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Abstract

In this paper we propose a new kind of nonlinear and geometry driven subdivision scheme for curve interpolation. In
using linear combination of old vertexes, displacement vector for every new vertex is given by normal vectors at old v
The normal vectors are computed adaptively for each time of subdivision, and the limit curve isG1 smooth with wide range
of free parameters. With this new scheme, normal vectors at selected vertexes can be interpolated efficiently. A shape
subdivision scheme with explicit choices of all free parameters is also presented.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Curve interpolation by repeated subdivision is an efficient shape design method in the field of computer aid
metric design and many curve subdivision schemes serve as the foundations for surface subdivision. For inte
curve subdivision, new vertexes will be computed and added to the old polygons for each time of subdivision
limit curve will pass through all the vertexes of the original control polygon. In this paper we present a new s
for curve interpolation by subdivision.

A well known work for interpolatory subdivision scheme is four point subdivision scheme proposed by Dyn
(1987). Four point subdivision scheme is a stationary linear subdivision scheme and polynomials of order up
can be reproduced by this scheme. Recently, several new schemes are proposed as the extensions of four p
vision scheme (Hassan et al., 2002; Marinov et al., 2004). To obtain a fair subdivision curve, Kobbelt (1996) p
a non-stationary subdivision scheme for curve interpolation. Aspert et al. (2003) proposed a nonlinear inter
subdivision scheme based on spherical coordinates transformation. Besides interpolating the original control
derivatives at the initial data can also be set ahead and interpolated using Hermite subdivision schemes (J
Schwanecke, 2002).

Besides convergence and continuity, another important property for geometric design by subdivision is sh
serving property. Because shape preservation is often dealt as a nonlinear and geometric problem, seve
preserving subdivision schemes were only concerned with univariate functional data or convex polygonal
the literature. LeMéhauté and Utreras (1994) proposed a convexity preserving subdivision scheme that genC1

E-mail address:yxn@zju.edu.cn (X. Yang).
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smooth curves interpolating functional data. When applied for univariate data, four point subdivision scheme
be used for convexity preserving purpose (Kuijt and van Damme, 1998; Dyn et al., 1999). For general conve
geometric subdivision scheme was proposed by Dyn et al. (1992).

In this paper we present a new nonlinear and geometric dependent subdivision scheme for curve interpolat
the observation that every intermediate polygon is a piecewise linear approximation to a final interpolating cu
then every new added vertex can be estimated from the intermediate polygon geometrically. From a geome
of view, a new vertex can be obtained by adding a displacement vector from a selected point on the old p
When we choose a point on an edge we just split the edge into two sub-edges. Then the displacement vecto
split point can be computed as a combination of the projection of the sub-edges on the normals at the end
the old edge. It can be shown that the limit curve isG1 smooth with adaptive computation of normal vectors for e
intermediate polygon. Moreover, we can easily obtain shape preserving subdivision scheme with explicit ch
the subdivision parameters, and some other properties such as normal interpolation at selected points, strai
circular arc generation can be easily achieved too.

The organization of the paper is as follows. In Section 2 we will introduce general idea of normal based sub
scheme, and we present the smoothness analysis of this scheme in Section 3. In Section 4 we will presen
preserving subdivision scheme. The experimental examples are presented in Section 5. Section 6 is devo
conclusion of the paper.

2. The subdivision scheme

Let {p0
i }i be a sequence of control points, we define the normal based subdivision scheme as

pk+1
2i = pk

i , (1)

pk+1
2i−1 = (

1− sk
i

)
pk

i−1 + sk
i pk

i + vk
i , (2)

where 0< εa � sk
i � 1− εb < 1 be the subdivision parameter andvk

i be the displacement vector corresponding to
edgepk

i−1p
k
i .

Before defining the displacement vectorvk
i we define the unit normal at each vertex firstly. Except for fixed norm

at selected vertexes, normal vectors at other vertexes will be computed adaptively after each time of subdiv
pk

i−1, pk
i andpk

i+1 be three consecutive vertexes with different positions, we define the normal vectornk
i at pk

i as
paralleling the bisector of the angle� pk

i−1p
k
i p

k
i+1. Let T k

i be the unit tangent vector atpk
i , we have

T k
i = T −

i + T +
i

‖T −
i + T +

i ‖ ,

whereT −
i = pk

i −pk
i−1

‖pk
i −pk

i−1‖
andT +

i = pk
i+1−pk

i

‖pk
i+1−pk

i ‖ . Assume thatT k
i = (T k

i .x, T k
i .y), then the unit normal vectornk

i at pk
i

can be computed asnk
i = (−T k

i .y, T k
i .x). For fixed normals, they can be either computed from the initial con

polygon or given ahead by users, but they will be kept unchanged during the subdivision.
With the normals at all vertexes defined, local shapes corresponding to individual edges will be determin

ciently by the vertex positions as well as the normals. As in the following definition, we can classify all edg
three types, convex edges, inflection edges and straight edges (see Fig. 1).

Fig. 1. (a) Convex edge; (b) inflection edge; (c) straight edge.
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Fig. 2. Compute a new vertex by adding a displacement vector.

Definition. Let pk
i−1p

k
i be an arbitrary edge with normal vectorsnk

i−1 andnk
i atpk

i−1 andpk
i , respectively, the projec

tions of the edge onto the normals at the end points are computed aslki = (pk
i−1 − pk

i )n
k
i−1 andrk

i = (pk
i − pk

i−1)n
k
i .

We define the edgepk
i−1p

k
i a convex edge iflki rk

i > 0. The edge will be defined an inflection edge whenlki rk
i < 0 or

one of these two projections vanishes. If bothlki andrk
i vanish, the edgepk

i−1p
k
i is defined a straight edge.

Now, we define the displacement vector for an edgepk
i−1p

k
i (see Fig. 2). Letαk

i andβk
i be the unsigned angle

between the chordpk
i−1p

k
i with the tangent lineT k

i−1 at pk
i−1 or with the tangent lineT k

i at pk
i , respectively, we hav

0� αk
i < π

2 and 0� βk
i < π

2 . Letpm = (1− sk
i )pk

i−1+ sk
i pk

i , the displacement vector for a convex edge can be de
as

vk
i = w

(
λk

i n
k
i−1 + µk

i n
k
i

)
, (3)

whereλk
i = (pk

i−1 − pm)nk
i−1 andµk

i = (pk
i − pm)nk

i . The tension parameterw here is a positive number. Ifpk
i−1p

k
i

is an inflection edge or a straight edge, we choosesk
i = 1

2 and the displacement vector is defined as

vk
i =

{
w(λk

i n
k
i−1 + µk

i n
k
i ), if αk

i + βk
i � π

2 ,

w(2σk
i ek

i − λk
i n

k
i−1 − µk

i n
k
i ), otherwise,

(4)

whereek
i = pk

i −pk
i−1

‖pk
i −pk

i−1‖
andσk

i = (λk
i n

k
i−1 +µk

i n
k
i )e

k
i . The definition ofvk

i underαk
i +βk

i > π
2 is a symmetric vector o

w(λk
i n

k
i−1 + µk

i n
k
i ) with respect to the edgepk

i−1p
k
i .

