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Abstract

In this paper we present methods for approximating a helix segment by quintic Bézier curves or quintic rational
Bézier curves based on the geometric Hermite interpolation technique in space. The fitting curve interpolates the
curvatures as well as the Frenet frames of the original helix at both ends. We achieve a high accuracy of the
approximation by giving a proper parametrization of the curve, and the approximation order of the height function
along the helix axis is 9 provided that the screw angle of the helix is fixed. Numerical examples are also presented
to illustrate the efficiency of the new method.
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1. Introduction

A helix segment is a kind of geometric curve with non-vanishing constant curvature and non-vanishing
constant torsion (do Carmo, 1976), and it is a natural generalization of circular arc in 3D space. In the
fields of computer aided design and computer graphics, helices can be used for the tool path description,
the simulation of kinematic motion or the design of highways, etc. Though a helix segment can be
represented accurately with a combination of trigopnometric functions and polynomials, there is no exact
representation for it by polynomials or rational polynomials. A high accuracy of approximation by
NURBS will make the helix more convenient in use within most of current CAD/CAM systems.

Several authors have discussed the problem of approximating the helix by rational Bézier curves in the
literature. Mick and Réschel (1990) have presented a direct approach to interpolate the helix by rational
cubic Bézier curves. Juhasz (1995) has studied the same problem and presented an improved algorithm
with careful error estimation. Recently, Seemann (1997) has presented algorithms to approximate a helix
segment with rational Bézier curves of order 4, 5 and 6. The main idea of Seemann is to increase the
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freedoms for the approximation by a generalized degree elevation technique. Though the fitting curve
lies on the same cylinder surface as the helix, the principal normal directions at two ends are not always
interpolated yet. For applications such as motion simulation in space, the accuracy of the principal normal
or the binormal plays the same important roles as the accuracy of the positions.

In this paper we present an efficient new algorithm for approximating a segment of helix by quintic
polynomial curves or quintic rational curves. Because the projection of a helix segment onto a plane
orthogonal to the axis of the helix is a circular arc, the approximation of the helix can be formulated
as the problem of approximating the circular arc on the plane and approximating the height function
along the cylinder axis simultaneously. The approximation to a circular arc by polynomial curves has
been studied extensively (de Boor et al., 1987; Goldapp, 1991; Fang, 1998). We show that the latter
approximation problem is a Hermite interpolation problem of which the end derivatives are determined
by the equation of the circular arc. Then, the fitting curve not only interpolates the end positions and end
curvatures of the helix but also matches the tangent directions and the principal normal vectors of the
helix at the ends. Even more, when the circular arc is approximated by a quintic Bézier curve?with G
contact at the ends or represented as a rational Bézier curve of degree larger than or equal to four, the
parametrization of the curve is flexible and we achieve a high accuracy of the approximation by selecting
a proper parametrization of the plane curve.

The organization of the paper is as follows. In Section 2, we will formulate the problem and propose a
general solution to the problem. In Section 3, we present an explicit algorithm for approximating a helix
segment by a quintic polynomial curve. Since circular arcs can be represented accurately by rational
curves, we discuss how to approximate a helix segment by a quintic rational Bézier curve in Section 4.
Examples and comparison with some existing methods are presented in Section 5. In the last section we
conclude the paper and discuss some potential problems.

2. Problem formulation

Without loss of generality we can assume that the helix segment is defined as follows:

x = R cosg,
y = Rsing,
z=bg,

where 0< ¢ < 20 is the center angle of the corresponding circular ara piplane. Because a circular
arc can be represented by rational curves (Farin, 1990) or approximated by polynomial curves with
high accuracy (Fang, 1998), we then assume that the circular arc is represented or approximated as a
parametric curved (t) = (x(z), y(¢)) for 0 <r < 1.

