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Abstract

In this paper we propose a new kind of nonlinear and geometry driven subdivision scheme for curve interpolation. Instead of
using linear combination of old vertexes, displacement vector for every new vertex is given by normal vectors at old vertexes.
The normal vectors are computed adaptively for each time of subdivision, and the limit cutVesimooth with wide ranges
of free parameters. With this new scheme, normal vectors at selected vertexes can be interpolated efficiently. A shape preservin
subdivision scheme with explicit choices of all free parameters is also presented.

0 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Curve interpolation by repeated subdivision is an efficient shape design method in the field of computer aided geo-
metric design and many curve subdivision schemes serve as the foundations for surface subdivision. For interpolatin
curve subdivision, new vertexes will be computed and added to the old polygons for each time of subdivision and the
limit curve will pass through all the vertexes of the original control polygon. In this paper we present a new scheme
for curve interpolation by subdivision.

A well known work for interpolatory subdivision scheme is four point subdivision scheme proposed by Dyn et al.
(1987). Four point subdivision scheme is a stationary linear subdivision scheme and polynomials of order up to three
can be reproduced by this scheme. Recently, several new schemes are proposed as the extensions of four point sub
vision scheme (Hassan et al., 2002; Marinov et al., 2004). To obtain a fair subdivision curve, Kobbelt (1996) proposed
a non-stationary subdivision scheme for curve interpolation. Aspert et al. (2003) proposed a nonlinear interpolatory
subdivision scheme based on spherical coordinates transformation. Besides interpolating the original control vertexes
derivatives at the initial data can also be set ahead and interpolated using Hermite subdivision schemes (Jttler an
Schwanecke, 2002).

Besides convergence and continuity, another important property for geometric design by subdivision is shape pre
serving property. Because shape preservation is often dealt as a nonlinear and geometric problem, several sha
preserving subdivision schemes were only concerned with univariate functional data or convex polygonal curve in
the literature. LeMéhauté and Utreras (1994) proposed a convexity preserving subdivision scheme that génerates
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smooth curves interpolating functional data. When applied for univariate data, four point subdivision scheme can als
be used for convexity preserving purpose (Kuijt and van Damme, 1998; Dyn et al., 1999). For general convex data,
geometric subdivision scheme was proposed by Dyn et al. (1992).

In this paper we present a new nonlinear and geometric dependent subdivision scheme for curve interpolation. Wit
the observation that every intermediate polygon is a piecewise linear approximation to a final interpolating curve, an
then every new added vertex can be estimated from the intermediate polygon geometrically. From a geometric poil
of view, a new vertex can be obtained by adding a displacement vector from a selected point on the old polygon
When we choose a point on an edge we just split the edge into two sub-edges. Then the displacement vector from t
split point can be computed as a combination of the projection of the sub-edges on the normals at the end points
the old edge. It can be shown that the limit curvé&tssmooth with adaptive computation of normal vectors for each
intermediate polygon. Moreover, we can easily obtain shape preserving subdivision scheme with explicit choices c
the subdivision parameters, and some other properties such as normal interpolation at selected points, straight line
circular arc generation can be easily achieved too.

The organization of the paper is as follows. In Section 2 we will introduce general idea of normal based subdivisior
scheme, and we present the smoothness analysis of this scheme in Section 3. In Section 4 we will present a she
preserving subdivision scheme. The experimental examples are presented in Section 5. Section 6 is devoted to t
conclusion of the paper.

2. The subdivision scheme

Let {p?},- be a sequence of control points, we define the normal based subdivision scheme as

k1 k

Py =P (1)
k+1 Kk k ko, ok
Poioq = (1—s5)pi_q + s pf + 07, (2

where 0< g, < s{‘ < 1- ¢, < 1 be the subdivision parameter avftibe the displacement vector corresponding to the
edgep! , pk.

Before defining the displacement vect{jrvve define the unit normal at each vertex firstly. Except for fixed normals
at selected vertexes, normal vectors at other vertexes will be computed adaptively after each time of subdivision. L
pi_1, pf and pf,, be three consecutive vertexes with different positions, we define the normal w¢cabp! as

paralleling the bisector of the angle* ; pp* . Let ¥ be the unit tangent vector af, we have

i+1°
-
v L +T;
T+ T
Pk ph ok ph .
whereT,” = 221 and 7" = L1=%_ Assume thaf'* = (T*.x, TX.y), then the unit normal vector* at p*
! Ilpf—pf_yll i Ipf 1 —pfl i i i i i

can be computed a&é‘ = (—Tl.k.y, Tl.k.x). For fixed normals, they can be either computed from the initial control
polygon or given ahead by users, but they will be kept unchanged during the subdivision.

With the normals at all vertexes defined, local shapes corresponding to individual edges will be determined effi:
ciently by the vertex positions as well as the normals. As in the following definition, we can classify all edges into
three types, convex edges, inflection edges and straight edges (see Fig. 1).
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k k k n; I’li_] n.

CLVE L LU S S §

—7 S— —7 % Ny
/ PL PN P pi / P pi
(a) (b) ()

Fig. 1. (a) Convex edge; (b) inflection edge; (c) straight edge.
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Fig. 2. Compute a new vertex by adding a displacement vector.

Definition. Let p¥_, p¥ be an arbitrary edge with normal vectars ; andn* at p¥ ; andp¥, respectively, the projec-
tions of the edge onto the normals at the end points are computéd=agp* | — p)n* | andrk = (p¥ — pk Hnk.
We define the edgp¥ , p¥ a convex edge if“r} > 0. The edge will be defined an inflection edge wiferf < 0 or
one of these two projections vanishes. If befttandr* vanish, the edge’ , p¥ is defined a straight edge.

