

nal matrix. The ai can be solved by LU factorization. Once

the ai is known, the bi can be computed immediately.

3. Automatic fairing algorithm

The process of point set fairing or curve fairing often

consists of two phases: in¯exion reduction and convexity

preserving fairing or ®ne fairing [6,8]. To reduce redundant

in¯exions, the ªtight string methodº proposed by Feldman

[6] is an ef®cient method for discrete point set. In this

section, we will focus on the ®ne fairing of point set using

discrete curvatures that are derived from minimal-energy

arc curves. The following algorithm is based on the assump-

tion that the redundant in¯exions of the point set have been

eliminated.

3.1. Discrete curvature computation

With the optimal tangents obtained by Eq. (15), we can

now estimate the discrete curvatures at every point by a

spline of the biarc curve interpolating the point set and the

tangents at the points. To decide a biarc curve interpolating

points Pi21 and Pi and the tangents Ti21 and Ti; we cite here

the formula proposed in Ref. [2]. If the angles ai and bi have

the same signs, a C-shaped biarc panel can be constructed,

and the radii for two arc segments are

r1 � li

2 sin��ai 1 bi�=2�
sin�bi=2�
sin�ai=2� ; �16�

r2 � li

2 sin��ai 1 bi�=2�
sin�ai=2�
sin�bi=2� : �17�

By approximating the sine value of an angle with the angle

itself, the curvatures for the left and the right arc segment

abutting point Pi are k2
i � �ai 1 bi�bi=liai and k1

i �
�ai11 1 bi11�ai11=li11bi11: If pairs of angles ai and bi or
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ai11 and bi11 have different signs, there are in¯exions in a

smooth-®tting curve at the left- or at the right-side of point

Pi: The left-curvature at point Pi can be computed using

the curvature of the circle owning tangent Ti at point Pi

and interpolating Pi21; while the right-curvature can be

computed by another circle interpolating point Pi11:

From Eqs. (4) and (5) we have k2
i � 2bi=li and k1

i �
2ai11=li11: The discrete curvature at point P0 or Pn can be

chosen as k1
0 or k2

n ; and at the other point can be chosen as

ki � �k2
i 1 k1

i �=2:

3.2. Low-pass ®ltering

Smooth discrete curvatures can help in yielding a fair

®tting curve. The discrete curvatures can be made smoother

by the low-pass ®ltering principle.

Supposing that the sequence of discrete curvatures is

k1; k2;¼; kn; by applying the Discrete Fourier Transforma-

tion (DFT), the frequency of the curvature sequence is

fr �
Xn

i�1

ki e2j2pir=n
; r � 1; 2;¼; n: �18�

where j � ����
21
p

: The discrete curvatures can be recovered

by the inverse DFT

ki � 1

n

Xn

r�1

fr ej2pir=n
; i � 1; 2;¼; n: �19�

Now the discrete curvature sequence k can be made

smoother by discarding some high-frequency terms of the

sum. When implemented, the method of DFT is computa-

tionally expensive; even with fast Fourier transformation

the computational complexity is in the order of n log�n�
operations.

An alternative ef®cient smoothing algorithm is to do the

projection onto the space of low frequencies only approxi-

mately. According to Lindeberg [14], a set of discrete

signals can be smoothed based on diffusion equation. Let

Dki � ��ki21 2 ki�=2�1 ��ki11 2 ki�=2�; in the simplest

form, the curvature can be smoothed by the following itera-

tion formula

k 0i � ki 1 mDki; �20�
where 0 , m # 1=2 is a scale factor.

When the discrete curvatures have been smoothed, we

can keep the tangents unchanged and disturb the point posi-

tions to obtain a set of fair points with these new curvatures.

