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Abstract

Subdivision surfaces are generated by repeated approximation or interpolation from initial control meshes. In this paper, two new non-

linear subdivision schemes, face based subdivision scheme and normal based subdivision scheme, are introduced for surface interpolation of

triangular meshes. With a given coarse mesh more and more details will be added to the surface when the triangles have been split and

refined. Because every intermediate mesh is a piecewise linear approximation to the final surface, the first type of subdivision

scheme computes each new vertex as the solution to a least square fitting problem of selected old vertices and their neighboring

triangles. Consequently, sharp features as well as smooth regions are generated automatically. For the second type of subdivision,

the displacement for every new vertex is computed as a combination of normals at old vertices. By computing the vertex normals adaptively,

the limit surface is G1 smooth. The fairness of the interpolating surface can be improved further by using the neighboring faces. Because the

new vertices by either of these two schemes depend on the local geometry, but not the vertex valences, the interpolating surface inherits

the shape of the initial control mesh more fairly and naturally. Several examples are also presented to show the efficiency of the

new algorithms.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Subdivision surface is an efficient geometric modeling

tool that is generated by repeated approximation or

interpolation from an initial control mesh [1–6,21]. For

each time of subdivision, the old mesh will be split and the

vertices of the mesh will be refined for a new mesh. With

ease to implement and flexibility to represent a variety of

complex geometric shapes, subdivision surfaces have been

used widely in the fields of computer aided geometric

design and computer graphics. Besides surface modeling,

subdivision surfaces also find applications in digital surface

processing [19].

In the past few decades, there is an abundance of literature

dealing with the problem of mesh subdivision and smooth

surface generation. According to whether the original
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meshes will be interpolated or not, subdivision surfaces can

be classified into two categories, interpolatory subdivision

surfaces and approximate subdivision surfaces. The first type

of subdivision surfaces compute and add new vertices to the

old set of vertices for each step of subdivision [5,12,13,16].

The second type of subdivision surfaces compute all

vertices for a new mesh and replace the old mesh by a new

mesh for each subdivision [2,4,14,15]. On the other hand,

subdivision surfaces can also be grouped into stationary

subdivision surfaces and non-stationary subdivision surfaces

just according to the criterion that the subdivision rules will

be the same or will be changed during the subdivision

processes.

Many of current subdivision schemes are spline based

and new vertices are computed as linear combinations of old

vertices. The combination coefficients are often derived by

generalizing some blending functions or interpolation

functions in discrete form to vertices with general valences.

Because the blending functions and interpolation

functions are generally with limited supports, new vertices
Computer-Aided Design 37 (2005) 497–508
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for a subdivision surface can then be computed locally.

These schemes will be referred as linear subdivision

schemes. Though linear subdivision schemes can be used

to generate smooth surfaces, when some features are desired

on the final subdivision surfaces, special rules or parameters

should often be applied [11,18].

In this paper, we investigate a geometric based method

for surface interpolation of meshes by subdivision. Instead

of a simple linear combination of old vertices, every new

interpolated vertex will be computed according to the local

geometry of the mesh. For each step of subdivision we

compute and add one new vertex corresponding to every

edge of the mesh and replace each old triangle by four new

sub-triangles. Depending on the formulae for new vertices,

two new subdivision schemes, face based subdivision

scheme and normal based subdivision scheme will be

introduced.

As for the face based subdivision scheme, we observe

that each intermediate mesh is a piecewise linear approxi-

mation to the final surface, and then we can compute new

vertices based on the local geometry of the mesh. To

compute a new vertex corresponding to an edge, the edge

itself and the planes determined by the neighboring triangles

of the edge end points will be used to predict the new vertex.

Then, we compute the new vertex as the solution to the least

square fitting problem of old vertices and old planes. By

choosing the fitting coefficients properly, smooth regions as

well as sharp features implied by the original control mesh

can be generated automatically.

To obtain a global smooth surface, we propose another

simple yet efficient new subdivision scheme, the normal

based subdivision scheme, for surface interpolation. The

displacement vector from the midpoint of an edge to the

new vertex is given as a combination of normal vectors at

the edge end points. It can be shown that when the normal

vectors are refined adaptively for each time of subdivision

the limit surface will be smooth. Moreover, the shape of the

interpolating surface can be improved further by taking into

account the influence of the neighboring triangles.

The geometric based subdivision method has several

distinguished properties which make it attractive for surface

modeling and geometry processing.
†
 The subdivision rules depend on the local geometry of

the mesh. Then the interpolating surface inherits the

initial shape of the control mesh fairly and naturally.
†
 For the face based subdivision method, smooth regions

as well as sharp features can be generated automatically

during subdivision.
†
 For the normal based subdivision scheme, not only the

limiting surface is smooth but also the surface normal can

be easily controlled.

The organization of the paper is as follows. In Section 2,

we will introduce some related work. We will propose face

based subdivision scheme and normal based subdivision
scheme in Sections 3 and 4, respectively. The examples

and comparisons with some existing methods are presented

in Section 5. In Section 6, we will conclude the paper.
2. Related work

In addition to polynomial surfaces (see Ref. [8] and

references therein), subdivision surfaces are another kind of

powerful tools for surface interpolation [5,16,20]. A well

known subdivision algorithm for surface interpolation of

triangle meshes is the butterfly subdivision scheme

proposed by Dyn et al. [5]. By this scheme, the limit

surface will be smooth provided that the initial control mesh

is regular, i.e. the valences of all interior vertices are six. For

those extraordinary vertices with valences other than six, the

limit surface will not be smooth at the vertices. To obtain an

overall smooth interpolating surface, Zorin et al. [23] have

presented a modified butterfly subdivision algorithm which

can deal with irregular vertices well. Based on the analysis

of the convergence of the subdivision surfaces [24], new

special rules are defined for extraordinary vertices.

