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Abstract

Subdivision surfaces are generated by repeated approximation or interpolation from initial control meshes. In this paper, two new non-
linear subdivision schemes, face based subdivision scheme and normal based subdivision scheme, are introduced for surface interpolation of
triangular meshes. With a given coarse mesh more and more details will be added to the surface when the triangles have been split and
refined. Because every intermediate mesh is a piecewise linear approximation to the final surface, the first type of subdivision
scheme computes each new vertex as the solution to a least square fitting problem of selected old vertices and their neighboring
triangles. Consequently, sharp features as well as smooth regions are generated automatically. For the second type of subdivision,
the displacement for every new vertex is computed as a combination of normals at old vertices. By computing the vertex normals adaptively,
the limit surface is G' smooth. The fairness of the interpolating surface can be improved further by using the neighboring faces. Because the
new vertices by either of these two schemes depend on the local geometry, but not the vertex valences, the interpolating surface inherits
the shape of the initial control mesh more fairly and naturally. Several examples are also presented to show the efficiency of the

new algorithms.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Subdivision surface is an efficient geometric modeling
tool that is generated by repeated approximation or
interpolation from an initial control mesh [1-6,21]. For
each time of subdivision, the old mesh will be split and the
vertices of the mesh will be refined for a new mesh. With
ease to implement and flexibility to represent a variety of
complex geometric shapes, subdivision surfaces have been
used widely in the fields of computer aided geometric
design and computer graphics. Besides surface modeling,
subdivision surfaces also find applications in digital surface
processing [19].

In the past few decades, there is an abundance of literature
dealing with the problem of mesh subdivision and smooth
surface generation. According to whether the original
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meshes will be interpolated or not, subdivision surfaces can
be classified into two categories, interpolatory subdivision
surfaces and approximate subdivision surfaces. The first type
of subdivision surfaces compute and add new vertices to the
old set of vertices for each step of subdivision [5,12,13,16].
The second type of subdivision surfaces compute all
vertices for a new mesh and replace the old mesh by a new
mesh for each subdivision [2,4,14,15]. On the other hand,
subdivision surfaces can also be grouped into stationary
subdivision surfaces and non-stationary subdivision surfaces
just according to the criterion that the subdivision rules will
be the same or will be changed during the subdivision
processes.

Many of current subdivision schemes are spline based
and new vertices are computed as linear combinations of old
vertices. The combination coefficients are often derived by
generalizing some blending functions or interpolation
functions in discrete form to vertices with general valences.
Because the blending functions and interpolation
functions are generally with limited supports, new vertices
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for a subdivision surface can then be computed locally.
These schemes will be referred as linear subdivision
schemes. Though linear subdivision schemes can be used
to generate smooth surfaces, when some features are desired
on the final subdivision surfaces, special rules or parameters
should often be applied [11,18].

In this paper, we investigate a geometric based method
for surface interpolation of meshes by subdivision. Instead
of a simple linear combination of old vertices, every new
interpolated vertex will be computed according to the local
geometry of the mesh. For each step of subdivision we
compute and add one new vertex corresponding to every
edge of the mesh and replace each old triangle by four new
sub-triangles. Depending on the formulae for new vertices,
two new subdivision schemes, face based subdivision
scheme and normal based subdivision scheme will be
introduced.

As for the face based subdivision scheme, we observe
that each intermediate mesh is a piecewise linear approxi-
mation to the final surface, and then we can compute new
vertices based on the local geometry of the mesh. To
compute a new vertex corresponding to an edge, the edge
itself and the planes determined by the neighboring triangles
of the edge end points will be used to predict the new vertex.
Then, we compute the new vertex as the solution to the least
square fitting problem of old vertices and old planes. By
choosing the fitting coefficients properly, smooth regions as
well as sharp features implied by the original control mesh
can be generated automatically.

To obtain a global smooth surface, we propose another
simple yet efficient new subdivision scheme, the normal
based subdivision scheme, for surface interpolation. The
displacement vector from the midpoint of an edge to the
new vertex is given as a combination of normal vectors at
the edge end points. It can be shown that when the normal
vectors are refined adaptively for each time of subdivision
the limit surface will be smooth. Moreover, the shape of the
interpolating surface can be improved further by taking into
account the influence of the neighboring triangles.

The geometric based subdivision method has several
distinguished properties which make it attractive for surface
modeling and geometry processing.

e The subdivision rules depend on the local geometry of
the mesh. Then the interpolating surface inherits the
initial shape of the control mesh fairly and naturally.

e For the face based subdivision method, smooth regions
as well as sharp features can be generated automatically
during subdivision.

e For the normal based subdivision scheme, not only the
limiting surface is smooth but also the surface normal can
be easily controlled.