In the following text we will show that limit curves by this subdivision scheme exist and are tangent smooth
wide ranges of free parameters. Moreover, the scheme can be modified for shape preserving curve interpo
by choosing some proper subdivision parameters.

3. Smoothness analysis

With the definition of chord tangent angles, the absolute values ofλk
i andµk

i can be obtained as∣∣λk
i

∣∣ = sk
i

∥∥pk
i−1 − pk

i

∥∥sinαk
i , (5)∣∣µk

i

∣∣ = (
1− sk

i

)∥∥pk
i − pk

i−1

∥∥sinβk
i . (6)

From Eqs. (5) and (6) we have

sinαk
i = |λk

i |
sk
i ‖pk

i−1 − pk
i ‖

,

sinβk
i = |µk

i |
(1− sk

i )‖pk
i − pk

i−1‖
.

If pk
i−1p

k
i is a convex edge we can assume that the normalnk

i−1 andnk
i are both pointing toward the convex si

of the polygon, then we haveλk > 0 andµk > 0. It can be easily verified that the displacement vectorvk lies at
i i i
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Fig. 3. Displacement vector for an inflection edge.

the convex side of the edgepk
i−1p

k
i too. For a straight edge it is clear that the displacement vector vanishes

new added vertex lies on the edge itself. As to the problem of which side will the displacement vectorvk
i lie for an

inflection edge, we have the following theorem.

Theorem 1. Let pk
i−1p

k
i be an inflection edge, the chord tangent angles atpk

i−1 andpk
i are αk

i andβk
i , respectively

then the displacement vectorvk
i as defined in Eq.(4) lies on the side with larger chord tangent angle.

Proof. It is clear that the theorem holds whenαk
i = 0 or βk

i = 0. We then need to prove the theorem under
condition thatαk

i > 0 andβk
i > 0. Without loss of generality, we can assume that the normalnk

i−1 is pointing toward
the convex side of the polygon at vertexpk

i−1 (see Fig. 3), then we haveλk
i > 0 andµk

i < 0. To judge which side doe
the displacement vectorvk

i lie to the edgepk
i−1p

k
i , we should then determine the sign of the projection ofvk

i onto
the normal vector of the edge. By deleting a positive coefficient, the perpendicular part of the vectorvk

i to the edge
pk

i−1p
k
i is λk

i cosαk
i + µk

i cosβk
i whenαk

i + βk
i < π

2 or −λk
i cosαk

i − µk
i cosβk

i whenαk
i + βk

i > π
2 . By substituting

Eqs. (5) and (6), we have

λk
i cosαk

i + µk
i cosβk

i = 1

2

∥∥pk
i−1 − pk

i

∥∥sinαk
i cosαk

i − 1

2

∥∥pk
i − pk

i−1

∥∥sinβk
i cosβk

i

= 1

4

∥∥pk
i − pk

i−1

∥∥(
sin2αk

i − sin 2βk
i

)
= 1

2

∥∥pk
i − pk

i−1

∥∥sin
(
αk

i − βk
i

)
cos

(
αk

i + βk
i

)
.

From the above equality we can see that the sign ofλk
i cosαk

i + µk
i cosβk

i is same as the sign ofαk
i − βk

i when
αk

i +βk
i < π

2 . If αk
i +βk

i > π
2 , the sign of−λk

i cosαk
i −µk

i cosβk
i agrees with the sign ofαk

i −βk
i too. The displacemen

vectorvk
i for an inflection edgepk

i−1p
k
i lies at the side with the angleαk

i whenαk
i > βk

i and lies at the side withβk
i

otherwise. The theorem is proven.�
Before discussing the convergence and smoothness of normal based subdivision scheme, we give a few

about trigonometric functions and the bounds of the subdivision parameters. These formulae can be easil
and we leave the proof to interested readers.

(a) Let 0< θ < θk � π
2 , then

sinθk

θk

θ � sinθ � θ. (7)

(b) Assume that 0< φ1, φ2 < π
2 , if sinφ1 < r sinφ2 with r � 1, then we have

φ1 < rφ2. (8)

(c) With the assumption that 0< εa � sk
i � 1− εb < 1, we have

1− sk
i

sk
� εb

1− ε
� sa,

sk
i

1− sk
� εa

1− ε
� sa,
i b i a
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division.
d tangent

rd

le
wheresa = min{1, εa

1−εa
,

εb

1−εb
}. With this definition we have 0< sa � 1.

The normal based subdivision scheme permits subdivision parametersk
i for each edge and tension parameterw for

all displacement vectors. Letws = min{2εa(1− εa),2εb(1− εb)}, it can be verified thatws � 0.5, and 2sk
i (1− sk

i ) >

ws whenεa < sk
i < 1− εb. Let θk = maxi{αk

i , β
k
i }, we have the following theorem.

Theorem 2. For the normal based subdivision scheme defined by Eqs.(1)–(4), if we choosesk
i and w satisfying

εa < sk
i < 1− εb and0 < w < ws cosπ

4 , then we havelimk→∞ θk = 0.

Proof. The essence of the proof of this theorem is the estimation of new chord tangent angles after each sub
The proof is consisting of three main steps, chord tangent angles estimation at new inserted vertexes, chor
angles estimation at old vertexes, convergence analysis of the angles.
(1) Chord tangent angles at new inserted vertexes

Let pk+1
2i−1 be the new inserted vertex corresponding to the edgepk

i−1p
k
i (see Fig. 2), we estimate new cho

tangent anglesβk+1
2i−1 andαk+1

2i at pk+1
2i−1. Let β̄k+1

2i−1 = � pk+1
2i−1p

k
i−1pm andᾱk+1

2i = � pk+1
2i−1p

k
i pm, and denote the ang

� pk
i−1p

k+1
2i−1pm asγ2i−1, we have

sinβ̄k+1
2i−1 = sinγ2i−1

‖vk
i ‖

‖pm − pk
i−1‖

�
w‖λk

i n
k
i−1 + µk

i n
k
i ‖

‖pm − pk
i−1‖

� w sinαk
i + 1− sk

i

sk
i

w sinβk
i � w

sk
i

max
{
sinαk

i ,sinβk
i

}
� w

sk
i

sinθk.