From another point of view, the butterfly subdivision

scheme is parameterization dependent. If a bicubic para-

metric surface has been used to interpolate a local regular

mesh, all with uniform parameterization of the vertices, one

can then derive the subdivision scheme by picking a proper

point from the bicubic surface. Because a butterfly

subdivision surface is a discrete analogue to bicubic surface

interpolation with uniform parameterization, then the final

surface may have undesirable undulations when the triangle

sizes of the original mesh are not regular or the mesh has

ugly changing local shapes. For the same reason, modified

butterfly subdivision surfaces also suffer from some

unnecessary undulations.

Recently, Labsik and Greiner [16] proposed affiffiffi
3

p
-subdivision scheme for surface interpolation of

triangular meshes. Every triangle will be split into nine

sub-triangles with two times of subdivision. Similar to

the butterfly subdivision scheme, the interpolatoryffiffiffi
3

p
-subdivision scheme has also been derived from bicubic

surface fitting. An subdivision scheme was first designed to

interpolate meshes with regular vertices and then special

rules were presented to deal with irregular vertices for the

generation of overall smooth surfaces. Same as butterfly

subdivision scheme, this scheme also suffers from the

problem of surface undulation caused by uniform

parameterization.

Besides the stationary subdivision schemes, smooth and

fair interpolatory surfaces can also be computed implicitly

or by non-stationary subdivision schemes. Halstead et al. [9]

proposed an algorithm for Catmull–Clark surface interp-

olation by solving a large linear system. Kobbelt and

Schröder [15] have presented a variational subdivision

scheme for surface interpolation under the objective of

the fairness of final surfaces. Surfaces by these methods



Fig. 1. Topology split of a triangular mesh.
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are often fairer than those by explicit subdivision

schemes. However, the computation for these algorithms

are costly.

In addition to smoothness and fairness, sharp feature

generation and normal control at some points or some edges

are also important topics for surface modelling. Hoppe et al.

[11] have proposed an algorithm for piecewise smooth

surface reconstruction based on the design of special

subdivision rules along feature edges and feature corners.

Sederberg et al. [18] have generalized the knot insertion

technique of NURBS surfaces to meshes with arbitrary

topology, and features can be generated along smooth

surface generation with special selection of some para-

meters. As to the problem of normal control along

surface edges, the subdivision rules should often be repaired

locally to meet this special requirement [1]. Though these

methods can be used to generate surfaces with sharp

features or prescribed normals, the interpolation of a given

mesh with automatic preservation of features is still an open

problem.

Different from spline based subdivision schemes, the

new subdivision schemes in this paper are geometric and

non-linear. The key ingredient of the new schemes is that

new vertices are computed relating to the local geometry of

the mesh. For face based subdivision scheme, new vertices

are computed as the solutions to weighted least square

fitting of old vertices and neighboring planes. For normal

based subdivision scheme, normal vectors for every

intermediate mesh are computed adaptively and displace-

ments for new vertices are computed as normal combi-

nations. A related work in the literature, where a point is

fitted to a set of planes, is the full range approximation and

quadric error metric algorithm for mesh simplification

[7,10,17]. Our method differs from that for mesh simplifica-

tion greatly. We aim to construct fine meshes from coarse

meshes and every new vertex is the solution to the least

square fitting problem of planes as well as vertices.
3. Face based subdivision of meshes

In this section, we will discuss how to construct

interpolating subdivision surfaces depending on the tri-

angles and vertices of the meshes but not the vertex

valences. The subdivision scheme derived from local

geometry and the shape analysis of the interpolating

surfaces will be presented in Sections 3.1 and 3.2,

respectively.
3.1. Face based subdivision scheme

There are two basic steps for surface interpolation of

meshes by subdivision, topology split and new vertex

computation. Within this paper we present subdivision

schemes with regular topology split, i.e. split every edge
into two edges and split every triangle into four sub-

triangles (see Fig. 1). In this section, we discuss how to

compute new vertices using face based subdivision scheme.

Without loss of generality, we can assume that pk
1pk

2 is

an edge on a mesh, p0 and p1 are two triangles sharing

the edge. Before presenting the subdivision scheme, we

first show a few special cases how to compute a new point

corresponding to the edge. (a) If every neighboring

triangle of vertex pk
1 or of vertex pk

2 is either coplanar

with p0 or coplanar with p1, then the edge is a feature

edge or a flat edge (with zero Gauss curvature). At this

time, the interpolated vertex can be simply chosen as the

midpoint of the edge. (b) If the edge and all its

neighboring triangles form a local convex shape, i.e.

there exists a plane passing through the edge and all

neighboring triangles lie just on one side of the plane,

then the new vertex should be picked on the other side of

the plane and the mesh will be smoothed when the new

vertex has been added.

From a geometric point of view, when the angles or the

maximum angle between neighboring triangles have been

reduced, the refined mesh is smoothed. However, if we

compute new edge vertices just according to the goal that

the angles between neighboring triangles are made smaller,

this will arouse the problem of solving heavy non-linear

equations. With the observation that all neighboring

triangles of an edge approximate the local surface well, an

alternative solution to choose the interpolated point is to

compute a weighted least square fitting problem of the

triangles and vertices.

For the convenience of the following description, we

assume that the vertices adjacent to pk
1 or pk

2 are pk
j (jZ

3,4,.,l). The planes passing through the triangles p0 or

p1 are still denoted as p0 and p1, the planes determined

by the other neighboring triangles are denoted as pj

(jZ2, 3,., lK1) (see Fig. 2). It is clear that the

intersection of planes p0 and p1 is just the line passing

through the edge pk
1pk

2, any point with minimum total

distance to these two planes lies on this line. On the

other hand, the interpolated edge point should be close

to the midpoint of the edge too. If we find a point with

minimum total distance to two planes p0, p1 as well as

to two end vertices pk
1, pk

2, we will obtain the midpoint

of the edge.