We may fair the point set by choosing the discrete curvature

at point Pi as ki � k2
i ; ki � k1

i or ki � �k2
i 1 k1

i �=2: The

last choice may give better results, but the computation is

somewhat complex and costly. For the convenience and

ef®ciency of computation, we choose here ki � k1
i : The

tests we have experimented show that this choice will

give satisfying results. Since ai are far less than the chord

length li; the direction of tangent Ti21 at point Pi21 can be

kept unchanged. The smoothed discrete curvatures will

yield modi®ed tangent chord angles { �a i} and the point

Pi21 can be moved to a new position with tangent chord

angle �a i �i � 2;¼; n�:
If every two elements in angle pairs �ai21;bi21�; �ai;bi�

and �ai11;bi11� have the same sign, the discrete curvatures

can be estimated by interpolating biarc curves, i.e. ki �
�ai11 1 bi11�ai11=li11bi11; otherwise, we compute the

curvatures by ®tting circles and ki � 2ai11=li11: If the ®rst

case holds, let vi0 � ��ai21 1 bi21�bi=�ai 1 bi�bi21�
�li=li21� and vi1 � ��ai11 1 bi11�bi=�ai 1 bi�bi11��li=li11�;
else let vi0 � li=li21 and vi1 � li=li11: The new angle �a i

corresponding to angle ai can be derived from Eq. (20):

�a i � ai 1 �vi0 p ai21 1 vi1 p ai11 2 2ai� p
m

2
: �21�

As for the scalar coef®cient m , the tests we have experimen-

ted show that m � 0:2 is the suggested choice.

When the tangent chord angle ai has been modi®ed, the

point Pi21 should be adjusted in the permitted range simul-

taneously. If V is the unit vector rotated by 1p=2 from the

tangent Ti21 and the tangent Ti21 is supposed to be

unchanged, we can move point Pi21 in the direction V for

dH0 to get the desired new tangent chord angle �a i (see Fig.

3), where dH0 can be formulated as

d H0 � 2li�cos ai p tan� �a i�2 sin ai�: �22�
To guarantee that the mth faired point P�m�i21 is adjusted

within tolerance t of initial point P�0�i21; the upper and lower

bounds for dH should be computed. Let A � P�m21�
i21 2 P�0�i21;

then dH should satisfy the inequality

�A 1 dH´V�2 # t2
: �23�

From Eq. (23), we can conclude that dH1 # dH # dH2;

where dH1;2 � 2A´VF
����������������������
�A´V�2 2 A2 1 t2

p
: Now, if dH0 ,

dH1 or dH0 . dH2; then dH can be chosen as dH1 or dH2;

otherwise dH � dH0: The new position for point Pi21 is

P�m�i21 � P�m21�
i21 1 dH´V �24�

We can fair the point set by adjusting the point positions

one by one. When position for point Pi21 has been changed,
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Fig. 3. Adjusting point position based on smoothed curvature.



the angle ai should be replaced by �a i: If point Pk is a ®xed

one, no movement should be done.

3.3. The algorithm

There are two strategies for fairing a planar point set by

the above two algorithms. The ®rst one is to compute the

tangents only once and smooth the discrete curvatures using

the low-pass ®ltering algorithm repeatedly, and the other

method is to compute the optimal tangents and ®lter the

discrete curvatures alternately. It seems that the second

method has more computational costs than the ®rst one,

but the convergence of the ®rst method is much slower

than the second one. In fact, computing the new optimal

tangents, when the points position have been changed,

will give a more concise estimate of the discrete curvatures

for every iteration. The curvature plot of the faired point set

by the second method always consists of fewest monotone

segments while the ®rst method does not. Then, the second

strategy is the preferred one.

When fairing a set of points, the objective function U will

decrease steadily just after a few iterations. The function U

will reach a smallest value and waver around it after tens of

iterations. For uniform data we can obtain satisfying results

with about 20 iterations, and for other data only 60±80

iterations will give a set of faired points together with a

fair arc spline curve. To fair a set of points, we can choose

the iteration number manually according to the quality of

the curvature plot or stop the fairing procedure automati-

cally. To decide when to stop, we can check if the objective

function U is still decreasing from the 10th iteration or stop

the iteration procedure when the iteration number has

exceeded a prede®ned number such as 80. Because there

are only linear operations in the fairing procedures, we

can always fair a point set in real-time. The fairing algo-

rithm is as follows:

Geometric fairing algorithm

input: a set of planar points and the error tolerance t ;

output: the faired point set and the optimal tangents at the

points.

