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Abstract

In this paper we present methods for approximating a helix segment by quintic Bézier curves or quintic
Bézier curves based on the geometric Hermite interpolation technique in space. The fitting curve interpo
curvatures as well as the Frenet frames of the original helix at both ends. We achieve a high accurac
approximation by giving a proper parametrization of the curve, and the approximation order of the height f
along the helix axis is 9 provided that the screw angle of the helix is fixed. Numerical examples are also pr
to illustrate the efficiency of the new method.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A helix segment is a kind of geometric curve with non-vanishing constant curvature and non-van
constant torsion (do Carmo, 1976), and it is a natural generalization of circular arc in 3D space
fields of computer aided design and computer graphics, helices can be used for the tool path des
the simulation of kinematic motion or the design of highways, etc. Though a helix segment c
represented accurately with a combination of trigonometric functions and polynomials, there is n
representation for it by polynomials or rational polynomials. A high accuracy of approximatio
NURBS will make the helix more convenient in use within most of current CAD/CAM systems.

Several authors have discussed the problem of approximating the helix by rational Bézier curve
literature. Mick and Röschel (1990) have presented a direct approach to interpolate the helix by
cubic Bézier curves. Juhász (1995) has studied the same problem and presented an improved
with careful error estimation. Recently, Seemann (1997) has presented algorithms to approximat
segment with rational Bézier curves of order 4, 5 and 6. The main idea of Seemann is to incre
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0167-8396/$ – see front matter 2003 Elsevier B.V. All rights reserved.
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freedoms for the approximation by a generalized degree elevation technique. Though the fittin
lies on the same cylinder surface as the helix, the principal normal directions at two ends are not
interpolated yet. For applications such as motion simulation in space, the accuracy of the principal
or the binormal plays the same important roles as the accuracy of the positions.

In this paper we present an efficient new algorithm for approximating a segment of helix by q
polynomial curves or quintic rational curves. Because the projection of a helix segment onto a
orthogonal to the axis of the helix is a circular arc, the approximation of the helix can be form
as the problem of approximating the circular arc on the plane and approximating the height fu
along the cylinder axis simultaneously. The approximation to a circular arc by polynomial curv
been studied extensively (de Boor et al., 1987; Goldapp, 1991; Fang, 1998). We show that th
approximation problem is a Hermite interpolation problem of which the end derivatives are deter
by the equation of the circular arc. Then, the fitting curve not only interpolates the end positions a
curvatures of the helix but also matches the tangent directions and the principal normal vector
helix at the ends. Even more, when the circular arc is approximated by a quintic Bézier curve w2

contact at the ends or represented as a rational Bézier curve of degree larger than or equal to
parametrization of the curve is flexible and we achieve a high accuracy of the approximation by se
a proper parametrization of the plane curve.

The organization of the paper is as follows. In Section 2, we will formulate the problem and pro
general solution to the problem. In Section 3, we present an explicit algorithm for approximating
segment by a quintic polynomial curve. Since circular arcs can be represented accurately by
curves, we discuss how to approximate a helix segment by a quintic rational Bézier curve in Se
Examples and comparison with some existing methods are presented in Section 5. In the last se
conclude the paper and discuss some potential problems.

2. Problem formulation

Without loss of generality we can assume that the helix segment is defined as follows:

x = R cosϕ,

y = R sinϕ,

z = bϕ,

where 0� ϕ � 2θ is the center angle of the corresponding circular arc onxy-plane. Because a circula
arc can be represented by rational curves (Farin, 1990) or approximated by polynomial curv
high accuracy (Fang, 1998), we then assume that the circular arc is represented or approxima
parametric curveQ(t) = (x(t), y(t)) for 0 � t � 1.