Fig. 2. Compute a new vertex for interpolation.
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Let pk
i1

, pk
i2

and pk
i3

be the three vertices of a triangle, the

unit normal vector to the triangle can be computed as

ni Z
ðpk

i2
Kpk

i1
Þ!ðpk

i3
Kpk

i1
Þ

jjðpk
i2

Kpk
i1
Þ!ðpk

i3
Kpk

i1
Þjj

: (1)

Now the plane passing these three points can be denoted as

AipZ0, where AiZ(ai bi ci di) stands for the coefficient and

pZ(xp yp zp 1)T is any point on the plane. The coefficients

ai, bi and ci are just the three components of the unit normal

ni and diZKnipi1
. Moreover, if p is an arbitrary point in

space, the distance from the point to the plane can be

obtained as jAipj.

Assume that the equations for planes pi (iZ0, 1,., lK1)

are AipZ0 (iZ0, 1,., lK1), respectively, and assume that

qkC1Z(x y z 1)T, then the absolute distance from qkC1 to each

plane pi is jAiq
kC1j. Similarly, the points pk

1 and pk
2 can also be

represented in homogenous space as pk
1 Z ðx1 y1 z1 1ÞT and

pk
2Z ðx2 y2 z2 1ÞT. The distance from qkC1 to pk

1 and the

distance from qkC1 to pk
2 are jjqkC1Kpk

1jj and jjqkC1Kpk
2jj,

respectively. Now, we can compute the point qkC1 according

to the criterion that the sum of the weighted distances to all

neighboring planes and to two end vertices reaches a

minimum. For ease of computation we use the distance

square instead of the absolute distance itself. Then we have

FðqkC1Þ Z
XlK1

iZ0

aiðAiq
kC1Þ2 C

X2

jZ1

bjðq
kC1 Kpk

j Þ
2; (2)

where ai (iZ0, 1,., lK1), b1 and b2 are the weights.

Eq. (2) is a quadric equation with respect to the unknown

qkC1, and this equation can be rewritten as

FðqkC1Þ Z ðqkC1ÞT
XlK1

iZ0

aiA
T
i Ai

 !
qkC1 C ðqkC1ÞT

!ðb1Q1 Cb2Q2Þq
kC1ZðqkC1ÞTQqkC1

(3)
where

Q1 Z

1 0 0 Kx1

0 1 0 Ky1

0 0 1 Kz1

Kx1 Ky1 Kz1 x2
1 Cy2

1 Cz2
1

0
BBBB@

1
CCCCA;

Q2 Z

1 0 0 Kx2

0 1 0 Ky2

0 0 1 Kz2

Kx2 Ky2 Kz2 x2
2 Cy2

2 Cz2
2

0
BBBB@

1
CCCCA

and QZ
PlK1

iZ0 aiA
T
i AiCb1Q1Cb2Q2. Because the

matrixes Q1, Q2 and AT
i Ai are all symmetric matrixes, so

is the matrix Q. Let the matrix Q be represented with all its

elements, we have

Q Z

q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

q14 q24 q34 q44

0
BBB@

1
CCCA:

To solve the equation ðqkC1ÞTQqkC1Zmin is equivalent

to solving the system of equations vFðqkC1Þ=vxZ0,

vFðqkC1Þ=vyZ0 and vFðqkC1Þ=vzZ0. This will lead to

the following system of linear equations

q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

0 0 0 1

0
BBB@

1
CCCA

x

y

z

1

0
BBB@

1
CCCAZ

0

0

0

1

0
BBBB@

1
CCCCA: (4)

From Eq. (4) we have the solution as

x

y

z

0
@

1
AZ

q11 q12 q13

q12 q22 q23

q13 q23 q33

0
B@

1
CA

K1
Kq14

Kq24

Kq34

0
B@

1
CA: (5)

No doubt, different choices of the weights in Eq. (2) will

lead to different results. A large weight means much more

influence of the corresponding triangle or vertex to the new

point. We present here a simple and practical choice of the

coefficients. With efficient description of local shapes of a

mesh, we choose coefficients based on areas of triangles and

angles between pairs of neighboring triangles. The bigger a

triangle, the more influence it will have on the local shape of

the interpolating surface. As to the angle, an ideal choice is

the angle between a neighboring triangle and the tangent

plane at the new vertex. A triangle with smaller angle can

always be used to predict the new vertex more accurately.

For practical computation, we estimate this angle from

dihedral angles between neighboring triangles.

Suppose that the unit normal corresponding to triangle pi

is ni (iZ0, 1,., lK1), then we can first compute the angles

qi0
, qi1

between pi with p0 or p1, i.e. qi0
ZcosK1ðnin0Þ
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and qi1
ZcosK1ðnin1Þ. For iZ0, 1, we compute the angles as

qi Z0:25qi0
C0:25qi1

C0:1. For 1!i!l, the angle is picked

as qiZ0:75 minðqi0
; qi1

ÞC0:25 maxðqi0
; qi1

ÞC0:1. The

item 0.1 is used to keep the angle from being zero. If qi is

small, it implies that the corresponding triangle can predict

the new vertex better than other triangles with larger angles.

Let ai be the area of the triangle pi, a simple rule for the

choice of the coefficient ai is that it should be proportional

to ai and anti-proportional to qi. Thus we have

ai Z
ai=qPlK1

jZ0 aj=qj

(iZ0, 1,., lK1). As for the choice of b1 and b2, they can

always be set an equal number so that the solution to Eq. (2)

is just the midpoint of the edge pk
1pk

2 when all the

neighboring triangles are coplanar. One method to choose

b1 or b2 is based on an initial estimation of the solution and

recompute b from this estimation. We will explain this

method in detail in Section 4. Another method is to use a

fixed number for each time of subdivision and a default

choice for these two weights is 0.2.
3.2. Property analysis

In this section, we give a brief property analysis to face

based subdivision surfaces. Sufficient conditions for feature

preservation will be given and the condition for mesh

smoothing will also be discussed.

Let fiðXÞZXTAiXC2BiXCciðiZ0; 1;.;mÞ be a set of

quadric functions of X, where the variable XZ(x, y, z)T, and

AiZAT
i , Bi are 3!3 and 1!3 coefficient matrixes,

respectively. Let f ðXÞZ
Pm

iZ0 sifiðXÞ, we have the following

theorem.