The organization of the paper is as follows. In Section 2,
we will introduce some related work. We will propose face
based subdivision scheme and normal based subdivision

scheme in Sections 3 and 4, respectively. The examples
and comparisons with some existing methods are presented
in Section 5. In Section 6, we will conclude the paper.

2. Related work

In addition to polynomial surfaces (see Ref. [8] and
references therein), subdivision surfaces are another kind of
powerful tools for surface interpolation [5,16,20]. A well
known subdivision algorithm for surface interpolation of
triangle meshes is the butterfly subdivision scheme
proposed by Dyn et al. [5]. By this scheme, the limit
surface will be smooth provided that the initial control mesh
is regular, i.e. the valences of all interior vertices are six. For
those extraordinary vertices with valences other than six, the
limit surface will not be smooth at the vertices. To obtain an
overall smooth interpolating surface, Zorin et al. [23] have
presented a modified butterfly subdivision algorithm which
can deal with irregular vertices well. Based on the analysis
of the convergence of the subdivision surfaces [24], new
special rules are defined for extraordinary vertices.

From another point of view, the butterfly subdivision
scheme is parameterization dependent. If a bicubic para-
metric surface has been used to interpolate a local regular
mesh, all with uniform parameterization of the vertices, one
can then derive the subdivision scheme by picking a proper
point from the bicubic surface. Because a butterfly
subdivision surface is a discrete analogue to bicubic surface
interpolation with uniform parameterization, then the final
surface may have undesirable undulations when the triangle
sizes of the original mesh are not regular or the mesh has
ugly changing local shapes. For the same reason, modified
butterfly subdivision surfaces also suffer from some
unnecessary undulations.

Recently, Labsik and Greiner [16] proposed a
\/3-subdivision scheme for surface interpolation of
triangular meshes. Every triangle will be split into nine
sub-triangles with two times of subdivision. Similar to
the butterfly subdivision scheme, the interpolatory
/3-subdivision scheme has also been derived from bicubic
surface fitting. An subdivision scheme was first designed to
interpolate meshes with regular vertices and then special
rules were presented to deal with irregular vertices for the
generation of overall smooth surfaces. Same as butterfly
subdivision scheme, this scheme also suffers from the
problem of surface undulation caused by uniform
parameterization.

Besides the stationary subdivision schemes, smooth and
fair interpolatory surfaces can also be computed implicitly
or by non-stationary subdivision schemes. Halstead et al. [9]
proposed an algorithm for Catmull-Clark surface interp-
olation by solving a large linear system. Kobbelt and
Schroder [15] have presented a variational subdivision
scheme for surface interpolation under the objective of
the fairness of final surfaces. Surfaces by these methods
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are often fairer than those by explicit subdivision
schemes. However, the computation for these algorithms
are costly.

In addition to smoothness and fairness, sharp feature
generation and normal control at some points or some edges
are also important topics for surface modelling. Hoppe et al.
[11] have proposed an algorithm for piecewise smooth
surface reconstruction based on the design of special
subdivision rules along feature edges and feature corners.
Sederberg et al. [18] have generalized the knot insertion
technique of NURBS surfaces to meshes with arbitrary
topology, and features can be generated along smooth
surface generation with special selection of some para-
meters. As to the problem of normal control along
surface edges, the subdivision rules should often be repaired
locally to meet this special requirement [1]. Though these
methods can be used to generate surfaces with sharp
features or prescribed normals, the interpolation of a given
mesh with automatic preservation of features is still an open
problem.

Different from spline based subdivision schemes, the
new subdivision schemes in this paper are geometric and
non-linear. The key ingredient of the new schemes is that
new vertices are computed relating to the local geometry of
the mesh. For face based subdivision scheme, new vertices
are computed as the solutions to weighted least square
fitting of old vertices and neighboring planes. For normal
based subdivision scheme, normal vectors for every
intermediate mesh are computed adaptively and displace-
ments for new vertices are computed as normal combi-
nations. A related work in the literature, where a point is
fitted to a set of planes, is the full range approximation and
quadric error metric algorithm for mesh simplification
[7,10,17]. Our method differs from that for mesh simplifica-
tion greatly. We aim to construct fine meshes from coarse
meshes and every new vertex is the solution to the least
square fitting problem of planes as well as vertices.

3. Face based subdivision of meshes

In this section, we will discuss how to construct
interpolating subdivision surfaces depending on the tri-
angles and vertices of the meshes but not the vertex
valences. The subdivision scheme derived from local
geometry and the shape analysis of the interpolating
surfaces will be presented in Sections 3.1 and 3.2,
respectively.

3.1. Face based subdivision scheme

There are two basic steps for surface interpolation of
meshes by subdivision, topology split and new vertex
computation. Within this paper we present subdivision
schemes with regular topology split, i.e. split every edge

Fig. 1. Topology split of a triangular mesh.

into two edges and split every triangle into four sub-
triangles (see Fig. 1). In this section, we discuss how to
compute new vertices using face based subdivision scheme.