Now, we define the displacement vector for an e¢gqpk (see Fig. 2). Let¥ and B be the unsigned angles
between the chorg! , p¥ with the tangent ling* ; at p¥_, or with the tangent Im@k at p¥, respectively, we have

0< ozi < Zand 0< ﬂf Z.Letp, =(1- sf‘)pif1 +s{‘pi , the displacement vector for a convex edge can be defined
as

vf =w(Aint_y + uiny), 3)

whererk = (p* | — p)nk | anduk = (p¥ — p,)nk. The tension parameter here is a positive number. ff* | p*
is an inflection edge or a straight edge, we ch(xﬁse % and the displacement vector is defined as

kg i ko gk
Uk: U)()\. 1+Ml )a If ai +ﬂl g%a (4)
! w(20i ek — )J?n/.‘fl — /,L;,-(I’l{-(), otherwise
whereel = Hpk# ando* = (\nk_| + uknk)ek. The definition ofvX underaX + gX > Z is a symmetric vector of

pil
wknk | + pknk) with respect to the edget ; pt.

In the following text we will show that limit curves by this subdivision scheme exist and are tangent smooth within
wide ranges of free parameters. Moreover, the scheme can be modified for shape preserving curve interpolation jus
by choosing some proper subdivision parameters.

3. Smoothness analysis

With the definition of chord tangent angles, the absolute valua’,é ahduf can be obtained as

28| =t pi_q — pf| sinaf, 5)
i = (1=sf) | pf = pi_a] singf- (6)
From Egs. (5) and (6) we have
o A%
singy = ——+——,
CoskipE = PRI
k
singf = ]

A—=sHIpF—pr 1

If p¥_,p¥ is a convex edge we can assume that the norfhgl andr¥ are both pointing toward the convex side
of the polygon, then we havef > 0 andu’ > 0. It can be easily verified that the displacement veofolies at
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Fig. 3. Displacement vector for an inflection edge.

the convex side of the edgéf_lpl’.‘ too. For a straight edge it is clear that the displacement vector vanishes and a

new added vertex lies on the edge itself. As to the problem of which side will the displacementu}eldmdor an
inflection edge, we have the following theorem.

Theorem 1. Let p* ; p¥ be an inflection edge, the chord tangent angleg’at, and p* are o and ¥, respectively,
then the displacement vectml(f as defined in E((4) lies on the side with larger chord tangent angle.

Proof. It is clear that the theorem holds whesi = 0 or X = 0. We then need to prove the theorem under the
condition thafaf >0 andﬁf > 0. Without loss of generality, we can assume that the nomjflql is pointing toward
the convex side of the polygon at vertp§<_1 (see Fig. 3), then we ha\)é >0 anduf < 0. To judge which side does
the displacement vectar lie to the edgep’ , p¥, we should then determine the sign of the projection’obnto

the normal vector of the edge. By deleting a positive coefficient, the perpendicular part of thev{iemmhe edge
pt_ ¥ is 2k cosat + uk cospt whenat + B¥ < Z or —a¥ cosaf — ik cospl whena! + gf > Z. By substituting
Egs. (5) and (6), we have

1 1
Ay cosf + i Cospi = S| pi_y — pff | siney cose — S| pf — p_4 | singf cospy
1 _ _
=21 pF = pla (sin2f — sin257)

1 .
=S pf = pial sin(e = B7) cos(of + ).

From the above equality we can see that the sign‘afosa’ + 1f cosgt is same as the sign aff — ¥ when
af +BF < . If af + pF > Z, the sign of-1} cosaf — u¥ cospt agrees with the sign aff — ¥ too. The displacement
vectorv¥ for an inflection edge! , p! lies at the side with the angtef whena* > X and lies at the side witjs
otherwise. The theorem is proven

Before discussing the convergence and smoothness of normal based subdivision scheme, we give a few formul
about trigonometric functions and the bounds of the subdivision parameters. These formulae can be easily verifie
and we leave the proof to interested readers.

(@) Let0< 6 <6 < 7, then

sing .
>y < sing < 6. (7
Ok
(b) Assume that & ¢1, ¢2 < % if sing1 < r sing2 with r < 1, then we have
$1 <reo. (8)

(c) With the assumption thatQ ¢, < s{‘ <1-¢, <1, we have

1—sk &p S €a
i T T Y
; 1—¢ 1_51' l-¢,

= Sa,
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wheres, = min{1, 1 .-, 1 5 }. With this definition we have & s, <

The normal based subdivision scheme permits subdivision para.rﬁétn,freach edge and tension parameteior
all displacement vectors. Lat, = min{2e, (1 — &,), 265 (1 — &3)}, it can be verified thaw, < 0.5, and 2%(1 — s¥) >
wy Whene, < sF < 1—g,. Let6, = max{at, g5}, we have the following theorem.

Theorem 2. For the normal based subdivision scheme defined by @ds(4), if we choosec{‘ and w satisfying
gq < sk <1—g, and0 < w < w, cosZ, then we havéim_, o 6 = 0.

Proof. The essence of the proof of this theorem is the estimation of new chord tangent angles after each subdivision
The proof is consisting of three main steps, chord tangent angles estimation at new inserted vertexes, chord tangel
angles estimation at old vertexes, convergence analysis of the angles.