Theorem 1. Let Xi be the solution to equation fi(X)Zmin

(iZ0, 1,., m), �X be the solution to f(X)Zmin, then �X is an

affine combination of all Xis.

Proof. It can be derived that the solution to equation

fi(X)Zmin is XiZKAK1
i Bi, the solution of f(X)Zmin is

�XZKAK1ð
Pm

iZ0 siBiÞ, where AZ
Pm

iZ0 siAi. Thus, we have
�XZ

Pm
iZ0 siðA

K1AiÞXi. This proves the theorem. ,

From Theorem 1 we can see the solution �X will approach

Xi when the coefficient si has been increased. As an
Fig. 3. Feature preservation duri
application, Eq. (3) can be rewritten as follows

FðqkC1Þ Z fFðq
kC1ÞC fEðq

kC1Þ;

where fFðq
kC1ÞZ

PlK1
iZ0 aiðAiq

kC1Þ2 and fEðq
kC1ÞZ

P2
jZ1 bj

ðqkC1Kpk
j Þ

2. From a geometric point of view, the solution to

fF(qkC1)Zmin is the generalized intersection of all

neighboring planes and the solution to fE(qkC1)Zmin is

the midpoint of the edge pk
1pk

2, then the final solution to

F(qkC1)Zmin is their affine combination.

Theorem 2. Let AipZ0 (iZ0, 1,.,m) be a set of planes,

and ai (iZ0, 1,.,m), b be a set of positive numbers, if each

of these planes passes through points pk
1 and pk

2, then

the solution to
Pm

iZ0 aiðAipÞ
2Cb½ðpKpk

1Þ
2 C ðpKpk

2Þ
2�Z

min is 1
2
ðpk

1 Cpk
2Þ.

Proof. When pk
1 and pk

2 are both lying on a plane AipZ0, we

have Aip
k
1Z0 and Aip

k
2Z0. Moreover, the line pk

1pk
2 lies

on the plane too. It is clear that the solution to ðpKpk
1Þ

2C
ðpKpk

2Þ
2 Zmin is pm Z 1

2
ðpk

1 Cpk
2Þ, then AipmZ0 (iZ0,

1,., m). Substituting the point pm, we have

Xm

iZ0

aiðAipmÞ
2 Cb½ðpm Kpk

1Þ
2 C ðpm Kpk

2Þ
2�

Z b½ðpm Kpk
1Þ

2 C ðpm Kpk
2Þ

2�:

This means that both objective functions on either side of

the equality have reached the same minimum at point

pm. ,

From Theorems 1 and 2, we can see that flat regions as

well as sharp features can be preserved during the surface

interpolation processes. Firstly, when an edge pk
1pk

2 lies on a

local flat region, the interpolated point is just the midpoint of

the edge (see Fig. 3(a)). In this way, flat regions cannot only

be preserved, but also the subdivision is uniform. Secondly,

if the edge pk
1pk

2 is a sharp edge, then all neighboring

triangles can be grouped into two planes and these two

planes intersect along the edge pk
1pk

2 (see Fig. 3(b)). From

Theorem 2, the interpolated vertex is the midpoint of the

edge too. So the sharp edges can be preserved well during

surface subdivision.

Besides sharp edges, sharp corners are also important

surface features. Without loss of generality, we can assume

that pk
1 is a feature corner that is the intersection of three
ng surface interpolation.
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planes. In this case, all neighboring triangles passing the

point pk
1 or pk

2 lie on these three planes where two planes

intersect along the edge pk
1pk

2 (see Fig. 3(c)). As discussed at

the end of Section 3.1, the coefficients for the triangles on

the planes passing the edge pk
1pk

2 are always larger than the

coefficients for other triangles passing the corner. Then the

solution to equation FðqkC1ÞZmin is very close to the edge

pk
1pk

2 and the sharp corner pk
1 will be preserved well during

surface interpolation.

Before discussing how a mesh can be smoothed during

subdivision, we present first the definition of the angle

between a triangle and an edge and the definition of ridge

edges. In the following text we denote the plane passing

through a triangle pi as pi too.

Definition 1. Assume that a triangle pi and an edge pk
1pk

2

share a common vertex such as pk
1, the acute angle between

the plane pi and the line pk
1pk

2 is f (see Fig. 4a). Let lc be a

line on the plane pi and perpendicular to pk
1pk

2, then the angle

between the edge pk
1pk

2 and the triangle pi can be defined as

f if the triangle and the projection of pk
2 on the plane lie on

different sides of lc; otherwise, the angle will be defined as

pKf. If pk
1pk

2 is an edge of the triangle pi, the angle between

the edge and the triangle is defined zero.

Definition 2. Assume that pk
1pk

2 be an arbitrary edge on a

local oriented mesh, triangles pi (iZ0, 1,., lK1) are

neighboring to vertex pk
1 or pk

2, we define the edge pk
1pk

2 a

ridge edge if there exists an oriented plane pe passing

through the edge so that all the triangles lie on one side of

the plane and the angles between pairs of oriented planes pi

and pe (iZ0, 1,., lK1) are all acute angles (see Fig. 4b).

From Definition 2, if pk
1pk

2 is a ridge edge and all the

neighboring triangles lie below an oriented plane pe as in

the definition, we can see that every closed volume bounded

by at least four of the neighboring planes lies above

the plane pe. The closed volume bounded by all the planes

pi (iZ0, 1,., lK1) is the maximum volume and we refer

this volume as the bounding set formed by the neighboring

planes. Moreover, the bounding set is a convex set above the

plane pe and the edge pk
1pk

2 is an edge of the bounding set.

As the location of the new vertex corresponding to a ridge

edge, we have the following theorem.