A polynomial curve or a rational curve cannot be with arc length parametrization unless it is linear
(Farouki and Sakkalis, 1991), thus the arc length of the plane oQivg cannot be the parameter
Nevertheless the arc length of the curve can still be represented as follows:

Y() = / 10/ k. 0
0
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Now the height function of the helix can be obtainediéy = Y(t)%. From formula (1), we can derive
the first and the second order derivatives @f)Yas

dy

df” —o®] = ®)+ (n)? 2)
dZY(t) x/x// + y/y//

@@ = oo ©

When Q(¢) is a rational curve representing a circular arc or an approximating polynomial curve, the
height functioni(¢) is not a polynomial or a rational polynomial any more. Then it is necessary to
approximate the original functioh(z) with a rational polynomial or a polynomial function of the same
degree as that of the cun@(z). To approximate the circular arc and the helix with enough accuracy
and with appropriate freedoms, we represent or approximate the arc segment with quintic rational Bézier
curves or quintic Bézier curves. The approximation of the functigrn) can then be formulated as a
quintic Hermite interpolation problem.

The boundary value of the functidri(z) is the corresponding coordinate value at the ends of the helix,
i.e.,h(0) =0 andh(l) = 20b. The first and the second order derivatives of the functigi at two ends
are as follows:

W (0) = Y’(O)% 4
H(1) = Y’(l)% ®)
n'(0) = Y”(O)% (6)
R'(1) = Y”(l)% 7

With the boundary data defined above, a polynomial function or a rational function with prescribed
weights can be computed from the data. kL&) be the Hermite interpolation function to the original
function i (z), then the fitting error i direction ise(t) = z(¢) — h(t). Because the interpolation function

z(¢) is determined by the boundary conditions or the derivatives of the plane Q(ryewe can achieve

a high accuracy of the approximation to the helix by constructing a plane atwewith a proper
parametrization.

When the interpolating function(z) is obtained, a space polynomial curve or a space rational curve
P(t) can be obtained aB(t) = (x(¢), y(¢), z(¢)). In addition to interpolate two ends of the helix, the
curve P(t) also interpolates the midpoint of the helix and matches the Frenet frames of the helix at the
two ends.

Theorem 1. If the curveQ (¢) interpolates the end positions, end tangents and curvatures of the projected
arc, the space curv® (r) not only interpolates the end positions and end curvatures but also matches the
Frenet frames at the ends of the helix.

Proof. Let H(s) = (x.(s), y.(s), h(s)) be the helix segment defined over [0, 1], then the interpolating
curve Q(t) is with G? contact to the arc€ (s) = (x.(s), y.(s)) at the ends. From differential geometry
we know that there exists a parameter transformatiorQf@y, i.e.,r = ¢ (s), such thatQ (¢ (s)) or Q(s)
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for simplicity, has the same derivative® (s) and Q”(s) with C(s) ats = 0 ands = 1. Consequently,
Z(s) =W (s) andz”(s) = h"(s) for s =0, 1. Then, the curvatures and the Frenet frames of the &
at two ends are the same Bs¢s) and interpolated by (zr). O

Theorem 2. Let f(¢) be a differentiable function defined over intery@l 1] and f (¢) satisfiesf’(r) =
f'(A—1)forte[0,1], thenf(3) = 3[£(0) + F(D].

Proof. Because the functiorfi(¢) is differentiable, we have, for arbitrarye [0, 1],

t

=10+ [ e
0
By substituting the equality”’(£) = f'(1 — &) into the above integral formula, we have

t 1
ﬂnzﬂm+ffa—9@=ﬂm+ff@ms
0 1—¢

Then we havef (3) = £(0) +f%1 f/(¢) dg, from which we can derive the formuje(3) = 3[ £ (0)+ £ (D)].
This proves the theorem.O

Coradllary. Let f () be a function defined as in Theoréhand if it is twice differentiable, then we have
f//(l,) — _f//(l _ t).

3. Approximating a helix by quintic Bézier curves

In this section we propose an algorithm for approximating the helix by a quintic polynomial curve.
With the projection of the helix as a segment of a circular arc, the approximant to the helix should consist
of two dependent parts: the approximation to the planar arc and a Hermite interpolation for the height
function.

For the simplicity of description we can assume that the quintic cyve is a Bézier curve
o@) = Z?:o QiBl5(t), whereB?(t) = %ti(l —1)°7 (i=0,1,...,5) are Bernstein basis functions.

