Shape aware normal interpolation for
curved surface shading from polyhedral

approximation

Xunnian Yang & Jianmin Zheng

The Visual Computer

International Journal of Computer ® Valime 20

Graphics The ‘ ; Number 3
lsu March 2013

ISSN 0178-2789

Volume 29]-a

Vis Comput (2013) 29:189-201 International Journal of Computer Graphics

DOI 10.1007/s00371-012-0715-y

@ Springer 3

@ Springer

Your article is protected by copyright and

all rights are held exclusively by Springer-
Verlag. This e-offprint is for personal use only
and shall not be self-archived in electronic
repositories. If you wish to self-archive your
work, please use the accepted author’s
version for posting to your own website or
your institution’s repository. You may further
deposit the accepted author’s version on a
funder’s repository at a funder’s request,
provided it is not made publicly available until
12 months after publication.

@ Springer

Vis Comput (2013) 29:189-201
DOI 10.1007/s00371-012-0715-y

ORIGINAL ARTICLE

Shape aware normal interpolation for curved surface shading

from polyhedral approximation

Xunnian Yang - Jianmin Zheng

Published online: 28 April 2012
© Springer-Verlag 2012

Abstract Independent interpolation of local surface patches
and local normal patches is an efficient way for fast ren-
dering of smooth curved surfaces from rough polyhedral
meshes. However, the independently interpolating normals
may deviate greatly from the analytical normals of local in-
terpolating surfaces, and the normal deviation may cause se-
vere rendering defects when the surface is shaded using the
interpolating normals. In this paper we propose two novel
normal interpolation schemes along with interpolation of
cubic Bézier triangles for rendering curved surfaces from
rough triangular meshes. Firstly, the interpolating normal is
computed by a Gregory normal patch to each Bézier trian-
gle by a new definition of quadratic normal functions along
cubic space curves. Secondly, the interpolating normal is ob-
tained by blending side-vertex normal functions along side-
vertex parametric curves of the interpolating Bézier surface.
The normal patches by these two methods can not only in-
terpolate given normals at vertices or boundaries of a trian-
gle but also match the shape of the local interpolating sur-
face very well. As a result, more realistic shading results
are obtained by either of the two new normal interpolation
schemes than by the traditional quadratic normal interpola-
tion method for rendering rough triangular meshes.

This work is supported by NNSF of China grant (60970077)
and the ARC 9/09 Grant (MOE2008-T2-1-075) of Singapore.

X. Yang (X))

Department of Mathematics, Zhejiang University, Hangzhou,
China

e-mail: yxn@zju.edu.cn

J. Zheng

School of Computer Engineering, Nanyang Technological
University, Singapore, Singapore

e-mail: ASJMZheng @ntu.edu.sg

Keywords Surface rendering - Triangular meshes -
Gregory normal interpolation - Side-vertex normal
interpolation

1 Introduction

In computer graphics rough triangular meshes have been
widely used for the approximate representation of curved
surfaces. Even though meshes can be used to approximate
some smooth surfaces efficiently, flat shaded meshes have
severe visual defects due to rough contours and discontinu-
ous normal vectors for the triangles. To obtain realistic ren-
dering results of curved surfaces represented by meshes, the
curved geometry should be reconstructed, and the normal
vectors of the surface should be interpolated properly.

Interpolation of a triangular mesh by a set of smoothly
joined surface patches has been studied extensively in past
few decades. Many literatures deal with parametric surface
interpolation of triangle meshes with tangent plane or even
higher order of continuity; see, for example [1-6] and refer-
ences therein. Smooth surface interpolation plays an impor-
tant role for geometric modeling. However, the construction
of smooth surfaces from initial triangular meshes with arbi-
trary topology is usually very costly. It needs at least quartic
surface patches to fill a triangular mesh with G! continu-
ity. When lower order surface patches are used, triangles
should then be subdivided into smaller ones. The determi-
nation of too many free parameters for high-order surface
patches or subdivision of triangular meshes may arouse ad-
ditional complexity or inefficiency for surface rendering.

A feasible way to render meshes with high speed as
well as visually smooth quality is defining the geometry
and surface normals separately [7, 8]. The sharp contour

@ Springer

mailto:yxn@zju.edu.cn
mailto:ASJMZheng@ntu.edu.sg

190

X. Yang, J. Zheng

of a triangular mesh can be made smooth by local inter-
polation of low-order surface patches [8, 9] or tessellating
triangles adaptively with local interpolating curves or sur-
faces [10, 11]. These local operations have the advantages of
simplicity and low computational costs for contour smooth-
ing, but the tangent planes for adjacent quadric or cubic sur-
face patches may not be tangent continuous across the join-
ing edges. Even though, one can still obtain visually smooth
rendering results using continuous normals which are inter-
polated independently from the surface patches. For fast and
realistic rendering purpose, the interpolating normals should
satisfy the following requirements:

1. The interpolating normals should be continuous all over
the surface, and they can hide the discontinuity of analyt-
ical normals of local interpolating surfaces.

2. The interpolating normals should coincide with the con-
tour of the input mesh well, or they should approxi-
mate the analytical normals of local interpolating sur-
faces closely.

3. The interpolating normals should be constructed locally
and simply. This rule can guarantee the efficiency and
hardware implementation of normal interpolation algo-
rithms.

1.1 Our approach

In this paper we present two novel methods for normal inter-
polation for curved surface shading along with local surface
interpolation to triangular meshes. For a triangular mesh
with given or estimated normal vectors at vertices, we in-
terpolate every triangle by a cubic Bézier triangle which
matches normal vectors at vertices too. As suggested in [8],
cubic Bézier surfaces can be used to smooth mesh contours
efficiently even though adjacent surface patches have only
C° continuity in general.

Along with local interpolation of cubic Bézier triangles,
independent normal vectors will be evaluated. The proposed
normal interpolation methods are based on normal computa-
tion along cubic Bézier curves in space. A quadratic normal
function along a cubic Bézier curve in space is obtained by
transforming the control vectors of the tangent curve. When
the normal curves along all boundary edges are obtained,
the normal vector to any point in the interior of a triangle is
obtained by a quadratic Gregory normal patch. This type of
interpolating normals can also be blended with the analytical
normals of the cubic Bézier patch. Another way to interpo-
late normal vector to any interior point in the triangle is by
blending the side-vertex normal functions that are computed
by three side-vertex parametric curves of the Bézier patch.
Just like surface interpolation by the side-vertex method [2],
the smoothness of normal patch by the side-vertex interpo-
lation scheme will be improved further when the end deriva-
tives of side-vertex normal functions have been set properly.