Theorem 3. If pk
1pk

2 is a ridge edge, qkC1 be the solution to

the quadric quadric equation (2), then there exists a plane

passing through the edge so that all the neighboring
Fig. 4. (a) The angle between a triangle and an edge.
triangles of pk
1pk

2 lie on one side of the plane and the point

qkC1 lies on the other side of the plane.

Proof. As in Definition 2, if pk
1pk

2 is a ridge edge, there exists

a plane pe passing through the edge. All the neighboring

triangles pi (iZ0, 1,., lK1) lie at one side (below) the

plane pe and the bounding set lies above the plane. We will

show that qkC1 lies at the same side of the plane pe with the

bounding set. We prove this assertion by reduction to

absurdity.

Besides the bounding set, every three planes partition the

space into a set of trihedrons. Let q be an arbitrary point

below the plane pe, we can then project q onto the planes pi

(iZ0, 1,., lK1), with qi (iZ0, 1,., lK1) as the

projections. By connecting q to qi, we obtain a set of line

segments as qqi (iZ0, 1,., lK1). We can show that all

these line segments lie on one side of a plane pq through the

point q. To choose such a plane pq, we choose first a

trihedron with minimum trihedral angle among all the

trihedrons in which the point q lies. Then, the three

connection lines from q to its projection on three planes of

the chosen trihedron form another trihedron. This new

trihedron is a dual trihedron of the original. Because the

original chosen trihedron has minimum trihedral angle, the

connection line from q to its projection on any other plane

lies within the dual trihedron. With the dual trihedron, we

can find a plane pq through the point q and all the line

segments qqis lie at one side of pq.

When we want to find a plane pq through the point q so

that all line segments qqis as well as qpk
1 and qpk

2 lie at one

side of pq, we can just add two more planes through pk
1 or pk

2

with qpk
1 and qpk

2 as the normals, respectively. In the same

principle as above we will find a plane pq through the point

q, and qqi (iZ0, 1,., lK1), qpk
1 and qpk

2 lie at one side of

pq. If we move the point q a little along the normal of pq

toward the edge pk
1pk

2, all these line segments will be

shortened. This means that q is not the solution to the

quadric quadric equation (2). The theorem is proven. ,

From Theorems 1 and 3, we can see that qkC1 will

approach the midpoint of the edge pk
1pk

2 by increasing the

coefficient b (b1Zb2Zb). Then, with proper choice of

the coefficient, the maximum angle from the edge pk
1qkC1 to

the triangles neighboring to pk
1 will be less than the

maximum angle from the edge pk
1pk

2 to the same set of

triangles. Similarly, the maximum angle from the edge pk
2pk

1

to the triangles neighboring to pk
2 will be reduced when
(b) A ridge edge and its neighboring triangles.



Fig. 5. Vertex smoothing during subdivision.
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the edge pk
2pk

1 has been replaced by pk
2qkC1. Though a

concrete choice of the parameters for mesh smoothing is

beyond the scope of this paper, we present a theorem for

local mesh smoothing under proper choices of the

combination parameters.

Theorem 4. If every edge abutting a mesh vertex is a ridge

edge, then the mesh will be smoothed at the vertex by face

based subdivision.

Proof. As shown in Fig. 5, vk is a fixed vertex on a mesh and

vkpk
i (iZ0, 1,., m) are the set of edges connecting the

vertex vk and its neighboring vertices. For a ridge edge vkpk
i ,

there exists a plane along the edge and the interpolated

vertex qkC1
i lies at the other side of the plane with respect to

the local mesh. The maximum angle between the new edge

vkqkC1
i and the neighboring triangles of vk will be reduced

with proper choice of coefficients for the quadric equation.

When the old triangles have been replaced by the new sub-

triangles, the maximum angle from the new edge vkqkC1
i to

the new set of neighboring triangles of vk is less than the

maximum angle from the old edge to the original

neighboring triangles. This just means that the local mesh

at vertex vk has been smoothed after subdivision. ,

For other types of edges within a mesh, some of them

may become ridge edges after a few steps of subdivision and

the mesh will be smoothed during subdivision. For general

types of edges, because we compute the interpolated vertex

in a least square fitting sense of local triangles and vertices,

then new added vertices are always close to the old

edges and the shape of the original control mesh can be kept

well.
4. Surface interpolation under normal constraint

In this section, we will present a new algorithm for

smooth surface interpolation under normal or tangent plane

constraint. At first we introduce a normal based subdivision

scheme for smooth surface interpolation. Then an improved

geometric subdivision algorithm is presented with the

combination of normal based subdivision and shape

optimization.
4.1. Normal based subdivision scheme

The basic idea for normal based subdivision is that the

displacement vector for every new vertex is computed as a

combination of normal vectors at old vertices, and the

vertex normals are computed adaptively for each time of

subdivision. We will show that the limit surface is G1

smooth with proper choice of a free parameter.

It is clear that the computation of the normal at a vertex is

equivalent to the determination of the tangent plane at the

vertex. Moreover, the chord tangent angles between edges

and tangent planes at the edge end points can be used to

measure the smoothness of meshes. Since there are many

different ways for normal selection of meshes, the rule for

normal based subdivision is that all chord tangent angles

around a fixed vertex are close to each other. As discussed in

the following text, this rule can help to achieve the

smoothness of the limit surfaces.

In this paper, we compute normal vector to every vertex

as a weighted average of normals of its neighboring

triangles. Though the chord tangent angles are not exactly

equal, but the computation is easy and the results are

satisfying. Suppose that pj (jZ0, 1,., miK1) are the

triangles sharing the vertex pk
i , for each triangle pj the angle

at the vertex pk
i is fj and the normal of the triangle is nj, then

the normal at the vertex pk
i can be estimated as

nk
i Z

PmiK1
jZ0 fjnj

k
PmiK1

jZ0 fjnjk
: (6)

With normal vector at pk
i defined, the face tangent angle

between the triangle pj and the tangent plane at pk
i can be

computed as the angle between the normals nk
i and nj.

Moreover, all edges on a mesh can then be classified into

two categories according to the local shapes defined by the

normals and the edges.