Without loss of generality, we can assume that p‘p% is
an edge on a mesh, my and m; are two triangles sharing
the edge. Before presenting the subdivision scheme, we
first show a few special cases how to compute a new point
corresponding to the edge. (a) If every neighboring
triangle of vertex p% or of vertex p% is either coplanar
with 7y or coplanar with 7, then the edge is a feature
edge or a flat edge (with zero Gauss curvature). At this
time, the interpolated vertex can be simply chosen as the
midpoint of the edge. (b) If the edge and all its
neighboring triangles form a local convex shape, i.e.
there exists a plane passing through the edge and all
neighboring triangles lie just on one side of the plane,
then the new vertex should be picked on the other side of
the plane and the mesh will be smoothed when the new
vertex has been added.

From a geometric point of view, when the angles or the
maximum angle between neighboring triangles have been
reduced, the refined mesh is smoothed. However, if we
compute new edge vertices just according to the goal that
the angles between neighboring triangles are made smaller,
this will arouse the problem of solving heavy non-linear
equations. With the observation that all neighboring
triangles of an edge approximate the local surface well, an
alternative solution to choose the interpolated point is to
compute a weighted least square fitting problem of the
triangles and vertices.

For the convenience of the following description, we
assume that the vertices adjacent to p¥ or p& are pj’-‘ (=
3,4,...,)). The planes passing through the triangles m, or
7, are still denoted as my and m, the planes determined
by the other neighboring triangles are denoted as ;
(G=2, 3,..., I—1) (see Fig. 2). It is clear that the
intersection of planes m, and 7 is just the line passing
through the edge pip%, any point with minimum total
distance to these two planes lies on this line. On the
other hand, the interpolated edge point should be close
to the midpoint of the edge too. If we find a point with
minimum total distance to two planes m, m; as well as
to two end vertices pX, p5, we will obtain the midpoint
of the edge.
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Fig. 2. Compute a new vertex for interpolation.

Let pf-‘] , pf-‘z and pf} be the three vertices of a triangle, the
unit normal vector to the triangle can be computed as

Pk =Pl X0l — )
C@E =) X @F — Pl

(D

Now the plane passing these three points can be denoted as
A;p=0, where A;=(a; b; c; d;) stands for the coefficient and
p=(x, ¥z, D" is any point on the plane. The coefficients
a;, b; and c; are just the three components of the unit normal
n; and d; = —n;p; . Moreover, if p is an arbitrary point in
space, the distance from the point to the plane can be
obtained as |A;p|.

Assume that the equations for planes m; (i=0, 1,...,/—1)
are Ap=0 (i=0, 1,..., [—1), respectively, and assume that
¢ '=(xyz1)", then the absolute distance from ¢** ! to each
plane 7;is |A;¢* *'|. Similarly, the points p¥ and p% can also be
represented in homogenous space as pf = (x; y, z; 1)T and
P5=(x, y» 2o DT. The distance from ¢ to p* and the
distance from ¢**! to p& are ||¢*"" — p¥|| and ||¢T — phII,
respectively. Now, we can compute the point ¢* * ! according
to the criterion that the sum of the weighted distances to all
neighboring planes and to two end vertices reaches a
minimum. For ease of computation we use the distance
square instead of the absolute distance itself. Then we have

-1 2
F(@™) = aAd™ +) 8¢ —p), )
i=0 j=1

where o; (i=0, 1,...,[—1), 8, and (3, are the weights.

Eq. (2) is a quadric equation with respect to the unknown

¢“!, and this equation can be rewritten as

-1
F(dH) = (¢)T <Z aiAiTA;> ¢+ (T
=0

X (8,0 + B,0)g" 1o 3)

where

1 0 0 —X

o 1 0 —y,
Q=146 o —z ’

—x; =y o~z Xyt

1 0 0 —X

0 1 0 -y,
=16 o 1 —2

2, 2., 2
—X; Y2 % X ty;tz

and Q=) wATA; + 8,0, + 6,0,. Because the
matrixes Q;, Q> and ATA; are all symmetric matrixes, so
is the matrix Q. Let the matrix Q be represented with all its
elements, we have

911 4912 913 414
912 922 4923 424
913 4923 433 434
d14 4924 434 Ga4
To solve the equation (@™HT0g"! = min is equivalent
to solving the system of equations dF(g“"')/dx=0,

OF(¢""1/dy=0 and dF(¢“"')/0z=0. This will lead to
the following system of linear equations

q11 912 913 414 X 0
qd12 4922 4923 {424 y 0 )
913 923 933 434 Z 0
0 0 0 1 1 1
From Eq. (4) we have the solution as
-1
q11 4912 413 —q14
=192 92 92 —G |- )

Z q13 4923 433 —q34

No doubt, different choices of the weights in Eq. (2) will
lead to different results. A large weight means much more
influence of the corresponding triangle or vertex to the new
point. We present here a simple and practical choice of the
coefficients. With efficient description of local shapes of a
mesh, we choose coefficients based on areas of triangles and
angles between pairs of neighboring triangles. The bigger a
triangle, the more influence it will have on the local shape of
the interpolating surface. As to the angle, an ideal choice is
the angle between a neighboring triangle and the tangent
plane at the new vertex. A triangle with smaller angle can
always be used to predict the new vertex more accurately.
For practical computation, we estimate this angle from
dihedral angles between neighboring triangles.