The end control points of the curve can be obtained from the definition of the helixQges, (R, 0)

and Os = (Rcos @, Rsin ). The unit tangent vector of the arc at the efid is Vo = (0, 1) and the
tangent direction af)s is V; = (—sin 2, cos @). Let Uy be the unit vector pointing fron®q to Qs, and

U, be the unit vector perpendicular &, and lying on the same side of the chord as the arc segment
(see Fig. 1), then the missing control points for the Bézier curve can be obtained based on the symmetry
property of the curve:

Q1= Qo+ Vo,
Q2= Qo+ soUo + s1U1,
Q3= 05— soUo + 51U3,
Q4= 0s— V1.

)
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Fig. 1. Approximating the plane arc by a quintic Bézier cug/g).

In the literature the methods for the determination of the control polygon of the Bézier curve are
mainly based on the criteria that the fitting curve is with the optimal fitting accuracy to the arc or with
higher continuity order at the ends (see (Floater, 1997; Fang, 1998)). In this paper, we compute the
three unknownsy, s; and . according to the criteria that the cur@(r) passes through the midpoint
of the arc segment and interpolates the curvatures at the ends, as well as the interpolating function
approximates the height functidi(z) of the helix with a high accuracy.

It can be easily derived that the midpoint of the arc segme@,is= %(Qo + 0s) + R(1—cosh) Uy,
whereR is the radius of the arc ardlis the angle between the tangéfntand the chord of the arc (see
Fig. 1). With the interpolation requirement we have

1
Z)=o,. 9
Q(z) 0 ©)
Because the curvé@(r) interpolates the curvatures of the arc segment at the ends! /" {?gl/l/s(o)” =
_ 1o 00" _
ko= % or ToR - = ko, then we have
S) 2
UgSo + u1s1 = Zkok , (10)

whereug = sing andu; = — cosd. From Eq. (9) we have, = %R(l — CcosH) — %llk, wherel; = 2sing,
and from Eq. (10) we havg = (gkoz\z — u1s51) /ug. As to the free variable, it may somewhat influence
the approximation accuracy to the arc segment, but the derivative length of the plane curve or the
parameter speed of (¥) are more sensitive to this variable. Hence we can choose valués ith
the aim that both the arc and the height function of the helix can be approximated with high accuracies.
When the curveQ (¢) or the function Y¢) has been obtained, we can then compute the derivatives of
the functioni(¢) immediately. At first, we assume that the first and the second derivatives of the function
h(t) at the ends are denoted/gs h}, hj andh, respectively. From Eq. (4) we haig = 512, and from
Eq. (6) we haverg = 20(voso + vis1 — ZA)% wherevg = cosf andv; = sing. Based on the symmetry
property of the fitting curved (¢), we have||Q'(1)|| = | Q' (1 — 1)||. Then the derivatives at the other end
can be obtained ds, = hy andh] = —hg.
With the boundary data stated above, a quintic polynomigl can be constructed by the Hermite
interpolation method. Let the fitting function be

5
20y =) uBR0), (11)

i=0
then the coefficients of the function are as follows:
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70=0,
5 = 29b,
71=20+t Ehé,
{4 =135 — éha_a
1
_h// 2
2= 20 + 221 —
3= Z)h// + 2724 —
Based on the coefficient formula of the functipi@) and from Eq. (11) we have
15 7
'(0.5) = —=0b — —hy— 12
7'(0.5) 7 0b 8h° 16h (12)
Substituting the expressions &f andhg, Eq. (12) can be changed into
15 5 15 75
Z/(OS) = [ZQR — Z(UQSO + UlS]_) — E)\.:| E (13)
On the other hand, the magnitude of the derivative at the midpoint of @d(wecan be obtained as
3 1 3
005 =52~ 350 - 502 ). 19

wherelp =2 cos) andl, = || Qs — Qo = 2R sing.

It can be easily verified that (r) = z/(1 — t), then from Theorem 2 we can conclude théd.5) =
(ho+ h1)/2. This means that the quintic space curve not only interpolates two ends, but also interpolates
the midpoint of the original helix. From the corollary of Theorem 2, we ha\(@.5) = 4”(0.5) =
Then it can be easily verified that the principal normal of the Bézier curve is the same with that of the
helix at the point. Even more, we can assume th@&5) = 4’(0.5), which means that the approximating
curve have the same tangent direction with the helix at the midpoint too, we have

(0.5 b
205 _ b (15)
10'(0.5] R
By substituting Egs. (13), (14) into (15), we have
aoh? + byl + ¢ =0, (16)
where ag = 222 (1 — cosf), by = —3(1 — cosf) and co = 1 — cost)? + 2RO — sino).