In the same way we can define� pk
i p

k+1
2i−1pm asγ2i and we have

sinᾱk+1
2i = sinγ2i

‖vk
i ‖

‖pm − pk
i ‖

� w

1− sk
i

max
{
sinαk

i ,sinβk
i

}
� w

1− sk
i

sinθk.

With simple calculation, we can see that the projection ofpk+1
2i−1 onto the edgepk

i−1p
k
i lies betweenpk

i−1 andpk
i ,

then we have 0< β̄k+1
2i−1 < π

2 and 0< ᾱk+1
2i < π

2 . Moreover, we can derive upper bounds forβ̄k+1
2i−1 andᾱk+1

2i in terms

of θk explicitly. Because 0< β̄k+1
2i−1 < π

2 , we have

sinβ̄k+1
2i−1 = 2m sin

β̄k+1
2i−1

2m
cos

β̄k+1
2i−1

2
· · ·cos

β̄k+1
2i−1

2m
> 2m sin

β̄k+1
2i−1

2m
cosm

π

4
= 2

m
2 sin

β̄k+1
2i−1

2m
.

Then we have

sin
β̄k+1

2i−1

2m
<

w

sk
i

1

2m/2
sinθk.

So, with proper choice ofm, we havew

sk
i

1
2m/2 < 1 for 0< w < 0.5 andεa < sk

i < 1− εb. From Eq. (8) we have

β̄k+1
2i−1 <

w

sk
i

2m/2θk � 2Kθk,

whereK = 1
2

0.5
min{εa,εb}2

m/2. Similarly, we havēαk+1
2i < min{2Kθk,

π
2 }. With the bounds of̄βk+1

2i−1 andᾱk+1
2i obtained,

we have

cos
1

2

(
β̄k+1

2i−1 − ᾱk+1
2i

)
� max

{
cosKθk,cos

π

4

}
.

When we compute the new normal at vertexpk+1
2i−1 as paralleling the bisector of the angle� pk

i−1p
k+1
2i−1p

k
i , the chord

tangent anglesβk+1
2i−1 andαk+1

2i are equal. Then we have

βk+1
2i−1 = αk+1

2i = 1(
β̄k+1

2i−1 + ᾱk+1
2i

)
.

2
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les

ge.
Now, we compute the bounds of sine value of these angles as follows.

2 sinβk+1
2i−1 cos

π

4
� 2 sin

1

2

(
β̄k+1

2i−1 + ᾱk+1
2i

)
cos

1

2

(
β̄k+1

2i−1 − ᾱk+1
2i

) = sinβ̄k+1
2i−1 + sinᾱk+1

2i

� w

sk
i (1− sk

i )
max

{
sinαk

i ,sinβk
i

}
.

From this inequality we have

sinβk+1
2i−1 <

w

ws cosπ
4

max
{
sinαk

i ,sinβk
i

}
.

From Eq. (8) we haveβk+1
2i−1 < w

ws cosπ
4

max{αk
i , β

k
i } whenw < ws cosπ

4 .

As illustrated in the rest of this proof,θk will approach zero along with the subdivision. We have cosKθk � cosπ
4

whenk is large enough. We have

sinβk+1
2i−1 < r1

k max
{
sinαk

i ,sinβk
i

}
,

wherer1
k = w

ws cosKθk
< 1. Furthermore, we have

βk+1
2i−1 = αk+1

2i < r1
k max

{
αk

i , β
k
i

}
.

(2) New chord tangent angles at old vertexes
To compute new chord tangent anglesβk+1

2i andαk+1
2i+1 at vertexpk

i , we first estimate the lower bounds of ang

β̄k+1
2i−1 at pk

i−1 and ᾱk+1
2i at pk

i according to whether the edgepk
i−1p

k
i is a convex edge or some other type of ed

After that, we will obtain the upper bound ofαk+1
2i+1 andβk+1

2i .
(2.1)λk

i µ
k
i > 0

In this case, the edgepk
i−1p

k
i is a convex edge and the length of the subvector ofvk

i perpendicular to edgepk
i−1p

k
i

is w|λk
i cosαk

i + µk
i cosβk

i |. Then, we have

‖vk
i ‖

‖pk
i−1 − pm‖ = w‖λk

i n
k
i−1 + µk

i n
k
i ‖

sk
i ‖pk

i − pk
i−1‖

�
w|λk

i cosαk
i + µk

i cosβk
i |

sk
i ‖pk

i − pk
i−1‖

� w max

{ |λk
i |cosαk

i

sk
i ‖pk

i − pk
i−1‖

,
|µk

i |cosβk
i

sk
i ‖pk

i − pk
i−1‖

}

= w max

{
sinαk

i cosαk
i ,

1− sk
i

sk
i

sinβk
i cosβk

i

}

� w min

{
1,

1− sk
i

sk
i

}
cosθk max

{
sinαk

i ,sinβk
i

}

� w min

{
1,

1− sk
i

sk
i

}
cosθk

sinθk

θk

max
{
αk

i , β
k
i

}
.

When the lower bound of
‖vk

i ‖
‖pk

i−1−pm‖ is obtained, we have

ᾱk+1
2i−1 = αk

i − β̄k+1
2i−1 � αk

i − sinβ̄k+1
2i−1 = αk

i − sinγ2i−1
‖vk

i ‖
‖pk

i−1 − pm‖

�
(

1− w sinγ2i−1 cosθk

sinθk

θk

min

{
1,

1− sk
i

sk
i

})
max

{
αk

i , β
k
i

}
.

In a similar method we can obtain the upper bound ofβ̄k+1 by estimating the lower bound of the angleᾱk+1.
2i 2i
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e

β̄k+1
2i = βk

i − ᾱk+1
2i � βk

i − sinγ2i

‖vk
i ‖

‖pk
i − pm‖

�
(

1− w sinγ2i cosθk

sinθk

θk

min

{
1,

sk
i

1− sk
i

})
max

{
αk

i , β
k
i

}
.

Let ρk = mini{sinγ2i−1,sinγ2i}cosθk
sinθk

θk
, and it is clear that 0< ρk � 1. Then, the upper bounds forᾱk+1

2i−1 and

β̄k+1
2i can be reformulated as

ᾱk+1
2i−1 � (1− wρksa)max

{
αk

i , β
k
i

}
and

β̄k+1
2i � (1− wρksa)max

{
αk

i , β
k
i

}
.