Suppose that the unit normal corresponding to triangle m;
isn; (i=0, 1,..., [—1), then we can first compute the angles
0;,, 0; between m; with my or m, ie. ;= cos” ! (m;ng)
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and 0; = cos '(m;ny). For i=0, 1, we compute the angles as
0;=0.250;, + 0.256; + 0.1. For 1 <i <[, the angle is picked
as 0,= O 75 mm(@lo, ¢;)+ 0.25 max(0,,6; )+ 0.1. The
item 0.1 is used to keep the angle from being zero. If 6; is
small, it implies that the corresponding triangle can predict
the new vertex better than other triangles with larger angles.

Let a; be the area of the triangle ;, a simple rule for the
choice of the coefficient «; is that it should be proportional
to a; and anti-proportional to ;. Thus we have

a;/0
o =
E a/0

(i=0, 1,..., I—1). As for the choice of #; and §,, they can
always be set an equal number so that the solution to Eq. (2)
is just the midpoint of the edge p'p% when all the
neighboring triangles are coplanar. One method to choose
B, or (3, is based on an initial estimation of the solution and
recompute § from this estimation. We will explain this
method in detail in Section 4. Another method is to use a
fixed number for each time of subdivision and a default
choice for these two weights is 0.2.

3.2. Property analysis

In this section, we give a brief property analysis to face
based subdivision surfaces. Sufficient conditions for feature
preservation will be given and the condition for mesh
smoothing will also be discussed.

Let f(X)=X"A.X+ 2B X+ ¢;(i=0, 1, ...,m) be a set of
quadric functions of X, where the variable X=(x, y, z)T, and
A;= AiT, B; are 3X3 and 1X3 coefficient matrixes,
respectively. Let f(X) = >y s;/i(X), we have the following
theorem.

Theorem 1. Let X; be the solution to equation f(X)=min
(i=0, 1,..., m), X be the solution to {X)=min, then X is an
affine combination of all X;s.

Proof. It can be derived that the solution to equation
fi(X)=min is X;=—A; 1Bl, the solution of f{iX)=min is
X——A (ZmosB) where A =Y 7' 5;A;. Thus, we have
X=S"s:(A" TA, )X;. This proves the theorem. []

From Theorem 1 we can see the solution X will approach
X; when the coefficient s; has been increased. As an

(a) (b)

application, Eq. (3) can be rewritten as follows

F@™ = folg"™") + fuld™),

where fr(¢“"1) = Y5) ai(Aig")? and fo(d") =L, 8;
(¢*" — p)*. From a geometric point of view, the solution to
frlg" ! ) min is the generalized intersection of all
neighboring planes and the solution to fx(¢*"")=min is
the midpoint of the edge p‘p5, then the final solution to
F(q k“) min is their affine combination.

Theorem 2. Let Ap=0 (i=0, 1,...,m) be a set of planes,
and a; (i=0, 1,...,m), B be a set of positive numbers, if each
of these planes passes through points p* and p%, then
the solution 10 3o ay(Aip)* + Bl(p — P)* + (p— p5)*1 =
min is %(plf + ph).

Proof. When p¥ and p% are both lying on a plane A;p=0, we
have A;p% =0 and A;p% = 0. Moreover, the line pp% lies
on the plane too. It is clear that the solution to (p — pX)* +
(p—p5)* =min is p, =3 (i +pb). then Ap,=0 (i=0,
1,..., m). Substituting the point p,,, we have

> alAipn)’ + Bl — 1 + P — 15’
i=0

= Bl(pm — P + (P — P51

This means that both objective functions on either side of
the equality have reached the same minimum at point
Pm- U

From Theorems 1 and 2, we can see that flat regions as
well as sharp features can be preserved during the surface
interpolation processes. Firstly, when an edge pXpA lies on a
local flat region, the interpolated point is just the midpoint of
the edge (see Fig. 3(a)). In this way, flat regions cannot only
be preserved, but also the subdivision is uniform. Secondly,
if the edge p*p5 is a sharp edge, then all neighboring
triangles can be grouped into two planes and these two
planes intersect along the edge p‘p% (see Fig. 3(b)). From
Theorem 2, the interpolated vertex is the midpoint of the
edge too. So the sharp edges can be preserved well during
surface subdivision.