16sin6 S|n9
Let dp = bo 4agco, thendy = 2—515"?;’59 [8(1 — cost)? + (1 — cosd) sinfd — 15(6 — sind) sind]. For
0 <6 < Z, it can be verified thaty > 0 anddy > 0 by the Taylor expansion technique. Singe> 0 and
bo <0, then there exist two positive roots to Eq. (16):

—b, d, —bo — /d
pm ot Ny Zho - Vo
2ao 2aO

In fact, these two roots can both serve for the construction of an interpolating curve, but the parameter
speed for the curves derived from anda, are different.
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With the quintic curve constructed above, the fitting ee@y along thez direction satisfies equations
e(t) =0,¢'(t) =0ande”(r) =0 att =0, = 0.5 andr = 1. Any polynomials satisfying these equations
and with degree less than 9 but not 9 all vanish. On the other hand, the range of the parameter
proportional to the central angle Dut not the screw ratio of the helix, then the approximation order
along thez direction is 9 with respect to the center angle of the circular arc. Because the @urve
interpolates the ends of the arc witl Gontact and interpolates the midpoint of the arc withaGntact,
from (Fang, 1998), the approximation order to the circular arc is 8. Even though the approximation order
to the arc segment is less than the order to the height function, for most practical cases {sdcR as
Section 5) the fitting error to the arc is always less than the error in the height direction or the both are
with very high accuracy.

Though the curves derived fromy and A, are with the same approximation order, the experiments
show that the parametrization of the curve derived from #qds more uniform than the curve derived
from A,. Even more, the first curve is also with higher approximation accuracy to the helix than the
second one, therefove= A, is the suggested choice for the free parameter of the interpolating quintic
Bézier curve.

4. Approximating a helix by rational Bézier curves

In the above section we have approximated the arc segment by a quintic polynomial and approximated
the helix by a quintic Bézier curve, but the interpolating curve is not lying on the same cylinder surface
with the helix except for a few points. In this section we represent the circular arc with rational Bézier
curves and propose a hew algorithm to approximate the helix on the same cylinder surface as the helix.

A circular arc with angle G< 26 < & in radian can be represented as a quadratic rational Bézier curve

RoB§(1) + RiwBS (1) + RaB3(1)
B3(t) + wB2(t) + B3(t)
wherew = cosf is the weight andRy, R; and R, are the control points. To approximate the helix
with enough freedoms, it is necessary to raise the order of the dume We adopt here the zigzag

reparametrization technigue proposed by Blanc and Schlick (1996) to increase the order &f(cutoe
four first. The reparametrization function is

R(t) =

: 17)

pt+ (1 — p)?
1-2(1-p)t+21— p)t?’
wherep is a positive free variable. The properties of this reparametrization can be found at (Blanc and
Schlick, 1996); one advantage for circular arc representation by this method is that we have one freedom
to adjust the parameter speed of the curve. We obtain a quintic rational Bézier representation of the arc
segment by elevating the degree of the reparametrized curve to five with the traditional degree elevation
method (Farin, 1990). The quintic rational Bézier curve can be denoted as

>0 o Qiw; B (1)
YrowiBY®)
where the control point®; (i =0,1,...,5) and the weights; ( =0, 1, ...,5) are as the follows:

s(t) =

(18)

Q) = (19)
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Qo = Ro,
_ (1+2p)Ro+2wpRy
Q1= 1+2p+2wp
P+ Rt wd+p+ pIRI+ B R,
Q2= A+w)(p+pH+w ’
_ ZRo+wl+p+p)Ri+ (p+ B)R,
Qo= A+w)(p+pH+w ’
_ 2wpRi+ (14 2p)R;
T 1+2p+2wp
Os= Ry,
1+2(14+w)p A+w)(p+p)+w
U)Q=1, w1 = #, Wy = 5 s
w3 = wy, wy = Wy, Ws = Wo.