(2) Chord tangent angles at new inserted vertexes

Let szr be the new inserted vertex corresponding to the epfgqp" (see Fig. 2), we estimate new chord
tangent angleﬁ’“rl andos™ at pht . Let g&TY = £phtL pX | p,, andab ™t = £ pht pkp,,, and denote the angle
k+1

sz 1P 1 Pm @Sy2i—1, We have

k ik
Rt vl wllAfnk | + puknk)
sinBs " =sinys;— —— < !
||l7m - P,'_J_“ ||Pm - P,'_]_”
1=k ko w
< wsina; + wsinBy < = max{sma singf} < — sin;.
i l sz
In the same way we can defnz(e;k p]2<l+ 1lpm asy»; and we have
k1 [BAl .
sinay; ™ = sinyy; — < - max{sma sing; } 7 Sinoj.
“Pm_Pi Il 1_S,‘ 1_51‘

With simple calculation, we can see that the prOjectlor‘m@*fl onto the edgqp, 1pl lies betweerpl 1 andpl ,
then we have & g5 < % and 0< &4 < Z. Moreover, we can derive upper bounds fgf; andaj;" in terms

of 6, explicitly. Because 6 A5 < %, we have
il gL ﬂk+1 gkl ‘k+11
k+1 7 1
sin =2 e > 2 =27 sin
Pai- 2 2 2’” 2 4

Then we have
ﬁk+1

sin sindy.

om < k 2m/2
So, with proper choice of:, we havexﬂkz,,,—l/2 <1for0<w <0.5ande, < sk <1— &, From Eq. (8) we have
ﬂlzcj_ll <= 2m/29k < 2K 6,
S

i

whereK = 3 =05 2m/2 Similarly, we havexs™ < min{2K 6, % }. With the bounds ofi5™, andas,™ obtained,

€a.Ep}
we have

cos= (/3"+1 astt) > max{ cosK b, cos% }

When we compute the new normal at ver}é;all‘ as paralleling the bisector of the anglp, 1[721 11pf‘, the chord
tangent anglegs.; anda ™t are equal. Then we have

b _ kil (g gl
Bola =0y = (ﬂzz 1Ha ).
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Now, we compute the bounds of sine value of these angles as follows.

2sings cos4 < 2sin= (,B"+l asth) cos: (ﬂk+1 ab ) =sinst + sinas ™

——— max{sina;, sm,B. .
h sf(l—sf‘) { ! ! }

From this inequality we have

ikl w ik ain gk
sin < ———— max{sina’, sing; |.
'321 1 Wy COS% { i '81 }
From Eq. (8) we havgs™ < T maxaX, X} whenw < w cos%.
As illustrated in the rest of this proof; will approach zero along with the subdivision. We have K6g > cos’
whenk is large enough. We have

singsty < ri max{sinaf, sinp},

whererk1 < 1. Furthermore, we have

Wy COSK

k+1 11 k ok
Boiq =y <rpmax{a;, B}

(2) New chord tangent angles at old vertexes

To compute new chord tangent angj@(§+l anda’z‘;jrll at verteXpl’.‘, we first estimate the lower bounds of angles
ﬂk+l at pl , and ak+1 at pk according to whether the edgé_lpl’.‘ is a convex edge or some other type of edge.
After that, we will obtain the upper bound oft; andgj;.

(.1)rkuk >0

In this case, the edge!_, pf is a convex edge and the length of the subvectar gferpendicular to edggt_, p*
is w|A¥ cosak + uk cospt|. Then, we have

il wlifnf g+ pingll wlkfcowl{”ruf.‘cosﬁﬂ
Z Kk _ ok
||Pi_1 - pm” s,' ||Pl~ - Pi_lll sillpi — Pi_1||
2K cosak |11¥| cospl
Zwmax) - ¢
S; ||Pi - P,-_1|| S; ||Pi - P,-_1||

—sf k k
¥ o
— Sinp; cosp; }
i

=w max{sinozf‘ cosat,

sk
—} COS9; max{sma singf }

si

>w min{l,

5; e

. 1—Sk Sil’l@k k ok
> wmm{l, — }cos@ke— max{c;, B; }.

k
When the lower bound k”v" s obtained, we have
lp;_1—pmll
—k+1 k+1 k _ aipgk+l Bl
o 1—01 — B5 1 <o —singy™ l_a —sinyz1————
Ipi_q = Pl

. sinb, . 1—sk
< <1— wsinys;i_1 cos@ke—k mln{l, —k’}) max{a’, p}.
'k S

i

In a similar method we can obtain the upper boungf by estimating the lower bound of the angig™.
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k
k1 k1 - flv; |l
Byt =Bl —astt < pf — sinyy ——
” i _pm”
- k
. sing, . s
g(l—wsmyzicosek—kmm 1L )max{af, 1.
Ok 1—s

1

Let px = min; {Sinyz;_1, Sinys; } costy 2% s'”ek , and itis clear that & p; < 1. Then, the upper bounds fak."%, and
B4t can be reformulated as

a5 < (L= wprse) max{ef, B}

and
Bat < (1 — wporsa) max{af, F}.

(2.2 uk <o

According to the subdivision rule, we chooéia_ % in this case. We compute here the bound(féjill at pl’.il
under the condition off ¥ < 0. The bound foBs;™* at p¥ and the bounds undef 1.¥ = 0 will be obtained similarly.
If Aﬁ.‘,uf? <0, the edge*_, pk is an inflection edge and we will compute the boundd®t?; according tax¥ > g or
ak < gk, respectively.