@ Springer

1.2 Overview

In Sect. 2 we review previous methods on normal interpola-
tion. The construction of cubic Bézier patches that interpo-
late vertices and normals of triangles will be given in Sect. 3.
We present formulae for Gregory normal interpolation and
side-vertex normal interpolation in Sect. 4. The complexities
of our proposed normal interpolation schemes are analyzed
in Sect. 5. Examples and comparisons with some known
methods are presented in Sect. 6. Section 7 concludes the

paper.

2 Previous work

When rendering a polyhedral surface, Phong [12] first pro-
posed to calculate intensity for each point/pixel by an illu-
mination model using linearly interpolated normal vectors.
The interpolating normals can be used to generate more re-
alistic shading results than direct interpolation of intensities;
see [13] for a comparison. However, surface shading by lin-
ear interpolation of normal vectors still suffers defects like
mach bands. Instead of linearly interpolation of normal vec-
tors, van Overveld and Wyvill [7] proposed to interpolate
a quadratic normal function along a straight edge when the
unit normal vectors at two ends are given. The coefficients of
the normal function are obtained by the interpolation condi-
tion together with the minimization of a fairness functional.
The quadratic normals can generate more realistic shading
results than normals by linear interpolation. As pointed out
in [14], this method may suffer unnecessary highlights for
convex edges when the normal vectors at two ends are not
symmetric.

Based on quadratic normal interpolation at boundary
edges, Vlachos et al. [8] defined a quadratic normal function
for the normal component of a so-called PN triangle. The in-
dependent normal components of PN triangles can generate
visually smooth shading results for adjacent Bézier trian-
gles which are joined with only position continuity. How-
ever, the quadratic normals may not coincide with the shape
of local interpolating surfaces very well when the input nor-
mals at triangle vertices deviate from the facet normals con-
siderably. The idea of PN triangles has also been extended
to higher-order rational interpolating surfaces [15] or scalar
tagged normal vectors [16]. However, these extensions still
interpolate normal vectors based on selected boundary nor-
mals, and the same defect remains unresolved.

Recently, there are increasing interests in rendering sub-
division surfaces with substitutes of local surface
patches [17]. Boubekeur et al. [18] interpolated both sam-
pled points and normals by quadratic patches. The geome-
try of a Catmull-Clark surface can be approximated by ei-
ther bicubic surface patches or Gregory surface patches, and

Shape aware normal interpolation for curved surface shading from polyhedral approximation 191

then the normal vectors are defined by independent normal
patches [19, 20]. Li et al. [21] proposed to approximate Loop
subdivision surfaces by quartic triangular Bézier patches
and render the surfaces using independent quartic normal
patches too. These interpolating surface patches and normal
patches match the geometry and normals of the original sur-
face well, and in case the subdivision surface happens to a
B-spline surface they can reduce to the geometry or normal
vectors of the B-spline surface. However, the derivation of
approximating surfaces and interpolating normals depends
on the exact surface points and their derivatives. These meth-
ods cannot be extended to render a general polyhedral sur-
face.

Besides contour smoothing and normal interpolation us-
ing local surface patches, Alexa and Boubekeur [22] pro-
posed subdivision shading technique to calculate indepen-
dent normal vectors for subdivision surface rendering. This
method produces more visually smooth results for render-
ing (especially interpolatory) subdivision surfaces than us-
ing the analytical normals of the subdivision surfaces them-
selves. The requirements of topology information for normal
subdivision may prevent it from being an efficient method
for fast rendering as compared with local interpolating sur-
face patches.

3 Curved triangle construction

In this section we briefly introduce local surface interpola-
tion by cubic Bézier triangles. Surface interpolation is an es-
sential step for contour smoothing for realistic surface shad-
ing, and it serves as a basis for our proposed normal inter-
polation schemes too.

For a triangular mesh, we assume that the unit normal
vectors at mesh vertices are already given. If only triangular
meshes are known, vertex normals should be estimated by
averaging facet normals, for example, by the method pro-
posed in [23]. For a triangular mesh equipped with unit nor-
mal vectors at vertices, there are many different ways to in-
terpolate the triangles by piecewise smooth surfaces. Among
all these surfaces, the cubic Bézier triangle is a simple but
efficient surface form to interpolate the vertices and the ver-
tex normals of any triangle. Cubic Bézier triangles are low-
order surface patches that can represent convex surfaces as
well as surfaces with inflections. Together with a continuous
normal field, cubic Bézier triangles can be used as efficient
tools for surface contour smoothing [8].

Assume that p;, p2, and p3 are the three vertices of a
triangle, and n, ny, and n3 are the unit normal vectors cor-
responding to these three vertices, respectively. Any point p
within the triangle can then be represented as a linear com-
bination of vertices like p = wp; + up2 + vp3, where u > 0,
v>0and w =1—u —v > 0 are the barycentric coordinates

[”
boao=Ps
b1
X b1z
/ by
by
/ X b2

n
' D102 b n,
\ /
b003=p1 b300=p2

Fig. 1 Control points for a cubic triangular Bézier patch

of the point. A cubic triangular Bézier patch defined on the
domain of the triangle has the form

|

b, v.w)= > bi-’kiziikz”l”]wk’ (1)

it j+k=3
where b; ;. are the control points of the surface patch. The
mesh formed by these control points is the control mesh of
the surface (Fig. 1). For notational simplicity, a Bézier trian-
gle b(u, v, | —u —v) is also written as b(u, v). For a Bézier
triangle, the analytical normal vector of the surface can be
evaluated as follows:

by (u,v) x by(u,v)
~ by, v) x by(u, V)|

According to the properties of Bézier triangles [24], the
three corner control points are interpolated by the Bézier
surface, and the tangent planes through three corners are just
determined by control points neighboring to respective cor-
ners. Then, the boundary control points for a cubic Bézier
triangle which interpolates vertices and normals of a given
flat triangle can be obtained from the interpolation condi-
tions directly. As suggested in [8], the boundary control
points of an interpolating Bézier triangle can be obtained by
projecting trisection points of triangle edges onto the tangent
planes through three corners. It yields

np;

boos =p1, bz =p2, bozo =p3.