Besides sharp edges, sharp corners are also important
surface features. Without loss of generality, we can assume
that p! is a feature corner that is the intersection of three

(c)

Fig. 3. Feature preservation during surface interpolation.
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planes. In this case, all neighboring triangles passing the
point p¥ or p4 lie on these three planes where two planes
intersect along the edge p*p5 (see Fig. 3(c)). As discussed at
the end of Section 3.1, the coefficients for the triangles on
the planes passing the edge pXp% are always larger than the
coefficients for other triangles passing the corner. Then the
solution to equation F(¢“*') = min is very close to the edge
Pp% and the sharp corner p! will be preserved well during
surface interpolation.

Before discussing how a mesh can be smoothed during
subdivision, we present first the definition of the angle
between a triangle and an edge and the definition of ridge
edges. In the following text we denote the plane passing
through a triangle m; as ; too.

Definition 1. Assume that a triangle 7; and an edge pXp%
share a common vertex such as p!, the acute angle between
the plane mr; and the line pp% is ¢ (see Fig. 4a). Let I. be a
line on the plane 7; and perpendicular to pfp%, then the angle
between the edge p*p5 and the triangle 7; can be defined as
¢ if the triangle and the projection of p5 on the plane lie on
different sides of /.; otherwise, the angle will be defined as
w— . If p*p} is an edge of the triangle 7, the angle between
the edge and the triangle is defined zero.

Definition 2. Assume that p%p% be an arbitrary edge on a
local oriented mesh, triangles m; (i=0, 1,..., [—1) are
neighboring to vertex pX or p5, we define the edge p‘ph a
ridge edge if there exists an oriented plane 7, passing
through the edge so that all the triangles lie on one side of
the plane and the angles between pairs of oriented planes m;
and 7, (i=0, 1,..., [—1) are all acute angles (see Fig. 4b).

From Definition 2, if pXp4 is a ridge edge and all the
neighboring triangles lie below an oriented plane 7, as in
the definition, we can see that every closed volume bounded
by at least four of the neighboring planes lies above
the plane m,. The closed volume bounded by all the planes
w; (i=0, 1,..., [—1) is the maximum volume and we refer
this volume as the bounding set formed by the neighboring
planes. Moreover, the bounding set is a convex set above the
plane 7, and the edge p‘p5 is an edge of the bounding set.
As the location of the new vertex corresponding to a ridge
edge, we have the following theorem.

Theorem 3. If pp% is a ridge edge, ¢**' be the solution to
the quadric quadric equation (2), then there exists a plane
passing through the edge so that all the neighboring

(a)

triangles of pXp& lie on one side of the plane and the point
g“ ! lies on the other side of the plane.

Proof. As in Definition 2, if p¥p is a ridge edge, there exists
a plane m, passing through the edge. All the neighboring
triangles m; (i=0, 1,..., I[—1) lie at one side (below) the
plane 7, and the bounding set lies above the plane. We will
show that ¢* ™! lies at the same side of the plane , with the
bounding set. We prove this assertion by reduction to
absurdity.

Besides the bounding set, every three planes partition the
space into a set of trihedrons. Let g be an arbitrary point
below the plane m,, we can then project ¢ onto the planes m;
(i=0, 1,..., [—1), with ¢; (i=0, 1,..., [—1) as the
projections. By connecting g to g;, we obtain a set of line
segments as gq; (i=0, 1,..., I—1). We can show that all
these line segments lie on one side of a plane 7, through the
point g. To choose such a plane m, we choose first a
trihedron with minimum trihedral angle among all the
trihedrons in which the point g lies. Then, the three
connection lines from ¢ to its projection on three planes of
the chosen trihedron form another trihedron. This new
trihedron is a dual trihedron of the original. Because the
original chosen trihedron has minimum trihedral angle, the
connection line from ¢ to its projection on any other plane
lies within the dual trihedron. With the dual trihedron, we
can find a plane , through the point g and all the line
segments gg;s lie at one side of .

When we want to find a plane , through the point g so
that all line segments gg;s as well as gpt and gp5 lie at one
side of ,, we can just add two more planes through pror ph
with gp% and gp% as the normals, respectively. In the same
principle as above we will find a plane 7, through the point
g, and gq; (i=0, 1,..., [—1), gp* and gp} lie at one side of
m,. If we move the point ¢ a little along the normal of =,
toward the edge p‘p%, all these line segments will be
shortened. This means that g is not the solution to the
quadric quadric equation (2). The theorem is proven. []

From Theorems 1 and 3, we can see that ¢**' will

approach the midpoint of the edge pp% by increasing the
coefficient 8 (8;=0,=0). Then, with proper choice of
the coefficient, the maximum angle from the edge p%¢**! to
the triangles neighboring to p% will be less than the
maximum angle from the edge p'p5 to the same set of
triangles. Similarly, the maximum angle from the edge p5p*
to the triangles neighboring to p4 will be reduced when

Fig. 4. (a) The angle between a triangle and an edge. (b) A ridge edge and its neighboring triangles.
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Fig. 5. Vertex smoothing during subdivision.

the edge pip' has been replaced by pig“™'. Though a
concrete choice of the parameters for mesh smoothing is
beyond the scope of this paper, we present a theorem for
local mesh smoothing under proper choices of the
combination parameters.