Definition 3. Let pk
i pk

j be an arbitrary edge on a mesh, the

normal vectors at vertices pk
i and pk

j are nk
i and nk

j ,

respectively. Let dk
i Znk

i ðp
k
i Kpk

j Þ=2 and dk
j Znk

j ðp
k
j Kpk

i Þ=2,

the edge pk
i pk

j is defined as a convex edge when dk
i dk

j O0 or

defined as an inflection edge otherwise.

Let vk be a vertex on the mesh after kth subdivision, pk
i

(iZ0, 1,., lK1) are its first round neighboring vertices, let

the unit normals at vk and pk
i (iZ0, 1,., lK1) are nk

v and nk
i

(iZ0, 1,., lK1), respectively, then the new point qkC1
i

corresponding to edge vkpk
i is computed as

qkC1
i Z

1

2
ðvk Cpk

i ÞCwðdk
vnk

v Cdk
i nk

i Þ; (7)

where dk
v Z 1

2
ðvk Kpk

i Þn
k
v and dk

i Z 1
2
ðpk

i KvkÞnk
i . The para-

meter w here is a positive free parameter which will be

used to control the convergence and smoothness of the

subdivision surface.

Let 4k
i be the unsigned angle between the chord vkpk

i and

the tangent plane at vk and gk
i be the unsigned angle between



Fig. 6. Compute the interpolated vertex by adding a displacement vector.
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the chord pk
i vk and the tangent plane at pk

i (see Fig. 6), we

have 4k
i !p=2 and gk

i !p=2. Because the vectors nk
v, nk

i and

vkpk
i are approximately coplanar with enough times of

subdivision, we can always treat convex or inflection edges

as on planes. If the edge vkpk
i is a convex edge, the

displacement vector dk
vnk

v Cdk
i nk

i points toward either of the

tangent planes at the edge end points. If the edge vkpk
i is an

inflection edge and 4k
i Cgk

i !p=2, the vector dk
vnk

v Cdk
i nk

i

will point toward the tangent plane at vk or the tangent plane

at pk
i with larger chord tangent angle. For other types of

inflection edges, the displacement vector points toward the

tangent plane with smaller chord tangent angle. This is

similar to normal based subdivision for curve design [22]. If

4k
i Cgk

i Op=2 the displacement vector lies on the side with

smaller chord tangent angle, the interpolating surface may

be local self-intersected near some sharp corners. This can

be remedied just by inversing the displacement vector or

choosing a fixed point on the inflection edge.

Without taking account of the sign, the absolute value of

dk
v or dk

i can be reformulated as

jdk
v j Z

1

2
ðvk Kpk

i Þ

����
����sin 4k

i ; (8)

jdk
i j Z

1

2
ðpk

i KvkÞ

����
����sin gk

i : (9)

From Eqs. (8) and (9) we have

4k
i zsin 4k

i Z
jdk

v j
1
2
ðvk Kpk

i Þ
�� �� ;

gk
i zsin gk

i Z
jdk

i j
1
2
ðpk

i KvkÞ
�� �� :

To illustrate the convergence and smoothness of the limit

surface, we should analyze the smoothness at every initial

and intermediate vertex. For this analysis, we have the

following theorem.

Theorem 5. Let vk be a vertex on the mesh after kth

refinement, pk
i (iZ0, 1,.,lK1) are its first round neighbor-

ing vertices. If all face tangent angles around vk are less

than p/2 and at least one abutting edge is a convex edge,
then there exists a proper choice of w and the limit surface is

convergent and smooth at the vertex vk.

Proof. To prove the convergence and smoothness of the

limit surface at the vertex vk, we should only prove that the

maximum chord tangent angle max0%i%lK1f4
k
i g will

approach zero when k goes to infinity.

At first, we estimate the new chord tangent angle at qkC1
i .

Because we compute the normal vector or the tangent plane

at qkC1
i with all the chord tangent angles at the vertex as

close to each other, we can then assume that the tangent

plane at qkC1
i is approximately paralleling to the edge vkqkC1

i

(see Fig. 6). Let gkC1
i be the angle between the chord vkqkC1

i

and the tangent plane at qkC1
i , then we have

gkC1
i z

qkC1
i K 1

2
ðvk Cpk

i Þ
�� ��

1
2
ðpk

i KvkÞ
�� �� %

wjdk
v j

1
2
ðpk

i KvkÞ
�� ��C

wjdk
i j

1
2
ðpk

i KvkÞ
�� ��

Z w sin 4
k
i Cw sin g

k
i %2w maxf4k

i ;g
k
i g:

To estimate the angle 4kC1
i , we just compute the angle

according to the following two cases.

(i) ðdk
vnk

v; d
k
i nk

i ÞO0

In this case, the angle between dk
vnk

v and dk
i nk

i is an acute

angle. From the principle of triangle, we have

qkC1
i K 1

2
ðvk Cpk

i Þ
�� ��

1
2
ðpk

i KvkÞ
�� �� Z

wjdk
vnk

v Cdk
i nk

i j
1
2
ðpk

i KvkÞ
�� ��

Rmax
wjdk

v j
1
2
ðpk

i KvkÞ
�� �� ; wjdk

i j
1
2
ðpk

i KvkÞ
�� ��

( )
zw maxf4k

i ;g
k
i g:

So, we have

4kC1
i %4k

i Kw maxf4k
i ;g

k
i g% ð1 KwÞmaxf4k

i ;g
k
i g:

(ii) ðdk
vnk

v; d
k
i nk

i Þ!0

In this case, the angle between dk
vnk

v and dk
i nk

i is an obtuse

angle. From the principle of triangle again, we have

qkC1
i K 1

2
ðvk Cpk

i Þ
�� ��

1
2
ðpk

i KvkÞ
�� ��

Z
wjdk

vnk
v Cdk

i nk
i j

1
2
ðpk

i KvkÞ
�� �� R

wjjdk
v jK jdk

i jj
1
2
ðpk

i KvkÞ
�� �� zwj4k

i Kgk
i j:

From the definition of displacement vector for inflection

edge, the vector lies on the same side with larger chord

tangent angle. Then, we have 4kC1
i %4k

i Kwj4k
i Kgk

i j when

4k
i Ogk

i , and we have 4kC1
i %4k

i Cwj4k
i Kgk

i j otherwise.