Firstly, when the conditions! 1* < 0 anda* > g¥ hold, we have

)\‘kk

gk i1 Al wlAfnf_y + pin ||

=sinyai-17 <
k k
sllp; — piall SIpE = pryll

sinpa;t < w(sinef +singl) < 2wsina).

Since O< w < 0.5 always holds during the subdivision, we have 6"”

bound fora’2‘+11 as

f. From this inequality we obtain the

k+l ak+1 k
0<ay i — By <ap.

Secondly, when the conditiong u¥ < 0 anda < ¥ hold, the displacement vectof lies on the side with the
angleg¥. Moreover, the sign of¥ sina* 4- ¥ sin g¥ is the same as that pf which means that the angleys™, p,, p*
is an acute angle (see Fig. 4). We denote the subvecmzfr pérpendicular to the edg#‘flpl’.‘ as p,, pv, and denote

Lpmp* 1 py=n. Itis clear thaigs™ < . As for y we have

k coayk k

wlAk cosak + 1k cospl|
3P = P4l

= wSin(,Bl!‘ — oﬂ‘)}co&(ﬁk +otk)| < w(,B!‘ - al{‘).

Sincen < tany, we haveoﬂz‘“1 =of + BT < pF.
So, whethet* > gF or ok < ﬂ{‘ holds, we all have

tann =

ok cosak — ainagk cosak
= w|sine; cose; — sing; cospy|

a12<l+1 < maX{oz k}

Fig. 4. Chord tangent angle at an inflection edge.
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Similarly, we have;ﬁ’”rl max{a /3"} for the inflection edg@l lpk It is clear that the above bound fﬁag+ and

p4 Tt also holds when* or u vanishes.

(2.3) The bound of new chord tangent angles

If p{_,p} andpf pt , are two inflection edges with one common inflexion after some subdivision, it can be easily
verified that vertexep4™,, p¥ andp5"%; are on aline. Then botpj;H anda’z‘jfl are zero.

Assume tha{v" is not an inflexion, two abutting edg¢:¢_1p, and pl Pz+1 are among the following three cases,
convex and convex, convex and inflection, or convex and Stl’algh]f.ilfpl and pf.‘ pf.‘ 41 are two convex edges we
have

K+l k+1 k+1 | =k+1
By = 2111— (/3+ + 2:11) (1—kaSa)maX{“zk’ ik’aszrl’:Berl} (1 — worsa)b-

If one of these two edges is a convex edge and the other one is an inflection edge, we have
_ 1
5k+1 15;111 (/3k+1 + 12{1++11) (1 - éw/’ksa>9k

If p¥ 4 p¥ or p¥pk., is a straight edge, we havg;'}; = a@5!Y < (1— wporsa)6s or B;
(3) Convergence of chord tangent angles
By summarlzmg steps (1) and (2), we can conclude that for arbltrarwgf+1 < b and B;

=maxr}, 1 — Jwpksa}. Then, we have

AL = AT < (1 — wprsa)bk.

k+1 _ 0, Where

Ok+1 < ribk.

When we choose @ w < w; Cos%, we hav&,iL < 1. Consequently, we havge < 1 andd;1 < 6;. Since the sequence

O, (k=0,1,...)is decreasing, we can conclude that ' f" > cos@osg‘—(;% for k > 0. To find the lower bound ody,
we should also compute a lower bound forgin ; or sinyy; in advance. From the geometry of local displacement
vector we have
_ llof | : wlifng_ g+ pingll
ga el = = Sinypi—1—————— =Sinyz_ -1

SinBy
| pm — Pi_j_” | pm — ,'_1”

. . 1- sk
< smyz,-_l(w sinaf + Lwsing! ) sinyo;_1— 7 Y sine;.
i z
k1 B
As illustrated in step (1), sﬁzJr 1> 2% sin g'ml, then we have

ak+1
B w sing;
sin———= o < SII’]yz, 1— k —

l

Assume thatn is a properly selected number such tHﬁf‘“—‘)" <1 for0< w < w,. From Eq. (8) we havélgfll <
2"y9;_1. On another hand (see Fig. kl“l + yoi—1 = szl._lpmpi j - ﬂf 7 — 6. Then we havern;_1 >

si1(% — 0k) > 71 (% — 60). In a similar way we havey; > 51+ (5 — 6). Now, we obtain one lower bound of
pk(k=0,1,...) as

% — 6o sindo

2" +1 6p

With lower bound ofo,, we have upper bound of as

_ w 1
re<rF=maxy ———,1— -wps, {.
ws COSYy 2 =

Pk = p = COSpsin

Because < 1, then we have

lim 6, =0.

k— 00
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To investigate the limit of;, we compute the limit oﬁkl and py, respectively. Based on lim. o 6y = 0, we
have lim_ e rf = +-. To compute the limit ofoy, we first reformulatey; 1 = % — paty - o, wherepf =7 —
L& pwpk. Itis clear that-a < ¢f < ¥, and then lim_.« ¢f = 0. On another hand, sfi§,™, < % sin6y which

implies that Iin}ﬁoo/élz‘ltll = 0. With these two limits, we have lim,  y2i—-1 = % and lim_. o pox = 1. Now, we

have

. w 1
lim rp=max{ —,1— —ws, {.
k—00 Wy 2

The theorem is proven.O

It should be pointed out that the proof of Theorem 2 is conservative. In fact, we can clhoese, such that
lim;_ oo rx < 1 for subdivision curve generation. For the purpose of clarity, we assuméthat »6;, with r <1 in
the following text.