Theorem 4. If every edge abutting a mesh vertex is a ridge
edge, then the mesh will be smoothed at the vertex by face
based subdivision.

Proof. As shown in Fig. 5, v is a fixed vertex on a mesh and
vkpf (i=0, 1,..., m) are the set of edges connecting the
vertex v* and its neighboring vertices. For a ridge edge v*p¥,
there exists a plane along the edge and the interpolated
vertex ¢t lies at the other side of the plane with respect to
the local mesh. The maximum angle between the new edge
Vg™ and the neighboring triangles of v* will be reduced
with proper choice of coefficients for the quadric equation.
When the old triangles have been replaced by the new sub-
triangles, the maximum angle from the new edge v*¢**! to
the new set of neighboring triangles of V¥ is less than the
maximum angle from the old edge to the original
neighboring triangles. This just means that the local mesh
at vertex v* has been smoothed after subdivision. [J

For other types of edges within a mesh, some of them
may become ridge edges after a few steps of subdivision and
the mesh will be smoothed during subdivision. For general
types of edges, because we compute the interpolated vertex
in a least square fitting sense of local triangles and vertices,
then new added vertices are always close to the old
edges and the shape of the original control mesh can be kept
well.

4. Surface interpolation under normal constraint

In this section, we will present a new algorithm for
smooth surface interpolation under normal or tangent plane
constraint. At first we introduce a normal based subdivision
scheme for smooth surface interpolation. Then an improved
geometric subdivision algorithm is presented with the
combination of normal based subdivision and shape
optimization.

4.1. Normal based subdivision scheme

The basic idea for normal based subdivision is that the
displacement vector for every new vertex is computed as a
combination of normal vectors at old vertices, and the
vertex normals are computed adaptively for each time of
subdivision. We will show that the limit surface is G'
smooth with proper choice of a free parameter.

It is clear that the computation of the normal at a vertex is
equivalent to the determination of the tangent plane at the
vertex. Moreover, the chord tangent angles between edges
and tangent planes at the edge end points can be used to
measure the smoothness of meshes. Since there are many
different ways for normal selection of meshes, the rule for
normal based subdivision is that all chord tangent angles
around a fixed vertex are close to each other. As discussed in
the following text, this rule can help to achieve the
smoothness of the limit surfaces.

In this paper, we compute normal vector to every vertex
as a weighted average of normals of its neighboring
triangles. Though the chord tangent angles are not exactly
equal, but the computation is easy and the results are
satisfying. Suppose that m; (j=O0, 1,..., m;—1) are the
triangles sharing the vertex p¥, for each triangle w; the angle
at the vertex p’ is ¢; and the normal of the triangle is n;, then
the normal at the vertex p¥ can be estimated as

—1

. Dty Bn

Ty AT
1> "5 ol

With normal vector at p* defined, the face tangent angle
between the triangle 7; and the tangent plane at p¥ can be
computed as the angle between the normals nf and n,.
Moreover, all edges on a mesh can then be classified into
two categories according to the local shapes defined by the
normals and the edges.

(6)

Definition 3. Let pfpj]»‘ be an arbitrary edge on a mesh, the
normal vectors at vertices p’ and pj’»‘ are n and njk
respectively. Let d¥ = nf(p* — pj’f)/2 and d,k = n}‘ k— b2,
the edge pf»‘pj'? is defined as a convex edge when df]dj’-‘ >0or

defined as an inflection edge otherwise.

Let v* be a vertex on the mesh after kth subdivision, p¥
(i=0, 1,...,I—1) are its first round neighboring vertices, let
the unit normals at v* and pf‘ (i=0,1,...,1—1) are n’; and nf‘
(i=0, 1,..., [—1), respectively, then the new point qf“

corresponding to edge v*p¥ is computed as
1
gi " =08 +p)) Fwdiny + dind), ™

where d* = 3 = phnt and d* = 3 (p* —v*)nk. The para-
meter w here is a positive free parameter which will be
used to control the convergence and smoothness of the
subdivision surface.