A polynomial curve or a rational curve cannot be with arc length parametrization unless it is
(Farouki and Sakkalis, 1991), thus the arc length of the plane curveQ(t) cannot be the parametert .
Nevertheless the arc length of the curve can still be represented as follows:

Y(t) =
t∫

0

∥∥Q′(ξ)
∥∥dξ. (1)
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Now the height function of the helix can be obtained ash(t) = Y(t) b
R

. From formula (1), we can deriv
the first and the second order derivatives of Y(t) as

dY(t)

dt
= ∥∥Q′(t)

∥∥ =
√(

x′(t)
)2 + (

y′(t)
)2

, (2)

d2Y(t)

dt2
= x′x′′ + y′y′′∥∥Q′(t)

∥∥ . (3)

WhenQ(t) is a rational curve representing a circular arc or an approximating polynomial curv
height functionh(t) is not a polynomial or a rational polynomial any more. Then it is necessa
approximate the original functionh(t) with a rational polynomial or a polynomial function of the sam
degree as that of the curveQ(t). To approximate the circular arc and the helix with enough accu
and with appropriate freedoms, we represent or approximate the arc segment with quintic rationa
curves or quintic Bézier curves. The approximation of the functionh(t) can then be formulated as
quintic Hermite interpolation problem.

The boundary value of the functionh(t) is the corresponding coordinate value at the ends of the h
i.e.,h(0) = 0 andh(1) = 2θb. The first and the second order derivatives of the functionh(t) at two ends
are as follows:

h′(0) = Y ′(0)
b

R
, (4)

h′(1) = Y ′(1)
b

R
, (5)

h′′(0) = Y ′′(0)
b

R
, (6)

h′′(1) = Y ′′(1)
b

R
. (7)

With the boundary data defined above, a polynomial function or a rational function with pres
weights can be computed from the data. Letz(t) be the Hermite interpolation function to the origin
functionh(t), then the fitting error inz direction ise(t) = z(t) − h(t). Because the interpolation functio
z(t) is determined by the boundary conditions or the derivatives of the plane curveQ(t), we can achieve
a high accuracy of the approximation to the helix by constructing a plane curveQ(t) with a proper
parametrization.

When the interpolating functionz(t) is obtained, a space polynomial curve or a space rational c
P (t) can be obtained asP (t) = (x(t), y(t), z(t)). In addition to interpolate two ends of the helix, t
curveP (t) also interpolates the midpoint of the helix and matches the Frenet frames of the helix
two ends.

Theorem 1. If the curveQ(t) interpolates the end positions, end tangents and curvatures of the proj
arc, the space curveP (t) not only interpolates the end positions and end curvatures but also match
Frenet frames at the ends of the helix.

Proof. Let H(s) = (xc(s), yc(s), h(s)) be the helix segment defined over [0, 1], then the interpola
curveQ(t) is with G2 contact to the arcC(s) = (xc(s), yc(s)) at the ends. From differential geomet
we know that there exists a parameter transformation forQ(t), i.e., t = φ(s), such thatQ(φ(s)) or Q(s)
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for simplicity, has the same derivativesQ′(s) andQ′′(s) with C(s) at s = 0 ands = 1. Consequently
z′(s) = h′(s) andz′′(s) = h′′(s) for s = 0, 1. Then, the curvatures and the Frenet frames of the helixH(s)

at two ends are the same asP (s) and interpolated byP (t). ✷
Theorem 2. Let f (t) be a differentiable function defined over interval[0, 1] and f (t) satisfiesf ′(t) =
f ′(1− t) for t ∈ [0, 1], thenf (1

2) = 1
2[f (0) + f (1)].

Proof. Because the functionf (t) is differentiable, we have, for arbitraryt ∈ [0, 1],

f (t) = f (0) +
t∫

0

f ′(ξ) dξ.

By substituting the equalityf ′(ξ) = f ′(1− ξ) into the above integral formula, we have

f (t) = f (0) +
t∫

0

f ′(1− ξ) dξ = f (0) +
1∫

1−t

f ′(ξ) dξ.

Then we havef (1
2) = f (0)+∫ 1

1
2

f ′(ξ) dξ , from which we can derive the formulaf (1
2) = 1

2[f (0)+f (1)].
This proves the theorem.✷
Corollary. Let f (t) be a function defined as in Theorem2 and if it is twice differentiable, then we hav
f ′′(t) = −f ′′(1− t).