Theorem 3. If ¢, < sf <1-¢ and 0 < w < wycoS7, then the normal based subdivision scheme defined by
Egs.(1)—(4)converges and the limit curve & smooth.

Proof. To prove this theorem we address three main points: (a) any polygon sequence generated by normal base
subdivision converges to a continuous limit curve; (b) tangent at each point on the limit curve exists; (c) the tangent
line for the limit curve is continuous.

Let I, be the polygon afterth subdivision, we compute the distanfiebetween; 1 andly. Let pgfr_ll be a new
added vertex corresponding to edn_zfe_lpf, then we have

k+1 k

| P ap5th ) < I pioapm| + || = [ pioapm] + w]2ni_q + puinf]

<stllpf = pial +wlpf = pia|[sf sinaf + (1 sF) sing;]
<[ = pi-aflsf + wsingy).

From Theorem 2, we have lim , 6y = 0, then the coefficienstf + wsind; will be less than 1 after finite times of
subdivision. Because, < s¥ < 1—g;, we have lim_ || p¥ — p¥_, |l = 0. Consequently, we havg* — p* I <L,
whereL is a positive constant. Now, the distance frp§y™; to the edgept , p¥ can be computed as

k k k k k
df = w|A; coso + 1} COSpy |

<w| pf = pf_y| (sF sinat cosaf + (1 — sF) singf cospr)
o1
<wpf = plaf sin (e + Bf) < Lok

Let d; = max d{‘, we haved; < L6 < rfL6p. This means that the polygon sequeriég} is a Cauchy sequence
and this sequence of polygons converge uniformly. Since each polygon is a piecewise linear curve, the limit curve is
continuous.

Because al]pfs are densely lying on the limit curve, we should just prove that the tangent a';uéabhsts. To
prove the existence of tangent Iinepéﬁ, we will prove that for any points approachim@ on the limit curve, the lines
connecting these points y;d‘ converge. Without loss of generality, we prove that the line connept,’.im;nd any point
on the right side Ofolk converges, and the left case can be proved in a similar way. Moreover, it can be easily verified
that if two sets of lines connecting points on either sid@lbtonverge, they will converge to a same limit line. As to
the convergence problem on the right side, we address it in two steps: firstly, we will show that a sequence of selecte
lines pfp’z‘f;il (I > 0) converge; secondly, we will prove that any line connecy’uﬁgo other point on the limit curve
converges to the same limit line.
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Notice thatp} = p™* = p&i?=.. it can be easily verified thaty, 1", is a new vertex added corresponding to
edgepf.‘plz‘f:fl. Recalling proof of Theorem 2, the angi§’, = £p4tt p¥pk. | satisfies

2 - - w
k+1 o 2kl ;
;ﬂ2i+1 <SinByl; < —— Sinb,

i+1
ak+1 _x_ w Skl _ kAL kK

t_hen vl/e haves," < ctk, wherec = 7 e In the same way, Ie;@z,ﬂl.+1 = szHlH_lpl. Poliyqr then we have

Bytitly < O < cbr! (1=0,1,...). So linespf pi'l, (1=0,1,...) form a Cauchy sequence and the limit line

exists wheri goes to infinity. AssuméVik be the limit line of the sequence, we then prove that any line connepl’fing

and a point betweep’z‘lflﬁ1 andp;" | approacheg;* too whenl goes to infinity. Assume?3 be an arbitrary point

kH+1 K+ on the limit curve, it may be reached or approximated with arbitrary closeness by

a1t Andpyi

lying betweenp

repeated subdivision. Let; = £pg5 pf p5+! |, then we have
K+ ko ke KHA+2 kAL ket _ Akl | gktl+2
wk,l g ZP21+1H_1P1' p2’i+l + Zp2]+2i+3p21+1[+1p21i+1 +--= ’BZHlH-l + ’32H2i+l —+ ..
cOr
<c€k(rl+rl+1+-~~)=1 rl.
—r

Consequently, we have lim ¥ ; = 0. This implies that the Iin@fp,?ol approacheg_ik too, andTik is just the
tangent line ay:f‘ on the limit curve.

Let ¢* be the chord tangent angle betwehand p¥ p¥;, we have

k k+1 ko k k+2 ko k+l kAL ko ket
b S LPoaPiPiyat LPp aPi Poiya T LDy g Pi Py g T

cOr
1—r
Similarly, the angle between the tangeftt ; at pf, with pf‘_pl’.ﬂrl is bounded by;<;6; too. Assume thal’* also
denotes the unit tangent directiony#t, then we have{ T, | — T¥|| < £6,. Let T2 be the unit tangent vector afS
which is lying bgtweerpg,t’lfll and p5*' | on the limit curve, we compute the bound i — 7,5 | by repeated
subdivision again. Then we have

2312(11114_13_[2(24;_2‘_1—’_"'+B]2{lt€.;‘:]__1+”'<cek(1+r+"'+rl+“'):

” Tik _ chf? ” < ” Tik _ T2]§+l+1 ” + ” Tk+l+1 _ 7‘~215+l+2 ” 4.

+1i41 2+l 41 +2i4+3
B Ostst+Oarizt ) < — g
< 77— (Ok+i+1 k+l+2 T ) < 5 Ukl
1—p ot H (1-r)?

From this inequality, we have lim || Ti" — ka‘;|| = 0. This means that for any poipf’; approaching)l{‘, the tangent

line 7, approacheg} too. So, the limit curve i smooth.
This proves the theorem.o

From Theorem 3 we see that any closed curve obtained by normal based subdivision sciérseioth. For
open polygons, we choose fixed normals at the ends for the subdivision and the limit curves are convergent and smoc
at the end points too. From the proofs of Theorems 2 and 3 we can see that the fixed normals at selected vertexes v
be interpolated.