With the curve Q(¢) defined, we can now compute the end derivatives for the fundtioin Let
lo=||R1— Roll, I1 = ||R2 — Ry|| andl; = ||R, — Roll, thenly =1, = Rtand andl, = 2R sinfd. The
first and the second order derivativesigf) att =0 arehy = prlo% andhg = [4lo(w + wp — wp? —
2w?p?) + przlz]%.

Based on the symmetry property of the arc segment and the rational Béziejyé can be easily
verified thath’ () = h'(1 —t). Further more, we havig, = hg, h] = —hg andh”(0.5) = 0. To construct a
space quintic rational Bézier curve approximating the helix, the funetionshould be as follows:

Z?:o Ziw; B;S(f)
Y owi BY(D)

It is clear thatzg = 0, z5 = 20b, and the remaining coefficients can be determined by the first and the
second derivatives at the ends, i£() = A}, z"(i) = h! (i =0, 1), then we have

() = (20)

2= =2tz
1= 5w1 0 0
- hgwg — (2wo — 10w1)wohy %
20!1)011)2 ’
hwé + (2ws — 10w4)wsh)
3= 20wsws + zs,
w
J4 =135 — #h&
4

With the coefficients obtained above, and by substituting the formulag afidsg, we have

( }) 6RO+ (1+4p + p)I2RO + 2w(RO — l)] —wp’la b 1)
“\2)” L+ w) 1+ p)? R
On the other hand the length of the derivative at the midpoint of the a@fyecan be computed as
, 4
|05 = : (22)

A+w)@A+p)
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In a similar way to the quintic polynomial curve, the functiofr) satisfies equation’(r) = z'(1 — 1),

and then we have(0.5) = (zo + z5)/2 andz”(0.5) = 0. The principal normal of the rational curve also
matches that of the helix at the midpoint. To compute the values for the free vagsiabbedemand again
7/(0.5) = 1’(0.5) so that the approximating curve matches the tangent direction at the midpoint of the
helix segment while it interpolates the position of the point. This also means that the Frenet frame of the
helix at the midpoint is interpolated. Then we have

7/(0.5) b
— 23
100 R (@)
Substituting Egs. (21) and (22) into (23), we have
arp?+bip+c1=0, (24)

wherea; = 2R (6 — sinf)(1+ cosh), by = 8R[O(1+ cosh) — 2sind] andc, = 2R[6 (4+ cosh) — 5sind].

Letd; = b — 4aycq, thend, = 16R?[36(0 cost — 2sind) (1 + cosd) + sirf (11 — 5codd — 6'sinb)].

Ina S|m|Iar method as in Section 3, it can be proven that 0, b1 < 0, ¢c; > 0 andd; > 0. Then there

exist two positive roots to Eq. (24), both of which can be used to construct an interpolating curve. From
the experiments we find that the curve derivedpby: ”1 Y4 can be with even higher approximation
accuracy. Even more, with the same reason as the apprOX|mat|on by quintic polynomial curves, the
approximation order of the functioi(z) by the quintic rational function(z) is also 9.

Remarks. According to (Blanc and Schlick, 1996), Eq. (17) can be changed into a quartic rational Bézier
curve Q(r) by a reparametrization technique. Let the curve be

>t Qiw;BA(1)

(1) = , (25)
> o wiB{ (1)
then the control point®); (i =0, 1,...,4) and the weightsv; (i =0, 1, ..., 4) are as the follows:
Qo = Ro,
Ro+wRq
Ql - 1 + w )
0, = P?Ro+2w(1+ p?)R1 + p°Ry
2= 2(p2+ p2w + w) ’
wR1+ Ry
Q3 - 1 + w )
Q4= Ry,
1+w P2+ p?w+w
wo =1, wy=—>—Pp, W= " w3 = wy, W4 = Wp.
We assume that the interpolating functigm) is
4 4
o Ziw; B (t
2(1) = M (26)

YiowiBH®)
Just like the quintic rational curve, we hase= 0, z4 = 20b. The coefficientg, andzz can be computed
based on the first derivatives of the functib@) ats = 0 andr = 1. We have
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wo
71=—hg+ 20,
4w1
wy .,
z3=2z24——hy.
4w3 !