Let ¢¥ be the unsigned angle between the chord v¥p¥ and
the tangent plane at v* and v¥ be the unsigned angle between
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Fig. 6. Compute the interpolated vertex by adding a displacement vector.

the chord pfv* and the tangent plane at p¥ (see Fig. 6), we
have ¢¥ < 7/2 and y* < 7/2. Because the vectors nf, n* and
Vvipk are approximately coplanar with enough times of
subdivision, we can always treat convex or inflection edges
as on planes. If the edge vp¥ is a convex edge, the
displacement vector dn* + d*n* points toward either of the
tangent planes at the edge end points. If the edge v*p¥ is an
inflection edge and ¢f + v¥ < /2, the vector dn* + dfn¥
will point toward the tangent plane at v* or the tangent plane
at p* with larger chord tangent angle. For other types of
inflection edges, the displacement vector points toward the
tangent plane with smaller chord tangent angle. This is
similar to normal based subdivision for curve design [22]. If
@* + v¥ > /2 the displacement vector lies on the side with
smaller chord tangent angle, the interpolating surface may
be local self-intersected near some sharp corners. This can
be remedied just by inversing the displacement vector or
choosing a fixed point on the inflection edge.

Without taking account of the sign, the absolute value of
d* or d* can be reformulated as

1 .
|df| = ’§<v" — pi)|sin ¢, (8)

1 .
| = lg(pﬁ‘ —v9)sin 7. ©)

From Egs. (8) and (9) we have

k
ko & |dy]
Q; =sin@Q; = +————,
’ "o =ph
k
Kok |d} |
v =siny;, = ————.
T e

To illustrate the convergence and smoothness of the limit
surface, we should analyze the smoothness at every initial
and intermediate vertex. For this analysis, we have the
following theorem.

Theorem 5. Let V¥ be a vertex on the mesh after kth
refinement, p¥ (i=0, 1,....1— 1) are its first round neighbor-
ing vertices. If all face tangent angles around vV~ are less
than /2 and at least one abutting edge is a convex edge,

then there exists a proper choice of w and the limit surface is
convergent and smooth at the vertex V*.

Proof. To prove the convergence and smoothness of the
limit surface at the vertex v*, we should only prove that the
maximum chord tangent angle maxg<<._i{p} will
approach zero when k goes to infinity.

At first, we estimate the new chord tangent angle at ¢t
Because we compute the normal vector or the tangent plane
at g"*! with all the chord tangent angles at the vertex as
close to each other, we can then assume that the tangent
plane at ¢*! is approximately paralleling to the edge v ¢**!

(see Fig. 6). Let vY¥! be the angle between the chord ¥ ¢!

and the tangent plane at ¢**!, then we have
gt T 30D wid] wldf|
’ B = T BeE AT el =)

= wsin ¢f + w sin y¥ < 2w max{ef, v5}.

To estimate the angle ¢**!, we just compute the angle
according to the following two cases.

(i) (dyny, dini)> 0

In this case, the angle between d*n% and d¥nf is an acute
angle. From the principle of triangle, we have

g =3 0F +pD|  wldknk + dfnf

Lk — b)) Lk —h)|
wldk| wld¥| k _k
> max , =~w max{e;,v:}.
{uw—m 50f =) o
So, we have

of T < of —wmax{ef, v} < (1 — wymax{e}, vi}.

(ii) (dyny, dfn) <0
In this case, the angle between d*n¥ and d*n¥ is an obtuse
angle. From the principle of triangle again, we have

k+1 ko ok

g — 30" +pD)|
[x(f =9
_ vl +dinfl il — il ey
Tk — R T Lk — | T T
2@ =h)] 7@ =VH)]

From the definition of displacement vector for inflection
edge, the vector lies on the same side with larger chord
tangent angle. Then, we have ™! < ¢f — w|p* — v¥| when
¥ > % and we have ¢! < oF + w|pf — v¥| otherwise.

i

From these two inequalities, we have

oi T < (1 —wgl +wyt.
By summarizing case (i) and case (ii), we have
ot < (1 —wymax{ef, vi} + wsivi,

where s5=0 when (d*n*,d*nf)>0 and s*=1 when

P =

(d*nk,d"n) < 0. Let r=3"E}s*, and by summing all
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¥, we have

-1 -1 -1
S o < —w)Y maxdef, v} Fw ) siyt
i=0 i=0

i=0

<[ - koK.
<U —w) +rw] max {o;, i}

Dividing by / on either side of the inequality, we have
1 lz_lj(p]-‘H < (1 —w +£W) max {oF, v}
I =™ ) o<i<i—1 77

The abutting edges to a fixed vertex are refined after
each subdivision, and some inflection edges will be
fixed after a few times of subdivision, then we can assume
that 0<r<Il. If w>0, we have 1—w+(/)w<1. On
the other hand, when we choose w<0.5, we have
v < 2w max{e¥, v} < max{¢p}, v*}. When the normal
vector at vertex v* has been refined for new subdivision,
all the chord tangent angles at the vertex will be close to
their average value. Denoting the new chord tangent angles
at V¥ still as **! (i=0, 1,..., [—1), then we have
k+1

max {o}
o 1

k+1 ko k

vio d<e max {gp, ik

where ¢=max{2w,1 —w+ (r/Dw}. For 0<w<0.5, we
have ¢<1 and lim,_,., max,/{o*} = 0. This just implies that
the limit position of tangent planes at the vertex v* exists and
all abutting chords converge to the limit plane. The theorem
is proven. [

From the proof of the theorem we can see that if the
normals at some vertices of an initial control mesh are fixed
during subdivision then the subdivision surface converges
and interpolates the fixed normals in the end. For practical
construction of subdivision surfaces, we can always choose
w between 0.2 and 0.4 for fast convergence and smoothness
purposes. Moreover, we have the following corollary.