Coradllary. Let pl0 be a vertex of the original control polygon anﬁ be the fixed normal at the vertex, then the normal
vectorn? as well as the position qf? will be interpolated by the normal based subdivision curve.

4. Shape preserving subdivision
As analyzed in Section 3, normal based subdivision scheme is an efficient method for smooth curve generation. |

this section we present subdivision scheme for shape preserving interpolation with explicit choices of the subdivisiol
parameters.
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By a shape preserving subdivision scheme, total number of inflexions defined by the initial polygon as well as the
normals at initial vertexes will be kept and the straight edges along the initial control polygon will be preserved too.
In this paper we define straight edges just when three consecutive vertexes are on a line on the initial control polygon
If two neighboring straight edges intersect at a vertex, this vertex will be dealt as a sharp corner and the initial control
polygon can just be divided into two polygons at the corner for shape preserving interpolation. In the following text
we assume that there is no sharp corner within the initial control polygon.

Explicit scheme for shape preserving subdivision depends on two aspects, normal computation and parameter st
lection. Except for those vertexes with fixed normals, we compute the vertex normals for the initial and all intermediate
polygons using the normal formula introduced in Section 2. The normal for vertexes on a straight edge is computed
as the normal of the line, and this normal will be dealt as a fixed normal during the following subdivision process.

With the normals at all vertexes properly defined, we should then choose the free parameters explicitly for shape
preserving interpolation. Letf andg* be the chord tangent angles of the egge, p¥ at p¥_, and p¥, respectively,
we pick the subdivision parameter for the edde, p} as

singf
s{‘ = iina,’.‘+sinﬁi"’
e
With the subdivision parameters chosen above, we have a shape preserving interpolation algorithm immediately.

convex edge )

otherwise

Theorem 4. For an initial control polygon without sharp corner and with all initial vertex normals properly defined,
if we choose the subdivision parameter using &, then forO < w < 0.5 the normal based subdivision curves are
shape preserving ané! smooth.

Proof. The proof of the smoothness of the limit curves for Theorem 4 is similar to that of Theorems 2 and 3. Because
the choices of the subdivision parameters for convex edges within these theorems are different, we derive the rang
for w by computing the bounds fgis %, andast* again.

In a similar way as the proof of Theorem 2 and from Eq. (9), we have

L g (B4l o esEo o
singy" =sinyy-1————— < wsiny; + ——wsing; < 2w sina;,
| pm — p,',l” S;
and
k+1 llof | ok
sinay,"™ = sinyy ————— < 2wsing;".
lpm — pill
Then we havegs™ < 2wa* andas™ < 2wk when 0< w < 0.5. So, the upper bound for chord tangent angles at

k+1

new vertexp,,; can be computed as

Bt =ab == (ﬁéﬁlﬁ‘éfl) 2w max{ef, Bf}.

With this bound and in a same way as the proof of Theorem 3, we can conclude that the normal based subdivisior
curves areG! smooth for 0< w < 0.5.

Within the rest of this proof we address the shape preserving property of the subdivision scheme. To prove that
the subdivision curve is shape preserving, we should then prove that straight edges will be preserved and no mor
inflexions will be introduced after each time of subdivision.

If p¥_, p¥is astraight edge, the normal vectofs , atp¥ , andn¥ atp} are both perpendicular to the edgfe , p*.

From Eqg. (3), the displacement vecidrvanishes. Then the new added vergx”; corresponding teX , p¥ is just

the midpoint of the edge. On another hand, the normal vectors corresponding to straight edges are kept unchange
and the normal vector at new added vertex is perpendicular to the edge too. Then initial local straight lines will be
preserved during the subdivision.

If p¥_,p¥ is a convex edge, we choose the subdivision paramgtas in Eqg. (9). From Egs. (5) and (6) we have

Ak = uk. Then, the displacement vectof is parallel to the bisector of the angle formed My:* | and ufn* (see
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k+1

k
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k Y
Pia N / k
T % ;
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Fig. 5. Shape preserving subdivision for convex edges.

Fig. 5). For O< w < 0.5, the new verte>p’2‘itll lies within the triangle formed by the tangent Iiiirléfl at the vertex

pk_,, the tangent ling’} at p¥ and the edge! , p%. In casep?_, p¥ is an inflection edge, from Theorem 1, the new

vertex p5™ lies within the angle between the edgg , p¥ and the tangent lin@/ ; at p¥_; whena! > ¥ > 0 or

within the angle between the edgép’ , and the tangent ling* at p* for 0 < of < ¥ (see Fig. 3).

l
k ki kiq i ; +1  k+1
Assume thap;_, p; is a convex edge and none pl’f_l or p; is inflexion, then new added vertexpg_ » Do 1

and chordsp¥_,p¥ ;, pk_ pk all lie at one side to the tangent lifé | at p¥ ;. Vertexesps;, p5h and chords