3. Approximating a helix by quintic Bézier curves

In this section we propose an algorithm for approximating the helix by a quintic polynomial c
With the projection of the helix as a segment of a circular arc, the approximant to the helix should
of two dependent parts: the approximation to the planar arc and a Hermite interpolation for the
function.

For the simplicity of description we can assume that the quintic curveQ(t) is a Bézier curve
Q(t) = ∑5

i=0 QiB
5
i (t), whereB5

i (t) = 5!
i!(5−i)! t

i (1− t)5−i (i = 0, 1, . . . , 5) are Bernstein basis function
The end control points of the curve can be obtained from the definition of the helix, i.e.,Q0 = (R, 0)

andQ5 = (R cos 2θ, R sin 2θ). The unit tangent vector of the arc at the endQ0 is V0 = (0, 1) and the
tangent direction atQ5 is V1 = (−sin2θ, cos 2θ). Let U0 be the unit vector pointing fromQ0 to Q5, and
U1 be the unit vector perpendicular toU0 and lying on the same side of the chord as the arc seg
(see Fig. 1), then the missing control points for the Bézier curve can be obtained based on the sy
property of the curve:

Q1 = Q0 + λV0,

Q2 = Q0 + s0U0 + s1U1,

Q3 = Q5 − s0U0 + s1U1,

Q4 = Q5 − λV1.

(8)
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Fig. 1. Approximating the plane arc by a quintic Bézier curveQ(t).

In the literature the methods for the determination of the control polygon of the Bézier curv
mainly based on the criteria that the fitting curve is with the optimal fitting accuracy to the arc o
higher continuity order at the ends (see (Floater, 1997; Fang, 1998)). In this paper, we comp
three unknownss0, s1 andλ according to the criteria that the curveQ(t) passes through the midpoi
of the arc segment and interpolates the curvatures at the ends, as well as the interpolating funcz(t)

approximates the height functionh(t) of the helix with a high accuracy.
It can be easily derived that the midpoint of the arc segment isQm = 1

2(Q0 + Q5) + R(1− cosθ)U1,
whereR is the radius of the arc andθ is the angle between the tangentV0 and the chord of the arc (se
Fig. 1). With the interpolation requirement we have

Q

(
1

2

)
= Qm. (9)

Because the curveQ(t) interpolates the curvatures of the arc segment at the ends, i.e.,‖Q′(0)∧Q′′(0)‖
‖Q′(0)‖3 =

k0 = 1
R

or ‖Q′(1)∧Q′′(1)‖
‖Q′(1)‖3 = k0, then we have

u0s0 + u1s1 = 5

4
k0λ2, (10)

whereu0 = sinθ andu1 = −cosθ . From Eq. (9) we haves1 = 8
5R(1− cosθ) − 1

4l1λ, wherel1 = 2sinθ ,
and from Eq. (10) we haves0 = (5

4k0λ
2 − u1s1)/u0. As to the free variableλ, it may somewhat influenc

the approximation accuracy to the arc segment, but the derivative length of the plane curve
parameter speed of Y(t) are more sensitive to this variable. Hence we can choose values forλ with
the aim that both the arc and the height function of the helix can be approximated with high accu

When the curveQ(t) or the function Y(t) has been obtained, we can then compute the derivativ
the functionh(t) immediately. At first, we assume that the first and the second derivatives of the fu
h(t) at the ends are denoted ash′

0, h′
1, h′′

0 andh′′
1, respectively. From Eq. (4) we haveh′

0 = 5λ b
R

, and from
Eq. (6) we haveh′′

0 = 20(v0s0 + v1s1 − 2λ) b
R

wherev0 = cosθ andv1 = sinθ . Based on the symmetr
property of the fitting curveQ(t), we have‖Q′(t)‖ = ‖Q′(1− t)‖. Then the derivatives at the other e
can be obtained ash′

1 = h′
0 andh′′

1 = −h′′
0.