Step 0. Remove redundant in¯exions;

Step 1. Compute the optimal tangents;

Step 2. Compute the discrete curvature;

Step 3. Curvature smoothing and points adjusting;

Step 4. If the termination condition has been achieved

stop else go to Step 1.

4. Fair arc spline curve ®tting

With the faired point set associated with the optimal

tangents at these points, we can now ®t the point set

with a smooth-arc spline curve by choosing one of the

biarc ®tting methods. There are many ways to construct

a biarc curve interpolating two points and two tangents

at the points [2,15]. This section will introduce a brief

idea for fast biarc curve construction for fair curve ®tting

purpose.

An arc spline interpolating the point set can be obtained

by constructing biarc curves interpolating every two points

Pi21 and Pi and tangents Ti21 and Ti; �i � 1;¼; n�: The

angle from the tangent Ti21 to the chord Pi21Pi and the

angle from the same chord to the tangent Ti are ai and bi;

respectively. Since we will have to decide three variables to

decide a circle (two components of the center and the radius

of the circle), there are six freedoms to decide two circles.

But, there are only ®ve constraints for the construction of

two connected and mutually tangent arc segments matching

the above data (see Fig. 4). One additional free parameter

has to be set aside for the construction of a biarc panel. A

plethora of methods have been given to choose this free

variable [2,15].

Let the angle u from the direction Ti21 to the tangent line

U at the connecting point be the free variable. Once the

angle u is decided, a biarc curve interpolating the points

and the tangents can be constructed. We here employ the

fast algorithm proposed by Jin [16] for biarc curve construc-

tion. The biarc curve is supposed to be constructed in a local

right-handed coordinate system with origin at Pi21 and x

coordinate axis paralleling Ti21 (see Fig. 4). The conversion

of points or vectors in one coordinate system to another can

be achieved by direct transformation. Let O1 and O2 be the

centers of two arc segments with radii r1 and r2; respec-

tively, and let Pc be the contact point of these two arcs. In

this local coordinate system the unit normal vector N1 at

point Pi21 is N1 � �0 1�; and the unit tangent vector U at

point Pc is U � �cos u sin u�; then the unit normal vector V

at point Pc is V � �2sin u cos u�: Let L � Pi 2 Pi21; G �
U 2 T2 and W � N1 2 V ; then the radius and center for the

®rst arc are, respectively,

r1 � L´G=W´G;

O1 � Pi21 1 r1N1:

The contact point is Pc � Pi21 1 r1W : Let Q � Pi 2 Pc;

X. Yang, G. Wang / Computer-Aided Design 33 (2001) 35±43 39

Fig. 4. Biarc curve construction.



then the second arc can be determined as:

r2 � Q2
=2Q´V ;

O2 � Pc 1 r2V :

If angles ai and bi have the same signs, we can construct

a C-shaped biarc curve, otherwise construct an S-shaped

biarc curve by choosing appropriate values for the angle

u . As demonstrated by Su and Liu [2], we choose u � ai

for C-shaped biarc curve construction. A key reason for this

choice is that the choice can keep the monotony of the

curvature plot of a cubic curve. This property will guarantee

the global fairness of the ®tting curve. Let the curvatures of

a cubic curve at two points Pi21 and Pi be k1 and k2; and the

radii of two arcs of a biarc curve that interpolates points Pi21

and Pi and the tangents at these two points be r1 and r2;

respectively. If k1 , k2; then k1 , 1=r1 , 1=r2 , k2: If k1 .
k2 then the inequality should be turned over. For the S-

shaped biarc curve the angle u can be chosen as u � �3ai 2
bi�=2 (see Ref. [16]).