bio2 = (2p1 + p2 — w12m1)/3,

bao1 = (2p2 + p1 — w21m2)/3,

baio = (2p2 + p3 — w23m2) /3,

bi20 = (2p3 + p2 — w32m3)/3,

boi2 = (2p1 + p3 — w13n1)/3,

bo21 = (2p3 + p1 — w31m3)/3,

where w;; = (pj —pi) -m; fori,j € {1,2,3} and i # j.
When all boundary control points are obtained, the center
control point by1; can be computed by

bi11 = (b1o2 + b2o1 + b21o + b2 + bo12 + bp21) /4
— (p1 +p2+p3)/6.

@ Springer

192

X. Yang, J. Zheng

Due to the fact that the boundary control points of an in-
terpolating Bézier triangle are determined only by end ver-
tices and vertex normals of triangle edges, any two Bézier
triangles that interpolate two neighboring triangles will be
joined seamlessly, and all Bézier triangles interpolating the
same corner have a common tangent plane at the point.
However, the normal vectors of two adjacent Bézier trian-
gles are generally not continuous across the joining edges.

To obtain a visually smooth rendering result, Vlochas et
al. [8] also defined an independent normal patch for the sur-
face as

n(u,v) = n1w2 ~|—n2u2 +n3v2 +hjuv +hyvw + hywu,
()

where hy, hy, and h3 are the reflected average end normals
across planes perpendicular to three triangle edges, respec-
tively. The quadratic normals of Eq. (2) are usually smooth
over a whole surface even though they are constructed in-
dependently for each triangle, but they depend entirely on
triangle boundaries, and they may not coincide with the ge-
ometry shape of local interpolating surfaces very well. There
may exist some rendering defects by this kind of normal in-
terpolation.

4 Shape aware normal interpolation

Along with local surface interpolation by cubic triangular
Bézier patches, in this section we present two novel normal
interpolation schemes for rendering curved surfaces from
polyhedral approximations. Based on a new normal inter-
polation method along cubic curves in space, a Gregory nor-
mal patch and a side-vertex normal interpolation technique
are presented or developed in the following.

4.1 Normal vectors along a cubic curve

As a basis for shape aware normal interpolation, we first pro-
pose a new quadratic normal function along a cubic curve in

space. Without loss of generality, we assume that a cubic
curve is represented by

r(t) =roBo3(t) +r1B13() +1r2B23(t) +13B33(1),

where B;3(t) = “g—ii)!ti(l — t)3_i are the Bernstein basis
functions, rg, ry, rp, and r3 are the control points of the
curve. Given two unit normal vectors n; and np at two ends
of the curve, we would compute interpolating normals along
curve r(r) by rotating tangent vectors along the curve.

The derivative or the tangent direction of curve r(¢) with
respect to parameter ¢ can be obtained by %r/) = (1 —
ro)Bo (1) + (r2 — r1) B1,2(¢) + (r3 — r2) B2 2(7), so we de-
fine the normal function along curve r(t) as

n(r) = (r; — o) Bo(r)
4+ (ry —) Bio(t) + (13 — 1) " Boa(0), 3)

where (v)1 means a vector that has equal magnitude but is
perpendicular to vector v. To ensure that the normal function
n(¢) interpolates n; and ny at two ends, the control vectors
for n(t) are computed as follows:

1

(ry —ro)™ = Iry —ro|my,
(=)t =mn, x (r;—ry),
(r3 —)" =|lr3 — r2f|my,
where
_ (r3—rp) x (n +m)

l[(r3 —ro) x (1 +m)|
From the construction process we know that vector (ry —
r 1)J- lies on a plane spanned by vectors r3 —rp and n; +n;.
In particular, n(¢) is just the normal function of curve r(z)
when the curve and two given normal vectors all lie on the
same plane and the normal vectors n; and np also satisfy
(ry —rg)-n;=0and (r3 —rp) -mp =0.

Usually, cubic-curve-based normal vectors match the
contour shapes of triangle meshes much better than the tra-
ditional quadratic normal interpolation proposed in [8]. See

Fig. 2 for a comparison of normal interpolation along a cubic
Bézier curve that interpolates end vertices and end normal

v

(a) (b) (c)

(d) (e) ()

Fig. 2 Normal interpolation along with cubic curve interpolation. (a) and (d) Normals by quadratic normal interpolation; (b) and (e) Normal
interpolation by the cubic curve; (¢) and (f) Interpolating normals with vanishing end derivatives

@ Springer

Shape aware normal interpolation for curved surface shading from polyhedral approximation 193

vectors of an edge. Though the interpolating quadratic nor-
mals change very smoothly along the curve, but they devi-
ate from the curve contour apparently; see Figs. 2(a) and (d).
The interpolating normals by Eq. (3) are the exact curve nor-
mals when the curve lies entirely on a plane; see Figs. 2(b)
and (e).

Even though the interpolating normals by Eq. (3) coin-
cide with the shape of local cubic interpolating curve very
well, the CY continuity of normal vectors at the joint point
between two edges or across the joint edge between two tri-
angles may still be visible when the normals are computed
independently for each edge or each triangle. To overcome
this phenomenon, the interpolating normals should be joined
even more smoothly at the joint points or joint edges. To
achieve such a goal, we propose to compute normal func-
tions that have vanishing derivatives at the ends. Then any
two neighboring normal functions have the same derivative
at the joint point.

Assuming that a quadratic normal function by Eq. (3) has
been represented by

n(t) =doBoo(t) +diB12(t) +daBro(1),

we elevate the degree and update n(¢) a little so that it has
vanishing derivative at ends. By applying the degree eleva-
tion algorithm three times [25] and modifying the control
points, we have

f(r) = do[Bo,s5(t) + B1,5(1)]
+d;[Ba5(1) + B3 s(1)]
dp —dp
+ T[B3,5(l) — By5(1)]

+ o[Bas(1) + Bs 5(1)]. C)
From Eq. (4) we have i’ (0) = n/(1) = 0 immediately.