From these two inequalities, we have

4kC1
i % ð1 KwÞ4k

i Cwgk
i :

By summarizing case (i) and case (ii), we have

4kC1
i % ð1 KwÞmaxf4k

i ;g
k
i gCwsk

i gk
i ;

where sk
i Z0 when ðdk

vnk
v; d

k
i nk

i ÞO0 and sk
i Z1 when

ðdk
vnk

v; d
k
i nk

i Þ!0. Let rZ
PlK1

iZ0 sk
i , and by summing all



Fig. 7. Interpolation under normal constraint.

X. Yang / Computer-Aided Design 37 (2005) 497–508 505
4kC1
i , we have

XlK1

iZ0

4kC1
i % ð1 KwÞ

XlK1

iZ0

maxf4k
i ;g

k
i gCw

XlK1

iZ0

sk
i gk

i

% ½lð1 KwÞCrw� max
0%i%lK1

f4k
i ;g

k
i g:

Dividing by l on either side of the inequality, we have

1

l

XlK1

iZ0

4kC1
i % 1 Kw C

r

l
w

� �
max

0%i%lK1
f4k

i ;g
k
i g:

The abutting edges to a fixed vertex are refined after

each subdivision, and some inflection edges will be

fixed after a few times of subdivision, then we can assume

that 0%r!l. If wO0, we have 1KwC(r/l)w!1. On

the other hand, when we choose w!0.5, we have

gkC1
i !2w maxf4k

i ;g
k
i g!maxf4k

i ;g
k
i g. When the normal

vector at vertex vk has been refined for new subdivision,

all the chord tangent angles at the vertex will be close to

their average value. Denoting the new chord tangent angles

at vk still as 4kC1
i (iZ0, 1,., lK1), then we have

max
0%i%lK1

f4kC1
i ;gkC1

i g%c max
0%i%lK1

f4k
i ;g

k
i g;

where cZmaxf2w; 1KwC ðr=lÞwg. For 0!w!0.5, we

have c!1 and limk/N maxif4
k
i gZ0. This just implies that

the limit position of tangent planes at the vertex vk exists and

all abutting chords converge to the limit plane. The theorem

is proven. ,

From the proof of the theorem we can see that if the

normals at some vertices of an initial control mesh are fixed

during subdivision then the subdivision surface converges

and interpolates the fixed normals in the end. For practical

construction of subdivision surfaces, we can always choose

w between 0.2 and 0.4 for fast convergence and smoothness

purposes. Moreover, we have the following corollary.

Corollary. If there exists a tangent plane to every vertex of

an initial mesh and all face tangent angles are less than p/2,

the interpolating surface by normal based subdivision is G1

smooth.
4.2. Surface interpolation under tangent plane constraint

The normal based subdivision scheme presented in

Section 4.1 can be used to construct smooth interpolating

surfaces. However, since any surface depends on the local

normal vectors, then the surface fairness may be sensitive to

normal noises. To improve the fairness of an interpolating

surface further, we compute every edge vertex under the

constraint of tangent planes at the edge end points as well as

the neighboring triangles. The edge vertex computed by

normal based subdivision is used as an initial estimation of

the new interpolated vertex. With this estimation, the

parameter of the objective function for the new vertex will

be computed explicitly.
As shown in Fig. 7, when we want to compute an edge

vertex along the edge pk
1pk

2, the tangent planes at vertices pk
1

and pk
2 will be used to predict the point position together

with the planes passing through the neighboring triangles. In

a similar way as face based subdivision, we compute the

new edge vertex by minimizing an objective function. To

keep the interpolated point from deviating the midpoint of

the edge too much, another constraint is that the distance

from the new vertex to either end of the edge should be as

small as possible. Suppose that the neighboring planes

passing the points pk
1 or pk

2 are AipZ0 (iZ0, 1,., lK1), the

two tangent planes are AipZ0 (iZl, 1,., lC1), then the

object function which defines the edge vertex can be

formulated as

FðqkC1Þ Z
XlC1

iZ0

aiðAiq
kC1Þ2 Cb

X2

iZ1

ðqkC1 Kpk
i Þ

2; (10)

where ais and b are positive coefficients.

In a similar way to Section 3.1, we pick values for ais

based on the angles between pairs of planes and areas of

neighboring triangles. Let qi0
and qi1

be the angles between

the triangle pi with the tangent planes at vertex pk
1 and pk

2,

respectively, then the deviation angle of the triangle pi can

be chosen as qiZ0:85qi0
C0:15qi1

C0:1 or qiZ0:15qi0
C

0:85qi1
C0:1 depending on whether pi is neighboring to pk

1

or neighboring to pk
2. If pi passes through the edge pk

1pk
2, the

deviation angle is chosen as qi Z0:5qi0
C0:5qi1

C0:1. The

deviation angles for tangent planes at pk
1 and pk

2 are both

chosen a constant such as 0.05. Let alZalC1 be the average

area of all neighboring triangles, the coefficient ai can be

chosen proportional to ai/qi and under the constraintPlC1
iZ0 aiZ1.