~ : - [ =y Vi RS
pE_1pF. pfpk, 4 lie at one side to the tangent lirfé at p¥ too. Then, the local polygops, ™ p5:t% p5, p5Hp5th

is convex. After the definition or redefinition of normal vectorp§t™,, p5% andps*?, respectively, the new edges

pathpsth and phtt ph 1 are two convex edges. Similarly, i, p is an inflection edge with* # g%, then it will

be replaced by one convex edge and one new inflection edge after a subdivision.
If p¥_,pkis an inflection edge witkeX equal to¥, we havepst’, = 1(p¥ | + p¥) and then the edge will be

replaced by two inflection edges with one common inflexion after a subdivision. In this case, the vpf;qxqé‘

andpéltll are on a line and the polygon is local symmetric with respect to the vpfteWith simple calculation, we

can see that the inflexion will be preserved during the subdivision.
From the above analysis, the number of inflexions implied by the original control polygon does not increase aftel
each time of subdivision. The theorem is proveim

Though shape preserving subdivision curves can be generated by choosing adaptive subdivision parameters |
all edges, due to the fixed tension parametefor every subdivision step, the curves are sometimes not fair. To
obtain a shape preserving as well as fair subdivision curve, we should determine the tension parameter for eve
edge adaptively. For practical computation, we scale the displacement vectors for convex edges adaptively, and tl
displacement vectors for inflection edges or straight edges are still defined as in Eq. (4).

Let vf be the displacement vector defined by Eq. (3) for a convex edge, we compute the scaling factor for the
displacement vector according to the criterion that local circular arc will be reproduced provided that the end vertexe
and normals at the ends of the edge are sampled from an arc. For a givepf_egg(ia we define

1+cosak 0¥

k
= { _1 Ml convex edge
1, otherwise

and

L+cosp; |17’

k
; _{ 1wl convex edge
L=
1, otherwise

Now, we choose the scaling factor for the displacement ve¢tast = min{z,, 7} and the new vertex corresponding
to the edgepf_, p¥ can be defined

k+1 k\ k k k k
p2i+—1 = (1— s; )Pifl + 87 p; + ;. (10)
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From the definition of; andz,,, if pl’.‘_lpf is a convex edge, we have
|2K] Ak

<t < —— < L,
k k k
il ving_yq

and
ok

<lu < — < —.
k k. k
||vl.|| vn;

With these two inequalities, we haye® - n | < [A¥| and|rv¥ - n¥| < |¥] which imply that the scaled displacement
vector rvf lies under the tangent lineg* | at p¥ , and 7* at p¥, simultaneously. Then, the subdivision scheme
defined by Egs. (9) and (10) is a shape preserving subdivision scheme for plane curve modelling. In the following
text we refer this scheme as shape preserving subdivision scheme. Moreover, this scheme can be used for circular a
generation provided that the boundary data are properly defined.

Theorem 5. Let p?_, p? be a convex edge on the original control polygon with fixed end nonfhgland? at p? ,
and p?, respectively, it is equal tog?, the subdivision curve defined by E(®) and (10)is a circular arc.

Proof. Whenp? , p? is a convex edge ang is equal tog?, from Egs (5), (6) and (9) we haw€ = 0.5 and.? = 1.0
Furthermore, the displacement vect(?ris perpendicular to the edgél)_lp? andr, =1, for the edge. Then, the

. . | l_,(-) — /1 0 .0
scaling factor for the displacement vectdris t = Troosd o0 Lety = /Zp5,_,p;_1p;» then we have
ol 1 29 1 a?

tan

0 i
= = = Sine; =tan—-.

1p? = pmll 1+cosa) lp — pml  1+cosa) 2

0

Because 0< y < %, we havey = . If we fix the normaln?_, at p? ;, n? at p? and compute the normak; ; at
p3._4 as paralleling the bisector @fp? , p. , p}, then the chord tangent angle} _,, B3 _;, 3 andp}, are equal
with each other after one time of subdivision. When new vertexes have been computed and added repeatedly, the lim
curve is an interpolating circular arc.O

For general type of data, the shape preserving subdivision scheme can also be used for smooth curve generatio
In a similar way as the proofs of Theorems 3 and 4, we have the following theorem.

Theorem 6. The subdivision scheme defined by Eds. (9) and (10) is a shape preserving subdivision scheme, and
for 0 < w < 0.5 the limit curves generated by this scheme @fesmooth.

From Eq. (10), we can see that a new added vep@}&l will be independent of the parameterwhen pll.‘_lplk
is a convex edge. So, one can choose any 0 for an initial local convex control polygon. To control the shape
of the subdivision curve, usually the first few steps of the subdivision, we can compute $oaleq. (10) as =
min{1, 1, t,}. We will illustrate the influence of this scale by the fourth example in next section.

Remark 7. SupposepfC be a vertex added corresponding to an inflection edge, it is then always close to the edge
pi_1p¥, 1. When we compute the normafl at p} as paralleling the bisector dfp!_, pf p¥, ;, the chord tangent angle

BF oraf,, is much less than! or g%, ;. From Eq. (9) s} andsf, ; will be close to zero or 1 for the edg¢_, pf and
plkplk_l_l, and then new vertexqzéf_ll and p’gjrll will be close to the initial inflection edge. Though the subdivision
curve is smooth in the end, but it is always flat betweépl and pf.‘+l. To increase the fairness of the subdivision

curve near the inflection edge we can modify the normal vectpf‘ dor the following subdivision.

Let
k k
_ PiriTPia
€a="1"7% 3
||Pi+1 - Pi_1||
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and
_ i+
o ””{11 + ”{'(H” ’
then we have the reflection vectorgf with respect to a line perpendiculardg as
ny=ng, — 2(ngqey)eq.

Now, the modified normal vector at* can be defined a&f = (n* + n,)/|n* + n,||. With ¥ as the new normal at

pf . either p¥ will become an inflexion itself or one and only one of the egde, p¥ or pf pf, ; is an inflection edge.