The difference between n(¢) and n(z) can be computed
as

n(r) — i) = Ay (B1,5(1) — By5(1))
+ Aa(Ba,5(t) — B3 5(1)),
where A| = %(dl —dp)and A = %(dl —dy). Then we have

|n@) —a@)| < max{ll A, 1421} (|B1.5() —

sup

te[0,1]
By 5(1)| + |Bas(t) — Ba5(1)])

<0.3125max{||A], || A2]l}

= 0.125 max{[|d; — dol, ld; — da]}.

This ensures that the difference between the modified nor-
mal with the original one is small and the modified normal
approximates the original one well. See Figs. 2(c) and (f)
for examples of modified normal functions from previously
obtained normal functions by cubic curve interpolation.

4.2 Gregory normal interpolation

For a triangle App2p3 equipped with unit normal vectors
ny, np, and n3 at three vertices, a cubic triangular Bézier
patch b(u, v) can first be constructed to interpolate the trian-
gle for contour smoothing. Simultaneously, the normal vec-
tor to any point on the Bézier patch can be computed by
Gregory normal patch which is constructed using normal
vectors along boundary curves.

It can be easily shown that boundary curves b(1 —¢, ¢, 0),
b(0,1 —¢,1), and b(#,0, 1 — ¢) are all cubic Bézier curves.
By Eq. (3), we have normal vectors to these three curves as

er(t) =m Bo2(t) +hi By 2(t) +n3Br (1), (5)
e(1) =m31Bo2(t) +ho B 2(t) +ni2Br (1), (6)
e3(t) =ny1 By () +h3By () +npBo (1), (7)

where n; 1, n;2, and h; (i =1, 2, 3) are control vectors which
are derived from control polygons of three boundary curves
(Fig. 3). Because the control vectors for e (¢), ex(¢), and
e3(¢) may not be necessarily unit ones, then it is not guaran-
teed that n;; = n;p for i = 1, 2, 3, even though each pair of
normals has the same direction. We define the normal vec-
tor at any interior point of the triangle using Gregory surface
interpolation technique [3]. Let

unp+vnip : 2 2

i = e if u+v-#0,
n; otherwise,
vny1+wnyo : 2 2

PR if v° 4+ w” #0,
n otherwise,
wnz|+unzp : 2 2

iy — i if w”+u” #0,

h n3 otherwise.

The Gregory normal patch is given as

figr = fAyw? + fiou? + fi3v? 4 2hjuv + 2hovw + 2hzwu.

®)
The unit normal corresponding to ng, can just be obtained
— ﬁg"
S Mgr = Mg -

Fig. 3 Computing normals to a Bézier triangle patch from boundary
curves

@ Springer

194

X. Yang, J. Zheng

To match the shape of the interpolating Bézier surface,
we further also compute the unit normal vector ny, of the
surface b(u, v). Then we define the mixed Gregory normal
function as

n(u,v) = (1 — s, v))ng(u, v) + 5, V)N (1, v),)

where ny; (4, v) is the analytical normal to the cubic triangu-
lar Bézier patch b(u, v). The coefficient s(u, v) is chosen as
s(u, v) = min{1, A(27uvw)?}, where A > 0 is a user defined
number.

From the definition of Gregory normal patch we can eas-
ily draw a few properties of the new normal function.

1. The Gregory normal patch is continuous over the domain
triangle.

2. Any two triangles sharing a common edge have equal
unit normal vectors along the joint edge.

3. The normals n(u, v) and ng(u, v) are equal for any point
lying on the boundary of the Bézier triangle.

4. The normal n(u, v) equals ng(u,v) when A =0, and
n(u, v) will be close to np,(u, v) in the interior of the
triangle when X is chosen a large number.

4.3 Side-vertex normal interpolation

The side-vertex normal interpolation technique is obtained
by adapting Nielson’s side-vertex surface interpolation [2]
to normal interpolation on triangles. The side-vertex normal
interpolation permits even higher-order smoothness across
boundaries.

When a cubic Bézier triangle has been obtained that in-
terpolates vertices and vertex normals of triangle Apjp2p3,
the side-vertex interpolation normal to any point on the sur-
face can be computed by the following four steps.

Step 1. Compute normal functions €;(t) (i = 1,2, 3) along
the three boundary curves.

Step 2. Compute Bézier curves b;(¢) (i = 1,2, 3) through
a point b(u, v) on the surface and either of triangle
vertices p;, respectively.

Step 3. Compute normal functions f} () (i =1,2,3) along
the three Bézier curves.

Step 4. Blend the normalized normals computed by three
normal functions fi (t) (i = 1,2, 3) at the joint point.

We explain in detail how to compute normal functions
and Bézier curves mentioned above in the following few
paragraphs.

The normal functions €;(z) (i = 1, 2, 3) are obtained by
modifying quadratic normal functions e; (#) which are orig-
inally defined in Egs. (5)—(7). The modification rule is as in
Eq. (4). Then we know that normal functions €; (¢) have van-
ishing derivatives at the ends. If a point b(u, v) lies on the
boundary of the Bézier triangle, the normal vector to the sur-
face can be computed by one corresponding normal function
directly.

@ Springer

P: qs P2

Fig. 4 The domain of a Bézier triangle

Ifu>0,v>0, and w > 0, the normal vector at point
b(u, v) should be computed by all steps listed above.

For an arbitrary point p = wpj +up; + vp3 in the domain
of a Bézier triangle (Fig. 4), the lines that connect points
P1, P2 or p3 through point p intersect opposite edges at q,
q2 or qs, respectively. Then points qi, q2, and q3 can be
represented by

_u . v
Q1—M+UP2 u+vp3,
v " w
(12—v+wp3 U—i—wpl’

u
= + .
q3 w+up1 w_l_upz

With simple computation, it is easy to see that the curves
b1(?), ba(#), and b3(#) on the Bézier triangle b(u, v) corre-
sponding to the line segments p1qi, p2q2, and p3q3z on the
domain triangle are just cubic Bézier curves. Representing
curve by (¢) with Bernstein bases, we have

by (1) = RoBo3(t) + R1B13(t) + Ry B> 3(¢) + R3 B3 3(1),

(10)
where
Ro =boos,
R = ubio2 + vb0127
u-+v

Ry — u”byo; + 2uvbyi; + v?beo

2= o2 ,
R u>bso0 + 3uvby1o + 3uv?bing + v3boso

3= .