To determine the parameter b, we choose an initial

interpolating point by normal based subdivision scheme

�qkC1 Z
1

2
ðpk

1 Cpk
2ÞCwd1nk

1 Cwd2nk
2;

where d1Z 1
2
ðpk

1Kpk
2Þn

k
1 and d2Z 1

2
ðpk

2Kpk
1Þn

k
2. We choose

here wZ0.25 for initial vertex computation. Let

�qkC1Z ð �xkC1; �ykC1; �zkC1Þ, substituting the coordinates of



Fig. 8. (a) Initial control mesh; (b) face based interpolating surface; and (c) the mesh of the interpolating surface.
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�qkC1 into Eq. (4), we have

q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

0 0 0 1

0
BBB@

1
CCCA

�xkC1

�ykC1

�zkC1

1

0
BBBBB@

1
CCCCCAZ

3x

3y

3z

1

0
BBB@

1
CCCA: (11)

By expressing all elements qij (1%i%3, i%j%4) in terms of

the original planes and vertices, we have

3x Z
XlC1

iZ0

aiaiðAi �q
kC1ÞKbðxk

1 Cxk
2 K2 �xkC1Þ;

3y Z
XlC1

iZ0

aibiðAi �q
kC1ÞKbðyk

1 Cyk
2 K2 �ykC1Þ;

3z Z
XlC1

iZ0

aiciðAi �q
kC1ÞKbðzk

1 Czk
2 K2�zkC1Þ:

Then we can choose a value for the parameter b

according to the following equation

32
x C32

y C32
z Z min: (12)
Fig. 9. (a) Initial control mesh; (b) butterfly subdivision surface; (c) normal based
With simple calculation, the solution to Eq. (12) is bZAB/B2,

where AZ
PlC1

iZ0 ai !Ai �q
kC1 !ni and BZpk

1Cpk
2K2 �qkC1.

It can be easily verified that if A is parallel to B the solution

to Eq. (10) will just be �qkC1. To avoid being a negative

number or to keep the interpolating surface as natural as

possible, we choose bZ0.4 when AB/B2!0.4 or choose

bZ2.0 when AB/B2O2.0.

When the parameter b has been selected, Eq. (10) is just

a quadric equation with respect to the unknown qkC1.

By using the same method as in Section 3.1, the equation

F(qkC1)Zmin can be solved explicitly.
5. Examples and comparison

We have tested the new algorithms with a lot of different

types of geometric models and we sample a few here to

show the results. The comparisons with butterfly subdivi-

sion scheme and modified butterfly method are also

presented.

In the first example the original control mesh is a

simplified fandisk model (see Fig. 8(a)). There are some

salient features on the mesh, moreover, the triangle sizes

differ from each other greatly. To interpolate the mesh by
subdivision; and (d) surface interpolation under tangent plane constraint.



Fig. 10. (a) Initial control mesh; (b) interpolation using butterfly lgorithm; (c) interpolation using modified butterfly algorithm; (d) normal based subdivision;

and (e) interpolation under tangent plane constraint.
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a piecewise smooth surface with sharp edges and sharp

corners preservation, we use the face based subdivision

scheme. Without special care of the features, we obtain an

interpolating surface after three times of subdivision in

Fig. 8(b). All surfaces within this paper are flat shaded to

show the smoothness or features on the surface. From the

figures we can see that the curved regions become smoother

while flat regions and sharp features are preserved well. To

view the regularity of the interpolating surface, the

subdivided mesh is illustrated together with the shaded

surface (see Fig. 8(c)). Although the triangle sizes of the

original mesh are ugly irregular, the final surface still looks

well.

In the second example, we interpolate a head model

using butterfly subdivision scheme, normal based subdivi-

sion scheme and subdivision under tangent plane constraint,

respectively. The butterfly subdivision surface after three

times of subdivision is shown in Fig. 9(b). It can be noticed

that there appear several singular points in the surface.
Fig. 11. (a) Initial control mesh; (b) interpolation using butterfly algorith
In Fig. 9(c) and (d) are two interpolating surfaces using

normal based subdivision method and subdivision under

tangent plane constraint. There is hardly any unnecessary

undulation and distortion in the interpolating surfaces.

Because we compute subdivision parameter for surface in

Fig. 9(d) based on initial estimation of new vertices using

normal based subdivision, these two surfaces are very

similar.

In the last two examples we compare the new subdivision

method with butterfly subdivision method. A solid star

model with uniform triangulation is presented in Fig. 10(a).

In Fig. 10(b) and (c) are interpolating surfaces by butterfly

subdivision scheme and modified butterfly subdivision

scheme after three times of subdivision. In Fig. 10(d) and

(e) are interpolating surfaces using normal based subdivi-

sion scheme and subdivision under tangent plane constraint.

These last two figures also show that the fairness of the

interpolating surface has been improved under the tangent

plane constraint compared to using the normal based
m; and (c) interpolation using normal based subdivision scheme.
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subdivision algorithm directly. Comparing the surfaces by

new method with surfaces by butterfly subdivision algor-

ithm, the deformation and undulation near sharp edges and

concave corners have been removed efficiently. In Fig. 11,

we present another interesting example for surface interp-

olation using butterfly subdivision scheme (Fig. 11(b)) and

normal based subdivision scheme (Fig. 11(c)). Both

examples in Figs. 10 and 11 show that the surfaces obtained

by the new method look more fairly and naturally than some

previous methods.
6. Conclusions and discussions

We have proposed two new subdivision schemes, face

based subdivision scheme and normal based subdivision

scheme, for surface interpolation of triangle meshes. Face

based subdivision scheme computes new vertices by solving

a least square fitting problem. Several interesting properties

of this scheme have been investigated. As a result, flat

regions are always smoothed while features are preserved

well during subdivision.

Normal based subdivision scheme is another simple

scheme for surface interpolation. The limit surfaces by this

scheme are G1 smooth. Moreover, the surface shapes can be

improved further under the constraints of tangent planes and

neighboring triangles together. The examples we have

tested also show that the shapes of the interpolating surfaces

using this new method are more fair and natural than using

some traditional subdivision methods.

There are several interesting topics that deserve further

study in the future. For face based subdivision, how to choose

the fitting coefficients for optimal piecewise smooth surface

construction is an interesting topic. For normal based

subdivision, the new problem is how to design a convexity

preserving subdivision scheme for surface interpolation. We

have computed the new vertex corresponding to every edge

with regular topology split, but we believe that this method

also works for new vertex computation corresponding to

some other types of topology split.
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