Then the subdivision is still shape preserving with this modification. On another hand, the upper bound for new chort
tangent angles atf can be estimated @&’ + 28} + B 1)/2+2p5) /2= (o + B, 1) + 3% Becauses! is always

much less thanf‘ or ,3[."+1 Whenpl’.‘ is an inflexion or a vertex added corresponding to an inflection edge, then we can
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Fig. 6. Curve interpolation by normal based subdivision scheme: (a) with ramﬁl(emto.zs, 0.75]; (b) with fixeds{‘ = 0.5; (c) shape preserving
subdivision.
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believe that the maximum chord tangent arglevill not be influenced by the normal modification at inflexions. In
fact, this modification has made subdivision more uniform and the final subdivision curve more fair than by a simple
shape preserving scheme.

5. Examples

In this section we present several interesting examples for smooth plane curve design or shape preserving interpc
lation by normal based subdivision scheme. To illustrate the quality of a subdivision curve more clearly, we compute
and plot the discrete curvatures along with the curve after finite times of subdivision.

In the first example we compute subdivision curves with an S-shaped control polygon. With normal vectors at
initial vertexes properly defined, there exists one inflection edge within the control polygon. Three curves are defined
interpolating all the initial control points. We construct the first subdivision curve by choosing the subdivision para-
meterSvf randomly within the interva{0.25, 0.75) and settingw = 0.25 for all steps of subdivision (see Fig. 6(a)).
When we choosef‘ as a constant 0.5 and set= 0.25 again we obtain another subdivision curve (Fig. 6(b)). From
the figures we can also see that both of these two curves are smooth, however, neither of them is shape preservin
By using the subdivision scheme proposed in Section 4, we obtain a shape preserving subdivision curve Qv3h
(Fig. 6(c)).

The second example is concerned about shape preserving interpolation of a planar closed polygon with nonuniforn
control points. Both the lengths of edges and the turning angles of the original control polygon are non-uniform and
changing rapidly (see Fig. 7). We choase= 0.4 for this example, and obtain a shape preserving subdivision curve
with natural shape after 5 times of subdivision. From the figure we can see that the subdivision is nonuniform too, but
the limit curve seems piecewise fair.

In the third example we design a bottle like shape by shape preserving subdivision scheme. Three straight line
segments are defined within the original control polygon (see Fig. 8(a)). As the normal vectors for the vertexes on
straight edges are fixed during the subdivision, the curve segments connecting these three lines have fixed bounda
normals. In fact, the connecting segments are circular arcs in this example. As a result, the interpolating subdivision
curve is not only shape preserving, but alsb smooth along the whole curve with straight lines and circular arcs
imbedded (see Fig. 8(b)).

In the fourth example we interpolate a star shape polygon by shape preserving subdivision curves with various
tensions. The initial control polygon is local convex and there is no inflection edge within the polygon. As discussed
in Section 4, the tensiow can be picked in an even larger range. This example also shows tbah be used to
adjust the fullness of the subdivision curve.

Fig. 7. (a) Shape preserving interpolation of a closed polygon with nonuniform control points; (b) zoom in of the curve near the top right control
vertex.
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(a) (b)

Fig. 9. Shape preserving interpolation of a local convex polygony(&)0.3; (b) w = 0.5; (¢) w = 0.7; (d) w = 0.9.
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Table 1

The maximum chord tangent angles and the convergence ratios after each subdivision

k 0 1 2 3 4 5

S(a) 0615712 0424489 0265348 0183638 0124351 0061576
0.689383 0625099 0692067 0677155 0495177

S(b) 0615712 0417069 0274952 0174585 0106985 0063631
0.677332 0659249 0634964 0612796 0594766

S(c) 0615712 0318427 0160222 0080186 0040098 0020049
0.517136 0503166 0500468 0500063 0500008

close plyg 1336695 1063081 0594761 0306461 0154072 0077097
0.795306 0559469 0515268 0502744 0500400

bottle Q0785398 0427510 0217122 0108838 0054438 0027220
0.544322 0507876 0501275 0500178 0500023

star(b) 1256637 0970793 0537907 0275958 0138604 0069347
0.772532 0554091 0513021 0502265 0500326

Finally, we present the maximum chord tangent angles and the convergence ratios of the chord tangent angle
after each subdivision for above mentioned examples (see Table 1). From the table, we can see that the maximur
chord tangent angle% decrees rapidly for normal based subdivision scheme. Except for the example with random
subdivision paramete(‘, the convergence ratiog also converge monotonically.

6. Conclusions

A new subdivision scheme, normal based subdivision scheme, has been introduced for curve interpolation. The
main feature of this scheme is that displacement vector for every new vertex is given as a linear combination of
normal vectors at old vertexes. With proper choices of the subdivision parameters, the limit curgésareoth.

Because new vertexes depend on normal vectors at old vertexes, the normal vectors at selected vertexes can
interpolated by this new subdivision scheme. By this scheme, shape preserving interpolation of plane curves ha:
been reduced to the computation of a set of proper subdivision parameters. Straight lines and circular arcs can b
generated along with the subdivision under properly defined initial conditions. The experimental examples also show
the efficiency of normal based subdivision scheme.

One interesting future topic about normal based subdivision is how to construct curvature continuous subdivision
curves. The normal based subdivision scheme can be generalized for surface interpolation of meshes directly (Yanc
2005), but how to design shape preserving subdivision schemes for other types of data such as space curve interpol
tion or surface interpolation deserve further study in the future.
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