(u+v)3

If we replace u, v, and b;j; within the control points of
bi(t) by v, w, and by;;, respectively, we will obtain the
control points for curve by (#). Similarly, the control points
for b3(¢) can be computed as those for by (¢) by replacing
u, v, and b;j; with w, u, and bjy;, respectively. Since the
three Bézier curves all pass through point b(u, v), we have
b(u,v) =bi(u +v) =by(v+ w) =b3(w + u).

The normal functions f,- () along curves b;(t) (i =
1,2, 3) can be computed by the control polygons and normal
vectors at the ends. It is easy to verify that b; (0) = p;. Then
the normal vectors at end points b; (0) should be chosen as n;
fori =1, 2, 3, respectively. As to the normals at b; (1), they

Shape aware normal interpolation for curved surface shading from polyhedral approximation 195

can be computed by normal functions €; (¢) (i = 1,2, 3). The
unit normal vectors at b; (1) (i =1, 2, 3) are obtained by

_egy) _ egE) _&(y)
Vi=——— 0 V2= V3= 0
el ()l e ()1 lles ()l

respectively. For each side-vertex parametric curve b; ()
with given normal vectors n; and v; at the ends, the normal
function f',- (t) with vanishing end derivatives can be obtained
by Eq. (4).)

Letf;(t) = L@ (i =1,2,3). We define the side-vertex

£ 1
interpolation normal to the Bézier triangle as

n(u, v)
w20 (u 4+ v) + v2w2f2(v +w) + w2u2f3(u + w)
202 + v2w? + w2iu? :

Y

In practice, we should always use normalized normal vec-
tors for surface rendering. Therefore, we compute normal-
ized vector from Eq. (11) as

n(u,v)
W20 (u + v) + V2wl (v + w) + wruf3(u 4+ w)

- lu2v2f) (u + v) + V2w2hH(+ w) + w2uf3w + w)||

(12)

The blending normal function n(u, v) or the normalized
normal function n(u, v) have the following properties:

1. The normal function n(u, v) interpolates normals €; (¢)
(i =1,2,3) at the boundary of the triangle.

2. The blending normal function n(u, v) interpolates the
derivatives f/(0) and f/(1) fori =1, 2, 3.

3. The normal function n(u, v) interpolates the derivatives
£/(0) and £/(1) fori =1,2, 3.

Property 1 can be drawn directly from Eq. (12). To prove the
next two properties, we assume that the line segments p;q;
(i =1,2,3) are parameterized as (u;(t), v;(¢)) (¢t € [0, 1]),
and let normal function r;(¢) = n(u;(t), v;(t)). Similar to
side-vertex surface interpolation [2], we know that n(u, v)
interpolates the derivatives f/(0) and f/(1) for i = 1,2,3.
We have r.(0) = f/(0) = f'l./(O) =0 and r;(1) =f/(1) =
f'l.’ (1) = 0. Furthermore, the normal function
r; (1)
l[ri ()]

has vanishing derivatives at the ends, too.

n(u; (1), vi(1)) =

5 Complexity analysis

In this section we present the complexity analysis of normal
interpolation by the PN triangle method, the Gregory nor-
mal patch, and the side-vertex normal interpolation scheme.

Some potential methods to improve the efficiency of the new
proposed normal interpolation schemes are also discussed.

For a triangular mesh that has N triangles, we assume
that n points, together with unit normal vectors at the
points, have been sampled or computed from curved trian-
gles which are constructed from the input triangles and the
input vertex normals. Because normal patches by the three
normal interpolation methods are all dependent on normal
functions on boundaries of triangles, we should analyze the
complexities of the construction of boundary normal func-
tions as well as normal computation by normal patches. To
compute a unit normal vector from a normal function, it may
need several operations of vector addition/subtraction, scalar
multiplication/division, scaling of vectors, cross-product be-
tween vectors, and normalization of vectors. Noticing that
one operation of vector scaling equals three scale multipli-
cations and one cross-product between two vectors in space
equals six scale multiplications, we will only counter the
numbers of vector addition/subtraction, scalar multiplica-
tion/division, and vector normalization when coefficients of
normal functions or interpolating normals have been com-
puted.

Based on the formulas presented in [8], the coeffi-
cients of the normal patch of a PN triangle can be com-
puted by the input vertices and vertex normals. For exam-
ple, the computation of h; in Eq. (2) needs three opera-
tions of vector addition/subtraction, 11 scalar multiplica-
tions/divisions, and one operation of vector normalization.
When an interpolating normal vector is computed by Eq. (2),
it needs five operations of vector addition/subtraction, 24
scalar multiplications/divisions, and one vector normaliza-
tion operation. In total, there are 9N + 5n operations of
vector addition/subtraction, 33N + 24n scalar multiplica-
tions/divisions, and 3N + n vector normalization operations
for normal interpolation of a triangular mesh.

The computation of coefficients of boundary normal
function e () of a curved triangle by Eq. (3) needs five op-
erations of vector addition/subtraction and 12 scalar mul-
tiplications/divisions. Because the multiplication of a vec-
tor by the length of another vector is equivalent to the nor-
malization of a vector, the computation also needs three
vector normalization operations. When a vector is com-
puted by Gregory normal patch using Eq. (8), it needs
eight operations of vector addition/subtraction, 48 scalar
multiplications/divisions, and one vector normalization op-
eration. As a whole, it needs 15N + 8n operations of
vector addition/subtraction, 36 N + 48n scalar multiplica-
tions/divisions, and 9N + n vector normalization opera-
tions to compute interpolating normals for a triangle mesh.
If the mixed Gregory normal patch is used, one should
also compute the unit normal vector to the Bézier triangle.
To compute an interpolating normal vector by Eq. (9), in
comparison with Eq. (8), additional 11 operations of vec-
tor addition/subtraction, 65 scalar multiplications, and two

@ Springer

196

X. Yang, J. Zheng

vector normalization operations are needed. The compu-
tational complexity of mixed Gregory normal method in-
cludes 15N + 19n operations of vector addition/subtraction,
36N + 113n scalar multiplications/divisions, and 9N + 3n
operations of vector normalization.