Because; is determined by the second derivatives of the functign at either ends, we can obtain
two values forz, based orhg or /] as follows:

0 hng — (ZU)Q — 8w1)h6
2

2= 12w, <
hYws — (2ws — Bw3) A/
1 1

<= 12w, + 24.

To be sure that the interpolating functiaiir) matches the second derivatives at both ends, we need
z9 = z3. And because ofiy = k), andhj; = —h/, the equationty = z3 can be changed into
hg — (ZU)Q — 8w1)h6
GU)Z
By substitutingh, andhg, Eq. (27) can be changed into
) cosd (f — tand)
P = 1 ¥ cosh)(sinb — o)

The positive square root of Eq. (28) can be chosen as the parameter for the construction of an
interpolating space curve. The error functiain) for the height approximation by quartic rational curves
satisfiese(0.5) = 0 ande(r) =0, ¢'(t) =0, ¢”(t) =0 atr = 0 andr = 1, then it can be obtained that the
approximation order along thedirection is 7.

= 20b. (27)

(28)

5. Examples and comparison

We have applied the new algorithm to the helix approximation with various center angles, the radii
and the heights, and we just sample a few examples here to show the efficiency of the method. Within
this paper, we compute the fitting error numerically at selected points of the curve. Given a point on the
fitting curve, we compute the projection point on the-plane first and elevate the point on the helix
segment along the-axis.

In Fig. 2, a helix segment witl®R = » = 100 and 2 = 27 /3 is approximated by a quintic polynomial
curve. To illustrate the approximation more clearly, we plot the principal normal and binormal along the
guintic curve of which the principal normal is with the length of the curvature radius and the binormal
is with a constant value. We plot the fitting errors for the approximation to the helix by this quintic
Bézier curve in Fig. 3, where the tangent angle between the Bézier curve and the helix, the normal
angle between these two types of curves, the curvature difference, the torsion difference and the height
difference are plotted along the curve. In addition to the fitting error for space curves, the fitting error
for the corresponding arc approximation has also been plotted. The quintic Bézier curve does not lie on
the same cylinder surface as the original helix, but the deviation from the surface is much lower than the
height deviation.

Besides the approximation by a polynomial Bézier curve, we have also approximated the same helix
segment in Fig. 2 by quintic rational Bézier curves based on our new algorithm and Seemann’s algorithm.
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Fig. 2. A helix segment approximated by a quintic Bézier curve. (a) Top view; (b) side view; (c) perspective view.
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0 -2

(e) (f)

Fig. 3. Error plots for the approximation by a quintic Bézier cuRe= b = 100, @ = 27/3. (a) The angle between the tangents
of the Bézier curve and the helix; (b) the angle between the principal normal of the Bézier curve and the helix; (c) the curvature
difference; (d) the torsion difference; (e) the fitting error for the arc; (f) the height difference alongitie.

Since the tangent directions are more accurate than the normal directions, and the rational Bézier curves
are on the same cylinder surface as the original helix, we just plot the normal angle, the curvature
difference, the torsion difference and the height difference for the approximation by rational curves (see
Fig. 4). The fitting accuracy for quartic rational Bézier curves may be lower than for quintic rational
Bézier curves, but when the circular angle is an acute angle, the approximation is still with a high
accuracy. We have approximated a segment of helix \Rita » = 100 and 2 = 27 /5 by a quartic

rational Bézier curve. For a comparison we have constructed another approximating curve based on
Seemann’s algorithm. The error plots for these two approximations are illustrated in Fig. 5.

From the error plots we can also see that the quintic polynomial curves, the quintic rational curves
or even quartic rational curves can all be used to approximate the helices with high accuracy, as well
as with @ interpolation at the ends. From the examples we can see that the approximation by quintic
rational Bézier curves based on Seemann’s method produces 4lson@ct at the ends, but not for
quartic rational Bézier curves. To compare the fitting accuracy more efficiently, the maximum and the
minimum fitting errors for the examples in this paper are listed in Table 1.