With the boundary data stated above, a quintic polynomialz(t) can be constructed by the Herm
interpolation method. Let the fitting function be

z(t) =
5∑

i=0

ziB
5
i (t), (11)

then the coefficients of the function are as follows:
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z0 = 0,

z5 = 2θb,

z1 = z0 + 1

5
h′

0,

z4 = z5 − 1

5
h′

1,

z2 = 1

20
h′′

0 + 2z1 − z0,

z3 = 1

20
h′′

1 + 2z4 − z5.

Based on the coefficient formula of the functionz(t) and from Eq. (11) we have

z′(0.5) = 15

4
θb − 7

8
h′

0 − 1

16
h′′

0. (12)

Substituting the expressions ofh′
0 andh′′

0, Eq. (12) can be changed into

z′(0.5) =
[

15

4
θR − 5

4
(v0s0 + v1s1) − 15

8
λ

]
b

R
. (13)

On the other hand, the magnitude of the derivative at the midpoint of curveQ(t) can be obtained as

∥∥Q′(0.5)
∥∥ = 5

(
3

8
l2 − 1

4
s0 − 3

16
l0λ

)
, (14)

wherel0 = 2cosθ andl2 = ‖Q5 − Q0‖ = 2R sinθ .
It can be easily verified thatz′(t) = z′(1 − t), then from Theorem 2 we can conclude thatz(0.5) =

(h0 + h1)/2. This means that the quintic space curve not only interpolates two ends, but also inter
the midpoint of the original helix. From the corollary of Theorem 2, we havez′′(0.5) = h′′(0.5) = 0.
Then it can be easily verified that the principal normal of the Bézier curve is the same with that
helix at the point. Even more, we can assume thatz′(0.5) = h′(0.5), which means that the approximatin
curve have the same tangent direction with the helix at the midpoint too, we have

z′(0.5)

‖Q′(0.5)‖ = b

R
. (15)

By substituting Eqs. (13), (14) into (15), we have

a0λ2 + b0λ + c0 = 0, (16)

where a0 = 25
16

k0
sinθ

(1 − cosθ), b0 = −5
4(1 − cosθ) and c0 = − 2R

sinθ
(1 − cosθ)2 + 15

4 R(θ − sinθ).
Let d0 = b2

0 − 4a0c0, thend0 = 25
16

1−cosθ
sin2 θ

[8(1 − cosθ)2 + (1 − cosθ) sin2 θ − 15(θ − sinθ) sinθ]. For
0 < θ < π

2 , it can be verified thatc0 > 0 andd0 > 0 by the Taylor expansion technique. Sincea0 > 0 and
b0 < 0, then there exist two positive roots to Eq. (16):

λ1 = −b0 + √
d0

2a0
and λ2 = −b0 − √

d0

2a0
.

In fact, these two roots can both serve for the construction of an interpolating curve, but the pa
speed for the curves derived fromλ1 andλ2 are different.
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With the quintic curve constructed above, the fitting errore(t) along thez direction satisfies equation
e(t) = 0, e′(t) = 0 ande′′(t) = 0 at t = 0, t = 0.5 andt = 1. Any polynomials satisfying these equatio
and with degree less than 9 but not 9 all vanish. On the other hand, the range of the paramt is
proportional to the central angle 2θ but not the screw ratio of the helix, then the approximation o
along thez direction is 9 with respect to the center angle of the circular arc. Because the curveQ(t)

interpolates the ends of the arc with G2 contact and interpolates the midpoint of the arc with G1 contact,
from (Fang, 1998), the approximation order to the circular arc is 8. Even though the approximatio
to the arc segment is less than the order to the height function, for most practical cases (such asb � R in
Section 5) the fitting error to the arc is always less than the error in the height direction or the b
with very high accuracy.

Though the curves derived fromλ1 andλ2 are with the same approximation order, the experim
show that the parametrization of the curve derived from rootλ1 is more uniform than the curve derive
from λ2. Even more, the first curve is also with higher approximation accuracy to the helix tha
second one, thereforeλ = λ1 is the suggested choice for the free parameter of the interpolating q
Bézier curve.