After the construction of boundary normal functions e; (¢)
(i =1,2,3), the computation of an interpolating normal by
the side-vertex normal interpolation scheme needs to com-
pute three Bézier curves on a Bézier triangle, three normal
functions along the Bézier curves, and the blending vec-
tor of three unit vectors computed by the normal functions.
It needs six operations of vector addition/subtraction and
totally 45 scalar multiplications to compute a Bézier curve
b; (¢) by Eq. (10), and it needs three vector addition/subtrac-

Table 1 The complexities for normal interpolation on a triangular
mesh using various methods

tion operations, 30 scalar multiplications, and one vector
normalization operation to compute a unit end normal vec-

Table 2 Time costs for point sampling and independent normal inter-
polation on a cubic Bézier patch (seconds)

Method Vector+/— Scalarx /+ VecNorm
quadratic 9N + 5n 33N + 24n 3N +n
Gregory 15N +8n 36N +48n ON +n
mixGreg.(A > 0) I5N 4+ 19n 36N + 113n 9N +3n
Side-Vertex 15N +53n 36N +366n 9N + 16n

#point PtSamp PNtri. Greg. mixGr. SideVtx
1 x10° 0.047 0.047 0.094 0.172 0.546
2 x 10 0.078 0.078 0.187 0.358 1.077
1 x 10° 0.436 0.437 0.936 1.747 5.413

Table 3 Average normal deviation angles for the test models (degree)

Model #point Phong. PNtri. Greg. SideVitx
star 4620 30.860 29.446 16.425 18.213
costa 5082 12.422 15.721 9.315 12.280
cat 155001 7.508 7.057 3.799 4.984
Fig. 7 106260 24.974 25.790 15.052 17.501
Fig. 8(a) 98406 18.834 19.832 13.163 15.951
Fig. 8(d) 95634 17.144 17.622 11.536 13.672
Fig. 8(g) 98406 16.740 17.627 11.593 13.791

(e) ()

Fig. 5 (a) The input triangular mesh with known vertex normals;
(b) The Phong tessellated mesh and the interpolating quadratic nor-
mals; (¢) The cubic surface patches with mixed Gregory normal inter-
polation (A = 0.5); (d) The cubic surface patches with side-vertex nor-

@ Springer

(8) (h)

mal interpolation; (e) The shading result by Phong tessellation; (f) The
shading result by PN triangles; (g) The shading result by mixed Gre-
gory normal function; (h) The shading result by side-vertex normal
interpolation

Shape aware normal interpolation for curved surface shading from polyhedral approximation 197

tor v; for the Bézier curve by the updated boundary nor-
mal function €; (r). To compute a unit normal vector f; (r) on
Bézier curve b;(¢), it needs eight operations of vector ad-
dition/subtraction, 32 scalar multiplications, and four vector
normalization operations. Even when an interpolating nor-
mal vector is finally obtained by Eq. (12), it still needs two
operations of vector addition/subtraction, 15 scalar multipli-
cations, and one vector normalization operation. The total
complexity of this normal interpolation scheme is summa-
rized in Table 1.

From Table 1 we can see that all the mentioned normal
interpolation schemes have linear complexity with respect
to the triangle number and the sampling rate, but the pro-
posed schemes need more vector operations or scalar mul-
tiplications/divisions than the quadratic normal method for
the computation of interpolating normals. As can be seen in
the next section, the new normal interpolation schemes can
generate better rendering results.

Despite their increased computational costs, the new
methods can still be used for fast surface rendering using
hardware acceleration or combination with other techniques
of surface rendering. Note that a mixed Gregory normal vec-
tor can be decomposed into a Gregory normal vector and a
Bézier surface normal vector. The three Bézier curves and
the corresponding normal functions for side-vertex normal
interpolation can also be computed independently with each

other. Then, the proposed normal interpolation schemes can
be used for realistic and high-speed surface shading on mod-
ern computers that have parallel processing units like GPUs.
An alternative way to achieve both rendering quality and
speed is combining Gregory or side-vertex normal interpo-
lation for rough tessellation and quadratic normal interpola-
tion for detailed tessellation together.

6 Examples and comparisons

We have implemented the Phong tessellation, the PN trian-
gles method, and our new proposed normal interpolation
schemes by C++ code on a PC with Intel(R) Core(TM)2
CPU, T9900 @3.06 GHz 3.07 GHz, and 4 G RAM. In this
section we present several interesting examples to show the
shading results by different normal interpolation methods.
The comparisons of time costs using various normal inter-
polation schemes or tessellation methods are also given.
We first compare the time costs of normal interpolation
using various normal interpolation schemes on a curved
Bézier triangle. We have computed 100000, 200000, and
1000000 unit normal vectors on a curved triangle using the
PN triangle method, the Gregory normal patch, the mixed
Gregory normal method (A = 0.5) or the side-vertex normal
interpolation scheme, respectively. The time costs are given

Fig. 6 (a) The costa model (up) and cat model (bottom) with known
vertex normals; (b) The shading results by Phong tessellation; (c) The
shading results by PN triangles; (d) The shading results by mixed

Gregory normal interpolation with & = 0.5; (e) The shading results by
side-vertex normal interpolation

@ Springer

198

X. Yang, J. Zheng

Fig. 7 (a) The input triangular
mesh with known vertex
normals; (b) The shading result
by Phong tessellation; (¢) The
shading result by PN triangles;
(d) The shading result by mixed
Gregory normal interpolation
with A = 0.5; (e) The shading
result by side-vertex normal
interpolation

in Table 2. In this table, the time costs for point sampling
are also given for comparison purpose. From the table we
can see that all normal interpolation methods are very fast
even a huge number of normal vectors have to be computed,
and the new methods take more time due to their increased
complexities. From the table we also learn that the time costs
for all the methods are approximately linear with respect to
the sampling rates.