(2.2)λk
i µ

k
i � 0

According to the subdivision rule, we choosesk
i = 1

2 in this case. We compute here the bound forᾱk+1
2i−1 at pk

i−1

under the condition ofλk
i µ

k
i < 0. The bound for̄βk+1

2i atpk
i and the bounds underλk

i µ
k
i = 0 will be obtained similarly.

If λk
i µ

k
i < 0, the edgepk

i−1p
k
i is an inflection edge and we will compute the bound forᾱk+1

2i−1 according toαk
i > βk

i or
αk

i < βk
i , respectively.

Firstly, when the conditionsλk
i µ

k
i < 0 andαk

i > βk
i hold, we have

sinβ̄k+1
2i−1 = sinγ2i−1

‖vk
i ‖

1
2‖pk

i − pk
i−1‖

�
w‖λk

i n
k
i−1 + µk

i n
k
i ‖

1
2‖pk

i − pk
i−1‖

� w
(
sinαk

i + sinβk
i

)
� 2w sinαk

i .

Since 0< w � 0.5 always holds during the subdivision, we have 0< β̄k+1
2i−1 � αk

i . From this inequality we obtain th

bound forᾱk+1
2i−1 as

0< ᾱk+1
2i−1 = αk

i − β̄k+1
2i−1 < αk

i .

Secondly, when the conditionsλk
i µ

k
i < 0 andαk

i < βk
i hold, the displacement vectorvk

i lies on the side with the
angleβk

i . Moreover, the sign ofλk
i sinαk

i +µk
i sinβk

i is the same as that ofµk
i which means that the angle� pk+1

2i−1pmpk
i

is an acute angle (see Fig. 4). We denote the subvector ofvk
i perpendicular to the edgepk

i−1p
k
i aspmpv , and denote

� pmpk
i−1pv = η. It is clear thatβ̄k+1

2i−1 < η. As for η we have

tanη = w|λk
i cosαk

i + µk
i cosβk

i |
1
2‖pk

i − pk
i−1‖

= w
∣∣sinαk

i cosαk
i − sinβk

i cosβk
i

∣∣
= w sin

(
βk

i − αk
i

)∣∣cos
(
βk

i + αk
i

)∣∣ � w
(
βk

i − αk
i

)
.

Sinceη < tanη, we haveᾱk+1
2i−1 = αk

i + β̄k+1
2i−1 < βk

i .
So, whetherαk

i > βk
i or αk

i < βk
i holds, we all have

ᾱk+1
2i−1 � max

{
αk

i , β
k
i

}
.

Fig. 4. Chord tangent angle at an inflection edge.
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Similarly, we haveβ̄k+1
2i � max{αk

i , β
k
i } for the inflection edgepk

i−1p
k
i . It is clear that the above bound forᾱk+1

2i−1 and

β̄k+1
2i also holds whenλk

i or µk
i vanishes.

(2.3) The bound of new chord tangent angles
If pk

i−1p
k
i andpk

i p
k
i+1 are two inflection edges with one common inflexion after some subdivision, it can be

verified that vertexespk+1
2i−1, pk

i andpk+1
2i+1 are on a line. Then bothβk+1

2i andαk+1
2i+1 are zero.

Assume thatpk
i is not an inflexion, two abutting edgespk

i−1p
k
i andpk

i p
k
i+1 are among the following three case

convex and convex, convex and inflection, or convex and straight. Ifpk
i−1p

k
i andpk

i p
k
i+1 are two convex edges w

have

βk+1
2i = αk+1

2i+1 = 1

2

(
β̄k+1

2i + ᾱk+1
2i+1

)
� (1− wρksa)max

{
αk

i , β
k
i , αk

i+1, β
k
i+1

}
� (1− wρksa)θk.

If one of these two edges is a convex edge and the other one is an inflection edge, we have

βk+1
2i = αk+1

2i+1 = 1

2

(
β̄k+1

2i + ᾱk+1
2i+1

)
�

(
1− 1

2
wρksa

)
θk.

If pk
i−1p

k
i or pk

i p
k
i+1 is a straight edge, we haveαk+1

2i+1 = ᾱk+1
2i+1 � (1− wρksa)θk or βk+1

2i = β̄k+1
2i � (1− wρksa)θk .

(3) Convergence of chord tangent angles
By summarizing steps (1) and (2), we can conclude that for arbitraryi, αk+1

i < rkθk and βk+1
i < rkθk , where

rk = max{r1
k ,1− 1

2wρksa}. Then, we have

θk+1 < rkθk.

When we choose 0< w < ws cosπ
4 , we haver1

k < 1. Consequently, we haverk < 1 andθk+1 < θk . Since the sequenc

θk (k = 0,1, . . .) is decreasing, we can conclude that cosθk
sinθk

θk
> cosθ0

sinθ0
θ0

for k > 0. To find the lower bound ofρk ,
we should also compute a lower bound for sinγ2i−1 or sinγ2i in advance. From the geometry of local displacem
vector we have

sinβ̄k+1
2i−1 = sinγ2i−1

‖vk
i ‖

‖pm − pk
i−1‖

= sinγ2i−1
w‖λk

i n
k
i−1 + µk

i n
k
i ‖

‖pm − pk
i−1‖

� sinγ2i−1

(
w sinαk

i + 1− sk
i

sk
i

w sinβk
i

)
� sinγ2i−1

w

sk
i

sinθk.

As illustrated in step (1), sin̄βk+1
2i−1 > 2

m
2 sin

β̄k+1
2i−1
2m , then we have

sin
β̄k+1

2i−1

2m
< sinγ2i−1

w

sk
i

sinθk

2
m
2

.

Assume thatm is a properly selected number such thatw

sk
i

sinθk

2
m
2

< 1 for 0< w < ws . From Eq. (8) we havēβk+1
2i−1 <

2mγ2i−1. On another hand (see Fig. 2),β̄k+1
2i−1 + γ2i−1 = � pk+1

2i−1pmpk
i > π

2 − βk
i > π

2 − θk . Then we haveγ2i−1 >
1

2m+1(π
2 − θk) > 1

2m+1(π
2 − θ0). In a similar way we haveγ2i > 1

2m+1(π
2 − θ0). Now, we obtain one lower bound o

ρk(k = 0,1, . . .) as

ρk � ρ = cosθ0 sin
π
2 − θ0

2m + 1

sinθ0

θ0
.

With lower bound ofρk , we have upper bound ofrk as

rk � r = max

{
w

ws cosπ
4

,1− 1

2
wρsa

}
.