5. Examples

We have done a lot of experiments to test the new fairing

algorithm and the fair arc curve ®tting method. The program

X. Yang, G. Wang / Computer-Aided Design 33 (2001) 35±4340

Fig. 5. Fairing the disturbed points sampled from a BeÂzier curve: (a) the ®tting arc spline within tolerance 0.04; (b) circle curvature plots before (uniform dash)

and after (non-uniform dash) fairing and curvature plot for arc spline (solid) by the circle-based method; (c) circle curvature plot after fairing (non-uniform

dash) and curvature plots of ®tting arc splines before (uniform dash) and after (solid) fairing by the arc-based method.

Table 1

The unit tangent vectors at the sampled points estimated by our method and the circle-based method. ri is the angle between unit tangent vectors of the

estimated and the BeÂzier curves at b(ti)

Parameter (ti) BeÂzier tangents Arc-based tangents rI (rad) ( £ 1022) Circle-based tangents ri (rad) ( £ 1022)

t0 � 0 0.7682, 0.6402 0.7682, 0.6402 0 0.7682, 0.6402 0

t1 � 0:125 0.8137, 0.5812 0.8126, 0.5828 0.189 0.8192, 0.5735 0.9415

t2 � 0:25 0.8742, 0.4856 0.8731, 0.4876 0.227 0.8825, 0.4702 1.7529

t3 � 0:375 0.9487, 0.3162 0.9465, 0.3227 0.680 0.9588, 0.2840 3.3763

t4 � 0:5 1, 0 0.9999, 0.0048 0.481 0.9987, 20.0506 5.0632

t5 � 0:625 0.8742, 20.4856 0.8737, 20.4864 0.086 0.8717, 20.4899 0.4944

t6 � 0:75 0.5145, 20.8575 0.5124, 20.8587 0.239 0.5568, 20.8306 5.0115

t7 � 0:875 0.1961, 20.9806 0.1877, 20.9822 0.861 0.2315, 20.9728 3.6270

t8 � 1 0, 21 0, 21 0 0, 21 0
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Table 2

The discrete curvatures at the sampled points estimated by our method and the circle-based method. di is the curvature difference between the discrete

curvatures of the estimated and the BeÂzier curves at b(ti)

Parameter (ti) BeÂzier curvature Arc-based curvature di ( £ 1022) Circle-based curvature di ( £ 1022)

t0 � 0 0.0629 0.0706 0.762 0.0756 1.269

t1 � 0:125 0.1117 0.1139 0.223 0.1127 0.098

t2 � 0:25 0.2199 0.2254 0.547 0.2221 0.219

t3 � 0:375 0.4857 0.4969 1.123 0.4879 0.226

t4 � 0:5 1.1111 1.1238 1.266 1.0797 23.142

t5 � 0:625 1.7593 1.7616 0.233 1.6289 213.04

t6 � 0:75 1.2106 1.2223 1.169 1.1684 24.22

t7 � 0:875 0.5364 0.5503 1.393 0.5379 0.15

t8 � 1 0.24 0.2847 4.475 0.3116 7.156

Fig. 6. Shoe-like shape modeling: (a) the ®tting arc spline within tolerance 0.04; (b) circle curvature plots before (uniform dash) and after fairing (non-uniform

dash) and curvature plot for arc spline (solid) by the circle-based method; and (c) arc spline curvature plots before (dash) and after fairing (solid) by the arc-

based method.



is implemented on an SGI Indigo2 workstation with MIPS

R4000 and 96 Mb memory. The noisy data are generated by

several different ways. A few examples dealing with convex

polyline or polylines with in¯exions are cited here. Discrete

curvature plots before and after fairing have been drawn to

show the results of fairing. To illustrate the curvature plots

more clearly, we have connected the discrete curvatures at

the points or the curvatures at the midpoints of arc segments

into continuous polylines. The horizontal coordinate of the

curvature plot is the accumulated length of the polyline or

the arc length of the curve while the vertical value is the

curvature of every arc segment.