To compare the shading results, we first tessellate and
render a solid star model that consists of 20 triangles. The
initial vertex normals are computed from facet normals for
this example (Fig. 5(a)). Figure 5(b) illustrates the surface
by Phong tessellation and the quadratic normals by the algo-
rithm proposed in [8]. Even though the normal field changes
smoothly across the whole surface, the normal vectors de-
viate from those of interpolating surfaces evidently, espe-
cially in sharp corner regions of the star model. As a com-
parison, the interpolating normals by our proposed schemes
match the interpolating surfaces more naturally. Figures 5(c)
and (d) show the tessellated surfaces by cubic surface inter-

@ Springer

Table 4 Comparison of total time costs for tessellating the test models
(seconds)

Model #Patch. Phong. PNtri. Greg. SideVtx
star 20 0.004 0.004 0.008 0.020
costa 22 0.004 0.004 0.008 0.023
cat 671 0.125 0.125 0.343 0.733
Fig. 7 460 0.093 0.094 0.218 0.499
Fig. 8(a) 426 0.078 0.078 0.203 0.453
Fig. 8(d) 414 0.078 0.078 0.202 0.437
Fig. 8(g) 426 0.078 0.078 0.203 0.460

polation and normal vectors by Gregory normal interpola-
tion or by side-vertex normal interpolation, respectively. We
note that all pictures in this paper are rendered using a light
set in infinity in the direction of the sight.

To compare the normal interpolation schemes quantita-
tively, we compute the average normal deviation angles be-

Shape aware normal interpolation for curved surface shading from polyhedral approximation 199

(a) (b) (c)

(d) (e) (f)
& (h) M)

Fig.8 Comparisons of shading results by various normal interpolation schemes. (left) The triangular meshes with tessellated cubic Bézier surfaces;
(middle) The shading results by quadratic normal interpolation; (right) The shading results by side-vertex normal interpolation

tween the analytical normals of local interpolating surfaces
and the interpolating normals at all sample points. From Ta-
ble 3 we can see that the average normal deviation angles
using quadratic normal interpolation for Phong tessellation
or local cubic surface interpolation are always larger than
those by Gregory normal interpolation or side-vertex normal
interpolation. Large normal deviation may produce unreal-
istic shading results. See, for example, the corners of the star

model in Figs. 5(e) or (f). Our proposed new normal inter-
polation methods are aware of local shapes very well; see
Figs. 5(g) and (h).

In Fig. 6 we present another two models rendered using
Phong tessellation, cubic surface interpolation, and the pro-
posed methods of normal interpolation. Figures 6(b) and (c)
show the shading results by Phong tessellation or cubic sur-
face interpolation, both by quadratic normal interpolation.

@ Springer

200

X. Yang, J. Zheng

Though the two figures have similar appearance, the cubic
surface interpolation scheme has given more naturally con-
tour shapes. Even though the rendered pictures are visually
smooth, many salient surface features have been blurred by
using quadratic normal interpolation. See, for example, the
protruding part of the costa model and the ears of the cat
model are over-smoothed in Figs. 6(b) and (c). Our proposed
normal interpolation methods can be used to render surfaces
with smooth appearance across edges as well as preservation
of salient geometric features; see Figs. 6(d) and (e).

As pointed out in reference [8], there may exist some
long and thin triangles in a triangular mesh for the repre-
sentation of sharp edges or creases on the surface. See, for
example, the sharp edges within the axe model in Fig. 7. For
thin triangles on a triangular mesh, the initial vertex normals
may deviate from the triangle normal largely (Fig. 7(a)).
The quadratic normals which are determined from vertex
normals alone may deviate from normals of the interpolat-
ing surfaces considerably, too. When the tessellated surfaces
have been rendered using quadratic normals, they may suf-
fer severe shading defects near the sharp edges. See, for ex-
ample, the axe edges in Figs. 7(b) and (c). By Gregory in-
terpolation normals or side-vertex interpolation normals, all
curved triangles can be rendered into highly realistic shading
results with no need of special handing of sharp triangles.
See Figs. 7(d) and (e) for the shading results by these two
new normal interpolation methods, respectively. The initial
models in this and the next figure are from reference [§].

Finally, we present a few more examples of surface ren-
dering by our new proposed normal interpolation method.
Because surface rendering by Phong tessellation or by PN
triangles have similar appearance, we only plot the shad-
ing results by PN triangles for comparison purpose. Because
side-vertex normal interpolation can usually generate better
(or at least similar results) than Gregory normal interpola-
tion, only rendering results by side-vertex normal interpo-
lation are given. The tessellated results of interpolating cu-
bic Bézier surfaces are given in the left column of Fig. 8.
The middle column shows the shading results by quadratic
normal interpolation, and the right column shows the shad-
ing results by our proposed side-vertex normal interpolation.
From the figure we can see that quadratic normal interpola-
tion can give visually smooth shading results, but many lo-
cal salient features have been smoothed out by this method.
See, for example, Fig. 8(h), we notice that salient features
in the breast have been blurred while unrealistic dark con-
tours near the knees of the model occur due to improper nor-
mals by quadratic normal interpolation. Figure 8(i) shows
that our new proposed normal interpolation method can be
used to render a rough surface with smooth shading result,
together with well preservation of visually important surface
features.

The total time costs for points sampling and normal inter-
polation of the above examples by various methods are given

@ Springer

in Table 4. From the table we can see that all four methods
for surface shading are very fast. In particular, the Gregory
normal interpolation scheme and the side-vertex normal in-
terpolation method take more calculation time than the other
two methods. Then users can choose different normal inter-
polation methods with a balance of rendering quality and
speed. They can also accelerate the speed further using the
methods discussed in Sect. 5.

7 Conclusions

We have modified two well-known local surface interpo-
lation methods for normal interpolation for curved surface
rendering from polyhedral approximation. The interpolat-
ing normal vectors are computed along with cubic Bézier
surface interpolation for every triangle on a triangular mesh
with given or estimated normal vectors at vertices. The inter-
polating normals are joined continuously or even smoothly
between neighboring triangles, and they match the shape of
local interpolating surfaces very well. Salient surface fea-
tures and silhouettes can be preserved well when a sur-
face is rendered by either of the proposed normal interpo-
lation schemes. The local interpolation of Bézier surfaces
and normal vectors also makes it very convenient for high-
speed hardware implementation. Though we proposed nor-
mal interpolation methods for rendering triangular meshes,
the proposed technique can be extended to normal interpo-
lation for rendering of other types of meshes, too.