4. Approximating a helix by rational Bézier curves

In the above section we have approximated the arc segment by a quintic polynomial and appro
the helix by a quintic Bézier curve, but the interpolating curve is not lying on the same cylinder s
with the helix except for a few points. In this section we represent the circular arc with rational B
curves and propose a new algorithm to approximate the helix on the same cylinder surface as th

A circular arc with angle 0< 2θ < π in radian can be represented as a quadratic rational Bézier

R(t) = R0B
2
0(t) + R1wB2

1(t) + R2B2
2(t)

B2
0(t) + wB2

1(t) + B2
2(t)

, (17)

wherew = cosθ is the weight andR0, R1 and R2 are the control points. To approximate the he
with enough freedoms, it is necessary to raise the order of the curveR(t). We adopt here the zigza
reparametrization technique proposed by Blanc and Schlick (1996) to increase the order of curveR(t) to
four first. The reparametrization function is

s(t) = pt + (1− p)t2

1− 2(1− p)t + 2(1− p)t2
, (18)

wherep is a positive free variable. The properties of this reparametrization can be found at (Bla
Schlick, 1996); one advantage for circular arc representation by this method is that we have one
to adjust the parameter speed of the curve. We obtain a quintic rational Bézier representation o
segment by elevating the degree of the reparametrized curve to five with the traditional degree e
method (Farin, 1990). The quintic rational Bézier curve can be denoted as

Q(t) =
∑5

i=0 QiwiB
5
i (t)∑5

i=0 wiB
5
i (t)

, (19)

where the control pointsQi (i = 0, 1, . . . , 5) and the weightswi (i = 0, 1, . . . , 5) are as the follows:
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Q0 = R0,

Q1 = (1+ 2p)R0 + 2wpR1

1+ 2p + 2wp
,

Q2 = (p + p2

2 )R0 + w(1+ p + p2)R1 + p2

2 R2

(1+ w)(p + p2) + w
,

Q3 =
p2

2 R0 + w(1+ p + p2)R1 + (p + p2

2 )R2

(1+ w)(p + p2) + w
,

Q4 = 2wpR1 + (1+ 2p)R2

1+ 2p + 2wp
,

Q5 = R2,

w0 = 1, w1 = 1+ 2(1+ w)p

5
, w2 = (1+ w)(p + p2) + w

5
,

w3 = w2, w4 = w1, w5 = w0.

With the curveQ(t) defined, we can now compute the end derivatives for the functionh(t). Let
l0 = ‖R1 − R0‖, l1 = ‖R2 − R1‖ and l2 = ‖R2 − R0‖, then l0 = l1 = R tanθ and l2 = 2R sinθ . The
first and the second order derivatives ofh(t) at t = 0 areh′

0 = 2wpl0
b
R

andh′′
0 = [4l0(w + wp − wp2 −

2w2p2) + 2wp2l2] b
R

.
Based on the symmetry property of the arc segment and the rational Bézier curveQ(t), it can be easily

verified thath′(t) = h′(1− t). Further more, we haveh′
1 = h′

0, h′′
1 = −h′′

0 andh′′(0.5) = 0. To construct a
space quintic rational Bézier curve approximating the helix, the functionz(t) should be as follows:

z(t) =
∑5

i=0 ziwiB
5
i (t)∑5

i=0 wiB
5
i (t)

. (20)

It is clear thatz0 = 0, z5 = 2θb, and the remaining coefficients can be determined by the first an
second derivatives at the ends, i.e.,z′(i) = h′

i , z′′(i) = h′′
i (i = 0, 1), then we have

z1 = w0

5w1
h′

0 + z0,

z2 = h′′
0w2

0 − (2w0 − 10w1)w0h
′
0

20w0w2
+ z0,

z3 = h′′
1w2

5 + (2w5 − 10w4)w5h
′
1

20w3w5
+ z5,

z4 = z5 − w5

5w4
h′

1.