Becauser < 1, then we have

lim θk = 0.

k→∞
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To investigate the limit ofrk , we compute the limit ofr1
k and ρk , respectively. Based on limk→∞ θk = 0, we

have limk→∞ r1
k = w

ws
. To compute the limit ofρk , we first reformulateγ2i−1 = π

2 − β̄k+1
2i−1 − ϕk

i , whereϕk
i = π

2 −
� pk+1

2i−1pmpk
i . It is clear that−αk

i < ϕk
i < βk

i , and then limk→∞ ϕk
i = 0. On another hand, sin̄βk+1

2i−1 � w

sk
i

sinθk which

implies that limk→∞ β̄k+1
2i−1 = 0. With these two limits, we have limk→∞ γ2i−1 = π

2 and limk→∞ ρk = 1. Now, we
have

lim
k→∞ rk = max

{
w

ws

,1− 1

2
wsa

}
.

The theorem is proven.�
It should be pointed out that the proof of Theorem 2 is conservative. In fact, we can choosew < ws such that

limk→∞ rk < 1 for subdivision curve generation. For the purpose of clarity, we assume thatθk+1 < rθk with r < 1 in
the following text.

Theorem 3. If εa < sk
i < 1 − εb and 0 < w < ws cosπ

4 , then the normal based subdivision scheme define
Eqs.(1)–(4)converges and the limit curve isG1 smooth.

Proof. To prove this theorem we address three main points: (a) any polygon sequence generated by norm
subdivision converges to a continuous limit curve; (b) tangent at each point on the limit curve exists; (c) the
line for the limit curve is continuous.

Let Γk be the polygon afterkth subdivision, we compute the distancedk betweenΓk+1 andΓk . Let pk+1
2i−1 be a new

added vertex corresponding to edgepk
i−1p

k
i , then we have

∥∥pk
i−1p

k+1
2i−1

∥∥ �
∥∥pk

i−1pm

∥∥ + ∥∥vk
i

∥∥ = ∥∥pk
i−1pm

∥∥ + w
∥∥λk

i n
k
i−1 + µk

i n
k
i

∥∥
� sk

i

∥∥pk
i − pk

i−1

∥∥ + w
∥∥pk

i − pk
i−1

∥∥[
sk
i sinαk

i + (
1− sk

i

)
sinβk

i

]
�

∥∥pk
i − pk

i−1

∥∥(
sk
i + w sinθk

)
.

From Theorem 2, we have limk→∞ θk = 0, then the coefficientsk
i + w sinθk will be less than 1 after finite times o

subdivision. Becauseεa < sk
i < 1− εb, we have limk→∞ ‖pk

i −pk
i−1‖ = 0. Consequently, we have‖pk

i −pk
i−1‖ � L,

whereL is a positive constant. Now, the distance frompk+1
2i−1 to the edgepk

i−1p
k
i can be computed as

dk
i = w

∣∣λk
i cosαk

i + µk
i cosβk

i

∣∣
� w

∥∥pk
i − pk

i−1

∥∥(
sk
i sinαk

i cosαk
i + (

1− sk
i

)
sinβk

i cosβk
i

)
� w

∥∥pk
i − pk

i−1

∥∥sin
1

2

(
αk

i + βk
i

)
� Lθk.

Let dk = maxi dk
i , we havedk � Lθk � rkLθ0. This means that the polygon sequence{Γk} is a Cauchy sequenc

and this sequence of polygons converge uniformly. Since each polygon is a piecewise linear curve, the limit
continuous.

Because allpk
i s are densely lying on the limit curve, we should just prove that the tangent at eachpk

i exists. To
prove the existence of tangent line atpk

i , we will prove that for any points approachingpk
i on the limit curve, the lines

connecting these points topk
i converge. Without loss of generality, we prove that the line connectingpk

i and any point
on the right side ofpk

i converges, and the left case can be proved in a similar way. Moreover, it can be easily v
that if two sets of lines connecting points on either side ofpk

i converge, they will converge to a same limit line. As
the convergence problem on the right side, we address it in two steps: firstly, we will show that a sequence of
linespk

i p
k+l

2l i+1
(l � 0) converge; secondly, we will prove that any line connectingpk

i to other point on the limit curve
converges to the same limit line.
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Notice thatpk
i = pk+1

2i = pk+2
22i

= · · ·, it can be easily verified thatpk+l+1
2l+1i+1

is a new vertex added corresponding

edgepk
i p

k+l

2l+1
. Recalling proof of Theorem 2, the angleβ̄k+1

2i+1 = � pk+1
2i+1p

k
i p

k
i+1 satisfies

2

π
β̄k+1

2i+1 < sinβ̄k+1
2i+1 <

w

sk
i+1

sinθk,

then we haveβ̄k+1
2i+1 < cθk , wherec = π

2
w

min{εa,εb} . In the same way, let̄βk+l+1
2l+1i+1

= � pk+l+1
2l+1i+1

pk
i p

k+l

2l i+1
, then we have

β̄k+l+1
2l+1i+1

< cθk+l < cθkr
l (l = 0,1, . . .). So linespk

i p
k+l

2l+1
(l = 0,1, . . .) form a Cauchy sequence and the limit li

exists whenl goes to infinity. AssumēT k
i be the limit line of the sequence, we then prove that any line connectinpk

i

and a point betweenpk+l+1
2l+1i+1

andpk+l

2l i+1
approaches̄T k

i too whenl goes to infinity. Assumep∞
k,l be an arbitrary poin

lying betweenpk+l+1
2l+1i+1

andpk+l

2l i+1
on the limit curve, it may be reached or approximated with arbitrary closene

repeated subdivision. Letψk,l = � p∞
k,lp

k
i p

k+l

2l i+1
, then we have

ψk,l � � pk+l+1
2l+1i+1

pk
i p

k+l

2l i+1
+ � pk+l+2

2l+2i+3
pk+l+1

2l+1i+1
pk+l

2l i+1
+ · · · = β̄k+l+1

2l+1i+1
+ β̄k+l+2

2l+2i+1
+ · · ·

< cθk(r
l + rl+1 + · · ·) = cθk

1− r
rl .

Consequently, we have liml→∞ ψk,l = 0. This implies that the linepk
i p

∞
k,l approaches̄T k

i too, andT̄ k
i is just the

tangent line atpk
i on the limit curve.

Let φk
i be the chord tangent angle betweenT̄ k

i andpk
i p

k
i+1, we have

φk
i � � pk+1

2i+1p
k
i p

k
i+1 + � pk+2

22i+1
pk

i p
k+1
2i+1 + · · · + � pk+l+1

2l+1i+1
pk

i p
k+l

2l i+1
+ · · ·

= β̄k+1
2i+1 + β̄k+2

22i+1
+ · · · + β̄k+l+1

2l+1i+1
+ · · · < cθk(1+ r + · · · + rl + · · ·) = cθk

1− r
.