To illustrate the ef®ciency of the arc-based fairing

method, we have compared our method with the circle-

based fairing method. The way we fair a set of points by

the circle-based method is similar to that of the arc-based

method. We modify the point positions based on smoothed

discrete curvatures that have been estimated by ®tting

circles, and construct the ®tting arc spline curve using the

tangents of the ®tting circles at the points. The curvatures of

the ®tting circles for the faired points by these two methods

cannot be distinguished explicitly; but, the curvature plots

show that the ®tting arc spline for a point set faired by the

biarc-based method is superior to the arc spline by the

circle-based method.

The ®rst example employs a BeÂzier curve (Fig. 5) with

control points (1,1), (4,3.5) and (4,1); nine points are

sampled uniformly with parameter step Dt � 0:125: Data

in Tables 1 and 2 show that the approximate tangents and

curvatures by the arc-based method are more concise and

accurate than by the circle-based method.

The second example uses 21 points sampled from the

same BeÂzier curve as in example 1. We ®rst sample the

points uniformly with parameter step Dt � 0:05 and then

disturb the coordinates of point P �Px;Py� as ��int��Px p

20 1 0:5�=20; �int��Py p 20 1 0:5�=20�; where function

int�x� is equal to the integer part of number x. The point

sets are faired within tolerance 0.04. A set of faired points

together with a fair arc spline curve is obtained after 18

iterations within 0.03 s.

For the third example, we would like to design a shoe-like

shape (Fig. 6). We ®rst design the raw shape by sampling a

set of points on the screen using the mouse. To form a closed

shape, the last and the ®rst points are de®ned coincident. It is

clear that there are several in¯exions in the polyline; we

disturb all point positions within tolerance 0.04 using

formula (21). Though the initial points are so noisy, we

obtain a set of faired points together with a fair arc spline

after 18 iterations within 0.06 s.

In the last example we test our program by a set of non-

uniform sampled points. We have sampled 33 points on the

strophoid curve (Fig. 7)

X�t� � t2 2 1

t2 1 1

t

1

 !
; t [ �22; 2�:

The sampling parameter interval is Dt � 0:125; but the

parameters of the inner 29 points are disturbed randomly

with magnitude 0.05. Even more, the positions of each of

the inner 29 sampled point have been disturbed randomly

inside the circle centered at the sampled point and with

radius 0.05. After 80 iterations, we obtain a fair ®tting arc

spline in 0.17 s. There are 64 arc segments in the ®nal biarc

spline, and because the curvature plot consists of just a few

monotone pieces, we can simplify the fair arc spline further.

By employing our latest result for arc spline optimization in

Ref. [17], we can simplify the fair arc spline into 10

segments within tolerance 0.01. A smooth fair arc spline

®tting the original noisy data within tolerance 0.06 is

achieved.

6. Conclusions and future work

In this paper, we present a very simple and ef®cient

method for planar point set fairing and ®tting by arc splines.

The main contribution of the paper lies in three aspects: (a)

ef®cient algorithm for planar point set fairing; (b) simple

formula for optimal tangents computation for biarc curve

interpolation; and (c) ®tting noisy data by fair arc curve

within the prescribed tolerance. The advantages of the

algorithm are that the discrete curvatures estimated by

X. Yang, G. Wang / Computer-Aided Design 33 (2001) 35±4342

Fig. 7. Strophoid curve reconstruction: (a) the smooth-®tting arc spline

consisting of 10 segments within tolerance 0.06; and (b) curvature plot of

fair ®tting arc spline before (dash) and after (solid) data reduction by the

arc-based fairing method.



minimal-energy curve model are more accurate and reliable

than the circle-based method; a set of faired points and a fair

®tting arc curve within a given tolerance are obtained in

real-time. The result of the algorithm can be used directly

for fair shape design, CNC machining, robot path

planning, etc.

There are still some problems that deserve further study

in the future. The ®rst problem is under what conditions can

the algorithm achieve the fewest monotone segments for the

curvature plot. The second problem is how to construct arc

splines with curvature plots having the prescribed proper-

ties. Finally, the method presented in this paper should be

extended to fair a sequence of spatial points.
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