Acknowledgements We owe thanks to anonymous referees for their
helpful comments on an earlier version of the paper.

References

1. Peters, J.: Local surface interpolation: a classification. Comput.
Aided Geom. Des. 7, 191-195 (1990)

2. Nielson, G.M.: The side-vertex method for interpolation in trian-
gles. J. Approx. Theory 25, 318-336 (1979)

3. Gregory, J.: Smooth interpolation without twist constraints. In:
Barnhill, R.E., Riesenfeld, R.F. (eds.) Computer Aided Geomet-
ric Design, pp. 71-87. Academic Press, New York (1974)

4. Shirman, L.A., Séquin, C.H.: Local surface interpolation with
Bézier patches. Comput. Aided Geom. Des. 4, 279-295 (1987)

5. Walton, D.J., Meek, D.S.: A triangular G! patch from boundary
curves. Comput. Aided Des. 28(2), 113-123 (1996)

6. Hahmann, S., Bonneau, G.-P.: Polynomial surfaces interpolating
arbitrary triangulations. IEEE Trans. Vis. Comput. Graph. 9(1),
99-109 (2003)

7. van Overveld, C.W.A.M., Wyvill, B.: Phong normal interpolation
revisited. ACM Trans. Graph. 16(4), 397-419 (1997)

8. Vlachos, A., Peters, J., Boyd, C., Mitchell, J.: Curved PN trian-
gles. In: Proceedings of the 2001 Symposium on Interactive 3D
Graphics, pp. 159-166 (2001)

9. Boubekeur, T., Alexa, M.: Phong tessellation. ACM Trans. Graph.
27(5), 141 (2008)

Shape aware normal interpolation for curved surface shading from polyhedral approximation 201

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

Wang, L., Tu, C., Wang, W., Meng, X., Chan, B., Yan, D.: Sil-
houette smoothing for real-time rendering of mesh surfaces. IEEE
Trans. Vis. Comput. Graph. 14(3), 640-652 (2008)

Schwarz, M., Stamminger, M.: Fast GPU-based adaptive tessella-
tion with CUDA. Comput. Graph. Forum 28(2), 365-374 (2009)
Phong, B.T.: Illumination for computer generated pictures. Com-
mun. ACM 18(6), 311-317 (1975)

Walia, E., Singh, C.: An analysis of linear and non-linear inter-
polation techniques for three-dimensional rendering. In: Intern.
Conference on Geometric Modeling and Imaging—New Trends,
pp. 69-76 (2006)

Lee, Y.-C., Jen, C.-W.: Improved quadratic normal vector interpo-
lation for realistic shading. Vis. Comput. 17, 337-352 (2001)
Fiinfzig, C., Miiller, K., Hansford, D., Farin, G.: PNG1 triangles
for tangent plane continuous surfaces on the GPU. In: Proceedings
of Graphics Interface, Canada, pp. 219-226 (2008)

Boubekeur, T., Reuter, P., Schlick, C.: Scalar tagged PN triangles.
In: Proc. Eurographics’05, pp. 17-20 (2005)

Ni, T., Castafio, 1., Peters, J., Mitchell, J., Schneider, P., Verma, V.:
Efficient substitutes for subdivision surfaces. In: ACM SIG-
GRAPH 2009 Courses, Article No. 13 (2009)

Boubekeur, T., Schlick, C.: QAS: Real-time quadratic approxima-
tion of subdivision surfaces. In: Proceedings of Pacific Graphics
2007, pp. 453-456 (2007)

Loop, C., Schaefer, S.: Approximating Catmull-Clark subdivision
surfaces with bicubic patches. ACM Trans. Graph. 27(1), Article
No. 8 (2008)

Loop, C., Schaefer, S., Ni, T., Castafio, I.: Approximating sub-
division surfaces with Gregory patches for hardware tessellation.
ACM Trans. Graph. 28(5), Article No. 151 (2009)

Li, G., Ren, C., Zhang, J., Ma, W.: Approximation of Loop sub-
division surfaces for fast rendering. IEEE Trans. Vis. Comput.
Graph. 17(4), 500-514 (2011)

Alexa, M., Boubekeur, T.: Subdivision shading. ACM Trans.
Graph. 27(5), Article No. 142 (2008)

Max, N.: Weights for computing vertex normals from facet nor-
mals. J. Graph. Tools 4(2), 1-6 (1999)

Farin, G.: Triangular Bernstein—-Bézier patches. Comput. Aided
Geom. Des. 3(2), 83-127 (1986)

25. Farin, G.: Curves and Surfaces for Computer Aided Geometric
Design: A Practical Guide, 5th edn. Academic Press, San Diego
(2002)

Xunnian Yang received his bach-
elor’s degree in mathematics from
Anhui University, Hefei, China,
in 1993 and Ph.D. in computer
aided geometric design and com-
puter graphics from Zhejiang Uni-
versity, Hangzhou, China, in 1998.
He is now an associate professor in
Department of Mathematics of Zhe-
jiang University. His main research
interests include geometric model-
ing, computer graphics, and image
processing.

Jianmin Zheng received the B.S.
and Ph.D. degrees from Zhejiang
University, China. He is an asso-
ciate professor in the School of
Computer Engineering at Nanyang
Technological University.
Previously, he was a faculty mem-
ber at Zhejiang University and a re-
search faculty at Brigham Young
University, Provo, Utah. His re-
search interest includes computer
aided geometric design, CAD/CAM,
computer graphics, animation, visu-
alization, and interactive digital me-
dia.

@ Springer

	Shape aware normal interpolation for curved surface shading from polyhedral approximation
	Abstract
	Introduction
	Our approach
	Overview

	Previous work
	Curved triangle construction
	Shape aware normal interpolation
	Normal vectors along a cubic curve
	Gregory normal interpolation
	Side-vertex normal interpolation

	Complexity analysis
	Examples and comparisons
	Conclusions
	Acknowledgements
	References