Similarly, the angle between the tangentT̄ k
i+1 at pk

i+1 with pk
i p

k
i+1 is bounded by c

1−r
θk too. Assume that̄T k

i also

denotes the unit tangent direction atpk
i , then we have‖T̄ k

i+1 − T̄ k
i ‖ < 2c

1−r
θk . Let T̄ ∞

k,l be the unit tangent vector atp∞
k,l

which is lying betweenpk+l+1
2l+1i+1

andpk+l

2l i+1
on the limit curve, we compute the bound for‖T̄ k

i − T̄ ∞
k,l ‖ by repeated

subdivision again. Then we have∥∥T̄ k
i − T̄ ∞

k,l

∥∥ �
∥∥T̄ k

i − T̄ k+l+1
2l+1i+1

∥∥ + ∥∥T̄ k+l+1
2l+1i+1

− T̄ k+l+2
2l+2i+3

∥∥ + · · ·
<

2c

1− r
(θk+l+1 + θk+l+2 + · · ·) <

2c

(1− r)2
θkr

l+1.

From this inequality, we have liml→∞ ‖T̄ k
i − T̄ ∞

k,l ‖ = 0. This means that for any pointp∞
k,l approachingpk

i , the tangen

line T̄ ∞
k,l approaches̄T k

i too. So, the limit curve isG1 smooth.
This proves the theorem.�
From Theorem 3 we see that any closed curve obtained by normal based subdivision scheme isG1 smooth. For

open polygons, we choose fixed normals at the ends for the subdivision and the limit curves are convergent an
at the end points too. From the proofs of Theorems 2 and 3 we can see that the fixed normals at selected ve
be interpolated.

Corollary. Letp0
l be a vertex of the original control polygon andn0

l be the fixed normal at the vertex, then the norm
vectorn0

l as well as the position ofp0
l will be interpolated by the normal based subdivision curve.

4. Shape preserving subdivision

As analyzed in Section 3, normal based subdivision scheme is an efficient method for smooth curve gene
this section we present subdivision scheme for shape preserving interpolation with explicit choices of the sub
parameters.
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By a shape preserving subdivision scheme, total number of inflexions defined by the initial polygon as we
normals at initial vertexes will be kept and the straight edges along the initial control polygon will be preserv
In this paper we define straight edges just when three consecutive vertexes are on a line on the initial control
If two neighboring straight edges intersect at a vertex, this vertex will be dealt as a sharp corner and the initia
polygon can just be divided into two polygons at the corner for shape preserving interpolation. In the followi
we assume that there is no sharp corner within the initial control polygon.

Explicit scheme for shape preserving subdivision depends on two aspects, normal computation and para
lection. Except for those vertexes with fixed normals, we compute the vertex normals for the initial and all interm
polygons using the normal formula introduced in Section 2. The normal for vertexes on a straight edge is co
as the normal of the line, and this normal will be dealt as a fixed normal during the following subdivision proc

With the normals at all vertexes properly defined, we should then choose the free parameters explicitly fo
preserving interpolation. Letαk

i andβk
i be the chord tangent angles of the edgepk

i−1p
k
i at pk

i−1 andpk
i , respectively,

we pick the subdivision parameter for the edgepk
i−1p

k
i as

sk
i =




sinβk
i

sinαk
i +sinβk

i

, convex edge,

1
2, otherwise.

(9)

With the subdivision parameters chosen above, we have a shape preserving interpolation algorithm immedia

Theorem 4. For an initial control polygon without sharp corner and with all initial vertex normals properly defin
if we choose the subdivision parameter using Eq.(9), then for0 < w < 0.5 the normal based subdivision curves a
shape preserving andG1 smooth.

Proof. The proof of the smoothness of the limit curves for Theorem 4 is similar to that of Theorems 2 and 3. B
the choices of the subdivision parameters for convex edges within these theorems are different, we derive
for w by computing the bounds for̄βk+1

2i−1 andᾱk+1
2i again.

In a similar way as the proof of Theorem 2 and from Eq. (9), we have

sinβ̄k+1
2i−1 = sinγ2i−1

‖vk
i ‖

‖pm − pk
i−1‖

� w sinαk
i + 1− sk

i

sk
i

w sinβk
i � 2w sinαk

i ,

and

sinᾱk+1
2i = sinγ2i

‖vk
i ‖

‖pm − pk
i ‖

� 2w sinβk
i .

Then we haveβ̄k+1
2i−1 � 2wαk

i andᾱk+1
2i � 2wβk

i when 0< w < 0.5. So, the upper bound for chord tangent angle

new vertexpk+1
2i−1 can be computed as

βk+1
2i−1 = αk+1

2i = 1

2

(
β̄k+1

2i−1 + ᾱk+1
2i

)
� 2w max

{
αk

i , β
k
i

}
.

With this bound and in a same way as the proof of Theorem 3, we can conclude that the normal based su
curves areG1 smooth for 0< w < 0.5.

Within the rest of this proof we address the shape preserving property of the subdivision scheme. To pr
the subdivision curve is shape preserving, we should then prove that straight edges will be preserved and
inflexions will be introduced after each time of subdivision.

If pk
i−1p

k
i is a straight edge, the normal vectorsnk

i−1 atpk
i−1 andnk

i atpk
i are both perpendicular to the edgepk

i−1p
k
i .

From Eq. (3), the displacement vectorvk
i vanishes. Then the new added vertexpk+1

2i−1 corresponding topk
i−1p

k
i is just

the midpoint of the edge. On another hand, the normal vectors corresponding to straight edges are kept un
and the normal vector at new added vertex is perpendicular to the edge too. Then initial local straight lines
preserved during the subdivision.

If pk
i−1p

k
i is a convex edge, we choose the subdivision parametersk

i as in Eq. (9). From Eqs. (5) and (6) we ha
λk = µk . Then, the displacement vectorvk is parallel to the bisector of the angle formed byλknk andµknk (see
i i i i i−1 i i
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Fig. 5. Shape preserving subdivision for convex edges.

Fig. 5). For 0< w < 0.5, the new vertexpk+1
2i−1 lies within the triangle formed by the tangent lineT k

i−1 at the vertex
pk

i−1, the tangent lineT k
i at pk

i and the edgepk
i−1p

k
i . In casepk

i−1p
k
i is an inflection edge, from Theorem 1, the n

vertexpk+1
2i−1 lies within the angle between the edgepk

i−1p
k
i and the tangent lineT k

i−1 at pk
i−1 whenαk

i > βk
i � 0 or

within the angle between the edgepk
i p

k
i−1 and the tangent lineT k

i atpk
i for 0� αk

i < βk
i (see Fig. 3).