With the coefficients obtained above, and by substituting the formulae ofh′
0 andh′′

0, we have

z′
(

1

2

)
= 6Rθ + (1+ 4p + p2)[2Rθ + 2w(Rθ − l0)] − wp2l2

(1+ w)(1+ p)2

b

R
. (21)

On the other hand the length of the derivative at the midpoint of the curveQ(t) can be computed as
∥∥Q′(0.5)

∥∥ = 4l2

(1+ w)(1+ p)
. (22)
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In a similar way to the quintic polynomial curve, the functionz(t) satisfies equationz′(t) = z′(1 − t),
and then we havez(0.5) = (z0 + z5)/2 andz′′(0.5) = 0. The principal normal of the rational curve al
matches that of the helix at the midpoint. To compute the values for the free variablep, we demand agai
z′(0.5) = h′(0.5) so that the approximating curve matches the tangent direction at the midpoint
helix segment while it interpolates the position of the point. This also means that the Frenet fram
helix at the midpoint is interpolated. Then we have

z′(0.5)

‖Q′(0.5)‖ = b

R
. (23)

Substituting Eqs. (21) and (22) into (23), we have

a1p2 + b1p + c1 = 0, (24)

wherea1 = 2R(θ −sinθ)(1+cosθ), b1 = 8R[θ(1+cosθ)−2sinθ] andc1 = 2R[θ(4+cosθ)−5sinθ].
Let d1 = b2

1 − 4a1c1, thend1 = 16R2[3θ(θ cosθ − 2sinθ)(1 + cosθ) + sin2 θ(11− 5cosθ − θ sinθ)].
In a similar method as in Section 3, it can be proven thata1 > 0, b1 < 0, c1 > 0 andd1 > 0. Then there
exist two positive roots to Eq. (24), both of which can be used to construct an interpolating curve
the experiments we find that the curve derived byp = −b1−

√
d1

2a1
can be with even higher approximatio

accuracy. Even more, with the same reason as the approximation by quintic polynomial curv
approximation order of the functionh(t) by the quintic rational functionz(t) is also 9.

Remarks. According to (Blanc and Schlick, 1996), Eq. (17) can be changed into a quartic rational B
curveQ(t) by a reparametrization technique. Let the curve be

Q(t) =
∑4

i=0 QiwiB
4
i (t)∑4

i=0 wiB
4
i (t)

, (25)

then the control pointsQi (i = 0, 1, . . . , 4) and the weightswi (i = 0, 1, . . . , 4) are as the follows:

Q0 = R0,

Q1 = R0 + wR1

1+ w
,

Q2 = p2R0 + 2w(1+ p2)R1 + p2R2

2(p2 + p2w + w)
,

Q3 = wR1 + R2

1+ w
,

Q4 = R2,

w0 = 1, w1 = 1+ w

2
p, w2 = p2 + p2w + w

3
, w3 = w1, w4 = w0.

We assume that the interpolating functionz(t) is

z(t) =
∑4

i=0 ziwiB
4
i (t)∑4

i=0 wiB
4
i (t)

. (26)

Just like the quintic rational curve, we havez0 = 0, z4 = 2θb. The coefficientsz1 andz3 can be computed
based on the first derivatives of the functionh(t) at t = 0 andt = 1. We have
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z1 = 0

4w1
h′

0 + z0,

z3 = z4 − w4

4w3
h′

1.

Becausez2 is determined by the second derivatives of the functionz(t) at either ends, we can obta
two values forz2 based onh′′

0 or h′′
1 as follows:

z0
2 = h′′

0w0 − (2w0 − 8w1)h′
0

12w2
+ z0,

z1
2 = h′′

1w4 − (2w4 − 8w3)h′
1

12w2
+ z4.