From Egs. (16), (24) and (28), we notice that the solutions ahd p are depending on the values
of 6, but not on the parametér. On the other hand, the coefficients of the interpolating function
at the three cases are all proportionabtdhen the error functior(z) is proportional to the variablg
too. To show the convergence rate with respect to the central angle, we choose four helix segments with
R =b =100 and the central angles as2x, ¢, 27 andix, respectively. The maximum fitting error
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Fig. 4. Error plots for the approximation by quintic rational Bézier curves based on Seemann’s method (dashed) and our new

method (solid).R = b =100, @ = 27/3. (a) The normal angle; (b) the curvature difference; (c) the torsion difference; (d) the
height difference.
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Fig. 5. Error plots for the approximation by quartic rational Bézier curves based on Seemann’s method (dashed) and our new

method (solid).R = b =100, @ = 27/5. (a) The normal angle; (b) the curvature difference; (c) the torsion difference; (d) the
height difference.

along thez direction, the maximum fitting error for circular arc approximation by polynomials and the
ratios of consecutive errors for the same type of approximating curves are listed in Table 2. The ratio
m(¢) is computed asi(¢) = log,(e(2¢)/e(9)).
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Table 1
The error range for the examples through Figs. 3-5
The fitting Tangent Normal Curvature Torsion Height
curves angle angle difference difference difference
YangBez5 0, 0, —3.667x 1077, —0.467x 1072, —0.142x 1073,
0.953x 10> 0.317x 1074 3.802x 1077 0.138x 10> 0.142x 103
YangRBez5 0, 0, —0.979x 1079, —0.655x 1077, —0.503x 1072,
0.988x 107 0.963x 106 0.771x 1079 1.901x 107 0.503x 10>
SmnRBez5 0, 0, —0.602x 1077, —0.418x 107>, —0.305x 1073,
0.603x 107> 0.613x 104 0.455x 10~ 1.278x 107> 0.305x 1073
YangRBez4 0, 0, —0.191x 10~7, —0.232x 1072, —0.569x 1074,
0.191x 107> 0.169x 104 0.124x 10~ 7 0.991x 106 0.569x 104
SmnRBez4 0, 0, —0.662x 1077, —0.398x 1074, —0.179x 1073,
0.662x 107> 2.878x 1074 0.398x 107 0.439x 10> 0.179x 103
Table 2
The maximum errors and the convergence ratios for the helix approximation
20 grr grr %7{ %7{
RBez5 7135x 10°° 1.266x 107 2.414x 10710 4.672x 10713
9.138 9.035 9.013
RBez4 1768x 102 1.195x 104 9.016x 10~ 6.982x 1079
7.208 7.051 7.012
PBez5 1862 x 103 3.864x 1076 7.224x 109 1.414% 10711
8.982 8.994 8.996
Arc 7.718x 107> 3.113x 1077 1.226x 1079 4.803x 10712
7.953 7.987 7.997

6. Conclusion and discussion

In this paper we have presented an efficient new method for the approximation of helix segments by
quintic polynomial Bézier curves, quintic and quartic rational Bézier curves. The Bézier curves not only
interpolate the positions and curvatures at the ends of the helix, but also match the Frenet frames of the
helix at the ends. By selecting a proper parametrization of the interpolating curves, the approximation
order for the height functions along the helix axis is 9 for quintic curves and 7 for quartic rational curves.
When the central angle for a helix segment is larger thait can be divided and approximated by two
or more pieces of smooth connected Bézier curves.

There is one freedom or p for the error functione(z) while approximating the helix segment by
quintic polynomial curves or quintic rational curves. We have computed the values for these variables
based on the assumption that0.5) = 0. In fact we can reduce the fitting error further by minimizing
the maximum ofle(¢)|, but nonlinear equations will be solved and the computational cost will increase
heavily. Another solution to set the freedoms for the quintic curves interpolation is based on the geometric
Hermite interpolation method for general boundary data in (Yang, 2003) so that the fitting curves also
interpolate the torsions at the ends of the helix. But the fitting accuracy for the height function and for



X. Yang / Computer Aided Geometric Design 20 (2003) 303-317 317

the curvature function will be reduced if the end torsions are interpolated. In addition to interpolate the
helices with high accuracies, the freedoms for the quintic rational curves can also be chosen with some
other criteria such as that the fitting cur@et) be with quasi-uniform parameter speed éroBntinuity in
homogeneous space (Blanc and Schlick, 1996; Fang, 2002). Then these properties can be well inherited
by the interpolating space curves.
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