Assume thatpk
i−1p

k
i is a convex edge and none ofpk

i−1 or pk
i is inflexion, then new added vertexespk+1

2i−3, pk+1
2i−1

and chordspk
i−2p

k
i−1, pk

i−1p
k
i all lie at one side to the tangent lineT k

i−1 at pk
i−1. Vertexespk+1

2i−1, pk+1
2i+1 and chords

pk
i−1p

k
i , pk

i p
k
i+1 lie at one side to the tangent lineT k

i at pk
i too. Then, the local polygonpk+1

2i−3p
k+1
2i−2p

k+1
2i−1p

k+1
2i pk+1

2i+1

is convex. After the definition or redefinition of normal vectors atpk+1
2i−2, pk+1

2i−1 andpk+1
2i , respectively, the new edge

pk+1
2i−2p

k+1
2i−1 andpk+1

2i−1p
k+1
2i are two convex edges. Similarly, ifpk

i−1p
k
i is an inflection edge withαk

i �= βk
i , then it will

be replaced by one convex edge and one new inflection edge after a subdivision.
If pk

i−1p
k
i is an inflection edge withαk

i equal toβk
i , we havepk+1

2i−1 = 1
2(pk

i−1 + pk
i ) and then the edge will b

replaced by two inflection edges with one common inflexion after a subdivision. In this case, the vertexespk
i−1, pk

i

andpk+1
2i−1 are on a line and the polygon is local symmetric with respect to the vertexpk

i . With simple calculation, we
can see that the inflexion will be preserved during the subdivision.

From the above analysis, the number of inflexions implied by the original control polygon does not increa
each time of subdivision. The theorem is proven.�

Though shape preserving subdivision curves can be generated by choosing adaptive subdivision param
all edges, due to the fixed tension parameterw for every subdivision step, the curves are sometimes not fai
obtain a shape preserving as well as fair subdivision curve, we should determine the tension parameter
edge adaptively. For practical computation, we scale the displacement vectors for convex edges adaptively
displacement vectors for inflection edges or straight edges are still defined as in Eq. (4).

Let vk
i be the displacement vector defined by Eq. (3) for a convex edge, we compute the scaling factor

displacement vector according to the criterion that local circular arc will be reproduced provided that the end
and normals at the ends of the edge are sampled from an arc. For a given edgepk

i−1p
k
i , we define

tλ =
{

1
1+cosαk

i

|λk
i |

‖vk
i ‖ , convex edge,

1, otherwise,

and

tµ =
{

1
1+cosβk

i

|µk
i |

‖vk
i ‖ , convex edge,

1, otherwise.

Now, we choose the scaling factor for the displacement vectorvk
i ast = min{tλ, tµ} and the new vertex correspondi

to the edgepk
i−1p

k
i can be defined

pk+1 = (
1− sk

)
pk + skpk + tvk. (10)
2i−1 i i−1 i i i
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From the definition oftλ andtµ, if pk
i−1p

k
i is a convex edge, we have

t � tλ <
|λk

i |
‖vk

i ‖
<

λk
i

vk
i n

k
i−1

,

and

t � tµ <
|µk

i |
‖vk

i ‖
<

µk
i

vk
i n

k
i

.

With these two inequalities, we have|tvk
i ·nk

i−1| < |λk
i | and|tvk

i ·nk
i | < |µk

i | which imply that the scaled displaceme
vector tvk

i lies under the tangent linesT k
i−1 at pk

i−1 and T k
i at pk

i , simultaneously. Then, the subdivision sche
defined by Eqs. (9) and (10) is a shape preserving subdivision scheme for plane curve modelling. In the f
text we refer this scheme as shape preserving subdivision scheme. Moreover, this scheme can be used for c
generation provided that the boundary data are properly defined.

Theorem 5. Letp0
i−1p

0
i be a convex edge on the original control polygon with fixed end normaln0

i−1 andn0
i at p0

i−1
andp0

i , respectively, ifα0
i is equal toβ0

i , the subdivision curve defined by Eqs.(9) and (10) is a circular arc.

Proof. Whenp0
i−1p

0
i is a convex edge andα0

i is equal toβ0
i , from Eqs (5), (6) and (9) we haves0

i = 0.5 andλ0
i = µ0

i .
Furthermore, the displacement vectorv0

i is perpendicular to the edgep0
i−1p

0
i and tλ = tµ for the edge. Then, th

scaling factor for the displacement vectorv0
i is t = 1

1+cosα0
i

λ0
i

‖v0
i ‖ . Let γ = � p1

2i−1p
0
i−1p

0
i , then we have

tanγ = t‖v0
i ‖

‖p0
i − pm‖ = 1

1+ cosα0
i

λ0
i

‖p0
i − pm‖ = 1

1+ cosα0
i

sinα0
i = tan

α0
i

2
.

Because 0< γ < π
2 , we haveγ = α0

i

2 . If we fix the normaln0
i−1 at p0

i−1, n0
i at p0

i and compute the normaln1
2i−1 at

p1
2i−1 as paralleling the bisector of� p0

i−1p
1
2i−1p

1
i , then the chord tangent anglesα1

2i−1, β1
2i−1, α1

2i andβ1
2i are equal

with each other after one time of subdivision. When new vertexes have been computed and added repeatedly
curve is an interpolating circular arc.�

For general type of data, the shape preserving subdivision scheme can also be used for smooth curve g
In a similar way as the proofs of Theorems 3 and 4, we have the following theorem.

Theorem 6. The subdivision scheme defined by Eqs.(1), (9) and(10) is a shape preserving subdivision scheme,
for 0< w < 0.5 the limit curves generated by this scheme areG1 smooth.

From Eq. (10), we can see that a new added vertexpk+1
2i−1 will be independent of the parameterw whenpk

i−1p
k
i

is a convex edge. So, one can choose anyw > 0 for an initial local convex control polygon. To control the sha
of the subdivision curve, usually the first few steps of the subdivision, we can compute scalet for Eq. (10) ast =
min{1, tλ, tµ}. We will illustrate the influence of this scale by the fourth example in next section.

Remark 7. Supposepk
i be a vertex added corresponding to an inflection edge, it is then always close to th

pk
i−1p

k
i+1. When we compute the normalnk

i atpk
i as paralleling the bisector of� pk

i−1p
k
i p

k
i+1, the chord tangent ang

βk
i or αk

i+1 is much less thanαk
i or βk

i+1. From Eq. (9),sk
i andsk

i+1 will be close to zero or 1 for the edgepk
i−1p

k
i and

pk
i p

k
i+1, and then new vertexespk+1

2i−1 andpk+1
2i+1 will be close to the initial inflection edge. Though the subdivis

curve is smooth in the end, but it is always flat betweenpk
i−1 andpk

i+1. To increase the fairness of the subdivis
curve near the inflection edge we can modify the normal vector atpk

i for the following subdivision.