To be sure that the interpolating functionz(t) matches the second derivatives at both ends, we
z0

2 = z1
2. And because ofh′

0 = h′
1 andh′′

0 = −h′′
1, the equationz0

2 = z1
2 can be changed into

h′′
0 − (2w0 − 8w1)h′

0

6w2
= 2θb. (27)

By substitutingh′
0 andh′′

0, Eq. (27) can be changed into

p2 = cosθ(θ − tanθ)

(1+ cosθ)(sinθ − θ)
. (28)

The positive square root of Eq. (28) can be chosen as the parameter for the constructio
interpolating space curve. The error functione(t) for the height approximation by quartic rational curv
satisfiese(0.5) = 0 ande(t) = 0, e′(t) = 0, e′′(t) = 0 at t = 0 andt = 1, then it can be obtained that th
approximation order along thez direction is 7.

5. Examples and comparison

We have applied the new algorithm to the helix approximation with various center angles, th
and the heights, and we just sample a few examples here to show the efficiency of the method
this paper, we compute the fitting error numerically at selected points of the curve. Given a point
fitting curve, we compute the projection point on thexy-plane first and elevate the point on the he
segment along thez-axis.

In Fig. 2, a helix segment withR = b = 100 and 2θ = 2π/3 is approximated by a quintic polynomi
curve. To illustrate the approximation more clearly, we plot the principal normal and binormal alo
quintic curve of which the principal normal is with the length of the curvature radius and the bin
is with a constant value. We plot the fitting errors for the approximation to the helix by this q
Bézier curve in Fig. 3, where the tangent angle between the Bézier curve and the helix, the
angle between these two types of curves, the curvature difference, the torsion difference and th
difference are plotted along the curve. In addition to the fitting error for space curves, the fitting
for the corresponding arc approximation has also been plotted. The quintic Bézier curve does n
the same cylinder surface as the original helix, but the deviation from the surface is much lower t
height deviation.

Besides the approximation by a polynomial Bézier curve, we have also approximated the sam
segment in Fig. 2 by quintic rational Bézier curves based on our new algorithm and Seemann’s alg
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.

(a)

(b)

(c)

Fig. 2. A helix segment approximated by a quintic Bézier curve. (a) Top view; (b) side view; (c) perspective view
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Fig. 3. Error plots for the approximation by a quintic Bézier curve.R = b = 100, 2θ = 2π/3. (a) The angle between the tange
of the Bézier curve and the helix; (b) the angle between the principal normal of the Bézier curve and the helix; (c) the c
difference; (d) the torsion difference; (e) the fitting error for the arc; (f) the height difference along thez-axis.

Since the tangent directions are more accurate than the normal directions, and the rational Bézie
are on the same cylinder surface as the original helix, we just plot the normal angle, the cu
difference, the torsion difference and the height difference for the approximation by rational curv
Fig. 4). The fitting accuracy for quartic rational Bézier curves may be lower than for quintic ra
Bézier curves, but when the circular angle is an acute angle, the approximation is still with
accuracy. We have approximated a segment of helix withR = b = 100 and 2θ = 2π/5 by a quartic
rational Bézier curve. For a comparison we have constructed another approximating curve b
Seemann’s algorithm. The error plots for these two approximations are illustrated in Fig. 5.

From the error plots we can also see that the quintic polynomial curves, the quintic rational
or even quartic rational curves can all be used to approximate the helices with high accuracy,
as with G2 interpolation at the ends. From the examples we can see that the approximation by
rational Bézier curves based on Seemann’s method produces also G2 contact at the ends, but not f
quartic rational Bézier curves. To compare the fitting accuracy more efficiently, the maximum a
minimum fitting errors for the examples in this paper are listed in Table 1.

From Eqs. (16), (24) and (28), we notice that the solutions ofλ andp are depending on the value
of θ , but not on the parameterb. On the other hand, the coefficients of the interpolating functionz(t)

at the three cases are all proportional tob, then the error functione(t) is proportional to the variableb
too. To show the convergence rate with respect to the central angle, we choose four helix segme
R = b = 100 and the central angles 2θ as 8

9π , 4
9π , 2

9π and 1
9π , respectively. The maximum fitting erro
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Fig. 4. Error plots for the approximation by quintic rational Bézier curves based on Seemann’s method (dashed) and
method (solid).R = b = 100, 2θ = 2π/3. (a) The normal angle; (b) the curvature difference; (c) the torsion difference; (d
height difference.