Let

ea = pk
i+1 − pk

i−1

‖pk − pk ‖
i+1 i−1
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t
.
w chord

e can

g

and

na = nk
i−1 + nk

i+1

‖nk
i−1 + nk

i+1‖
,

then we have the reflection vector ofna with respect to a line perpendicular toea as

nr = na − 2(naea)ea.

Now, the modified normal vector atpk
i can be defined as̄nk

i = (nk
i + nr)/‖nk

i + nr‖. With n̄k
i as the new normal a

pk
i , eitherpk

i will become an inflexion itself or one and only one of the edgepk
i−1p

k
i or pk

i p
k
i+1 is an inflection edge

Then the subdivision is still shape preserving with this modification. On another hand, the upper bound for ne
tangent angles atpk

i can be estimated as((αk
i +2βk

i +βk
i+1)/2+2βk

i )/2 = 1
4(αk

i +βk
i+1)+ 3

2βk
i . Becauseβk

i is always
much less thanαk

i or βk
i+1 whenpk

i is an inflexion or a vertex added corresponding to an inflection edge, then w

Fig. 6. Curve interpolation by normal based subdivision scheme: (a) with randomsk
i

∈ [0.25,0.75]; (b) with fixed sk
i

= 0.5; (c) shape preservin
subdivision.
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believe that the maximum chord tangent angleθk will not be influenced by the normal modification at inflexions.
fact, this modification has made subdivision more uniform and the final subdivision curve more fair than by a
shape preserving scheme.

5. Examples

In this section we present several interesting examples for smooth plane curve design or shape preservin
lation by normal based subdivision scheme. To illustrate the quality of a subdivision curve more clearly, we c
and plot the discrete curvatures along with the curve after finite times of subdivision.

In the first example we compute subdivision curves with an S-shaped control polygon. With normal ve
initial vertexes properly defined, there exists one inflection edge within the control polygon. Three curves are
interpolating all the initial control points. We construct the first subdivision curve by choosing the subdivision
meterssk

i randomly within the interval(0.25,0.75) and settingw = 0.25 for all steps of subdivision (see Fig. 6(a
When we choosesk

i as a constant 0.5 and setw = 0.25 again we obtain another subdivision curve (Fig. 6(b)). F
the figures we can also see that both of these two curves are smooth, however, neither of them is shape p
By using the subdivision scheme proposed in Section 4, we obtain a shape preserving subdivision curve withw = 0.3
(Fig. 6(c)).

The second example is concerned about shape preserving interpolation of a planar closed polygon with no
control points. Both the lengths of edges and the turning angles of the original control polygon are non-unifo
changing rapidly (see Fig. 7). We choosew = 0.4 for this example, and obtain a shape preserving subdivision c
with natural shape after 5 times of subdivision. From the figure we can see that the subdivision is nonuniform
the limit curve seems piecewise fair.

In the third example we design a bottle like shape by shape preserving subdivision scheme. Three stra
segments are defined within the original control polygon (see Fig. 8(a)). As the normal vectors for the vert
straight edges are fixed during the subdivision, the curve segments connecting these three lines have fixed
normals. In fact, the connecting segments are circular arcs in this example. As a result, the interpolating su
curve is not only shape preserving, but alsoG1 smooth along the whole curve with straight lines and circular
imbedded (see Fig. 8(b)).

In the fourth example we interpolate a star shape polygon by shape preserving subdivision curves with
tensions. The initial control polygon is local convex and there is no inflection edge within the polygon. As dis
in Section 4, the tensionw can be picked in an even larger range. This example also shows thatw can be used to
adjust the fullness of the subdivision curve.

Fig. 7. (a) Shape preserving interpolation of a closed polygon with nonuniform control points; (b) zoom in of the curve near the top righ
vertex.
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curve.
Fig. 8. Shape preserving interpolation with local straight lines and circular arcs generation: (a) the control polygon; (b) the subdivision

Fig. 9. Shape preserving interpolation of a local convex polygon: (a)w = 0.3; (b)w = 0.5; (c)w = 0.7; (d)w = 0.9.
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Table 1
The maximum chord tangent angles and the convergence ratios after each subdivision

k 0 1 2 3 4 5

S(a) 0.615712 0.424489 0.265348 0.183638 0.124351 0.061576
0.689383 0.625099 0.692067 0.677155 0.495177

S(b) 0.615712 0.417069 0.274952 0.174585 0.106985 0.063631
0.677332 0.659249 0.634964 0.612796 0.594766

S(c) 0.615712 0.318427 0.160222 0.080186 0.040098 0.020049
0.517136 0.503166 0.500468 0.500063 0.500008

close plyg 1.336695 1.063081 0.594761 0.306461 0.154072 0.077097
0.795306 0.559469 0.515268 0.502744 0.500400

bottle 0.785398 0.427510 0.217122 0.108838 0.054438 0.027220
0.544322 0.507876 0.501275 0.500178 0.500023

star(b) 1.256637 0.970793 0.537907 0.275958 0.138604 0.069347
0.772532 0.554091 0.513021 0.502265 0.500326

Finally, we present the maximum chord tangent angles and the convergence ratios of the chord tange
after each subdivision for above mentioned examples (see Table 1). From the table, we can see that the
chord tangent anglesθk decrees rapidly for normal based subdivision scheme. Except for the example with r
subdivision parametersk

i , the convergence ratiosrk also converge monotonically.

6. Conclusions

A new subdivision scheme, normal based subdivision scheme, has been introduced for curve interpola
main feature of this scheme is that displacement vector for every new vertex is given as a linear combin
normal vectors at old vertexes. With proper choices of the subdivision parameters, the limit curves areG1 smooth.

Because new vertexes depend on normal vectors at old vertexes, the normal vectors at selected vertex
interpolated by this new subdivision scheme. By this scheme, shape preserving interpolation of plane cu
been reduced to the computation of a set of proper subdivision parameters. Straight lines and circular arc
generated along with the subdivision under properly defined initial conditions. The experimental examples al
the efficiency of normal based subdivision scheme.

One interesting future topic about normal based subdivision is how to construct curvature continuous sub
curves. The normal based subdivision scheme can be generalized for surface interpolation of meshes direc
2005), but how to design shape preserving subdivision schemes for other types of data such as space curve
tion or surface interpolation deserve further study in the future.
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