Fig. 5. Error plots for the approximation by quartic rational Bézier curves based on Seemann’s method (dashed) and
method (solid).R = b = 100, 2θ = 2π/5. (a) The normal angle; (b) the curvature difference; (c) the torsion difference; (d
height difference.

along thez direction, the maximum fitting error for circular arc approximation by polynomials and
ratios of consecutive errors for the same type of approximating curves are listed in Table 2. Th
m(φ) is computed asm(φ) = log2(e(2φ)/e(φ)).
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Table 1
The error range for the examples through Figs. 3–5

The fitting Tangent Normal Curvature Torsion Height
curves angle angle difference difference difference

YangBez5 0, 0, −3.667× 10−7, −0.467× 10−5, −0.142× 10−3,
0.953× 10−5 0.317× 10−4 3.802× 10−7 0.138× 10−5 0.142× 10−3

YangRBez5 0, 0, −0.979× 10−9, −0.655× 10−7, −0.503× 10−5,
0.988× 10−7 0.963× 10−6 0.771× 10−9 1.901× 10−7 0.503× 10−5

SmnRBez5 0, 0, −0.602× 10−7, −0.418× 10−5, −0.305× 10−3,
0.603× 10−5 0.613× 10−4 0.455× 10−7 1.278× 10−5 0.305× 10−3

YangRBez4 0, 0, −0.191× 10−7, −0.232× 10−5, −0.569× 10−4,
0.191× 10−5 0.169× 10−4 0.124× 10−7 0.991× 10−6 0.569× 10−4

SmnRBez4 0, 0, −0.662× 10−7, −0.398× 10−4, −0.179× 10−3,
0.662× 10−5 2.878× 10−4 0.398× 10−7 0.439× 10−5 0.179× 10−3

Table 2
The maximum errors and the convergence ratios for the helix approximation

2θ 8
9π 4

9π 2
9π 1

9π

RBez5 7.135× 10−5 1.266× 10−7 2.414× 10−10 4.672× 10−13

9.138 9.035 9.013

RBez4 1.768× 10−2 1.195× 10−4 9.016× 10−7 6.982× 10−9

7.208 7.051 7.012

PBez5 1.862× 10−3 3.864× 10−6 7.224× 10−9 1.414× 10−11

8.982 8.994 8.996

Arc 7.718× 10−5 3.113× 10−7 1.226× 10−9 4.803× 10−12

7.953 7.987 7.997

6. Conclusion and discussion

In this paper we have presented an efficient new method for the approximation of helix segm
quintic polynomial Bézier curves, quintic and quartic rational Bézier curves. The Bézier curves no
interpolate the positions and curvatures at the ends of the helix, but also match the Frenet frame
helix at the ends. By selecting a proper parametrization of the interpolating curves, the approx
order for the height functions along the helix axis is 9 for quintic curves and 7 for quartic rational c
When the central angle for a helix segment is larger thanπ , it can be divided and approximated by tw
or more pieces of smooth connected Bézier curves.

There is one freedomλ or p for the error functione(t) while approximating the helix segment b
quintic polynomial curves or quintic rational curves. We have computed the values for these va
based on the assumption thate′(0.5) = 0. In fact we can reduce the fitting error further by minimizi
the maximum of|e(t)|, but nonlinear equations will be solved and the computational cost will incr
heavily. Another solution to set the freedoms for the quintic curves interpolation is based on the ge
Hermite interpolation method for general boundary data in (Yang, 2003) so that the fitting curve
interpolate the torsions at the ends of the helix. But the fitting accuracy for the height function a
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the curvature function will be reduced if the end torsions are interpolated. In addition to interpola
helices with high accuracies, the freedoms for the quintic rational curves can also be chosen wi
other criteria such as that the fitting curveQ(t) be with quasi-uniform parameter speed or C1 continuity in
homogeneous space (Blanc and Schlick, 1996; Fang, 2002). Then these properties can be well
by the interpolating space curves.
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