Corollary. If there exists a tangent plane to every vertex of
an initial mesh and all face tangent angles are less than /2,
the interpolating surface by normal based subdivision is G
smooth.

4.2. Surface interpolation under tangent plane constraint

The normal based subdivision scheme presented in
Section 4.1 can be used to construct smooth interpolating
surfaces. However, since any surface depends on the local
normal vectors, then the surface fairness may be sensitive to
normal noises. To improve the fairness of an interpolating
surface further, we compute every edge vertex under the
constraint of tangent planes at the edge end points as well as
the neighboring triangles. The edge vertex computed by
normal based subdivision is used as an initial estimation of
the new interpolated vertex. With this estimation, the
parameter of the objective function for the new vertex will
be computed explicitly.

Fig. 7. Interpolation under normal constraint.

As shown in Fig. 7, when we want to compute an edge
vertex along the edge pfp%, the tangent planes at vertices p*
and p5 will be used to predict the point position together
with the planes passing through the neighboring triangles. In
a similar way as face based subdivision, we compute the
new edge vertex by minimizing an objective function. To
keep the interpolated point from deviating the midpoint of
the edge too much, another constraint is that the distance
from the new vertex to either end of the edge should be as
small as possible. Suppose that the neighboring planes
passing the points p* or p& are Ap=0 (i=0, 1,...,[— 1), the
two tangent planes are Ap=0 (i=1[, 1,..., [+1), then the
object function which defines the edge vertex can be
formulated as

[+1 2

F@™) =) aAd™? +8) (" —ph, (10)

i=0 i=1

where a;s and 8 are positive coefficients.

In a similar way to Section 3.1, we pick values for o;s
based on the angles between pairs of planes and areas of
neighboring triangles. Let 6; and 6; be the angles between
the triangle 7; with the tangent planes at vertex p% and p%,
respectively, then the deviation angle of the triangle m; can
be chosen as 6; = 0.856; + 0.156; + 0.1 or §;=0.150; +
0.856;, + 0.1 depending on whether ; is neighboring to Pk
or neighboring to p5. If m; passes through the edge pXp5, the
deviation angle is chosen as §; = 0.56; + 0.56; + 0.1. The
deviation angles for tangent planes at p¥ and p are both
chosen a constant such as 0.05. Let ¢;=a, 4 be the average
area of all neighboring triangles, the coefficient «; can be
chosen proportional to a;/0; and under the constraint
Z{itl) o;= 1.

To determine the parameter 3, we choose an initial
interpolating point by normal based subdivision scheme

B 1
gt =< +pb) + wdin| + wdynb,

|

where d, = 1(pk — ph)nk and d, = 1(p} — p*)nk. We choose
here w=0.25 for initial vertex computation. Let

c}kH:('k“, y'kH,ZkH), substituting the coordinates of
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Fig. 8. (a) Initial control mesh; (b) face based interpolating surface; and (c) the mesh of the interpolating surface.

gt into Eq. (4), we have

!
qu 912 913 414 Ex
qi2 92 923 94 ! _| & (11
q13 4923 4933 434 Fht1 &
0O 0 O 1 1 1

By expressing all elements g; (1 <i<3,i<j<4)in terms of
the original planes and vertices, we have

[+1
e =Y aaAg ) — BOK + x5 — 28,
i=0

1+1
& =D abiAg ) — BOK +)5 — 25,
i=0

I+1
.= acAGd T =BG + 5 —27.
=0

Then we can choose a value for the parameter
according to the following equation

8)2( + 35 + ef = min. (12)

(a)

With simple calculation, the solution to Eq. (12) is 8 =AB/B?,
where A=Y"F0a; XA,g"" Xn; and B=pk + pk — 25"
It can be easily verified that if A is parallel to B the solution
to Eq. (10) will just be ¢“"'. To avoid being a negative
number or to keep the interpolating surface as natural as
possible, we choose 3=0.4 when AB/B*><0.4 or choose
B8=2.0 when AB/B>>2.0.

When the parameter § has been selected, Eq. (10) is just
a quadric equation with respect to the unknown ¢**'.
By using the same method as in Section 3.1, the equation
F(¢""")=min can be solved explicitly.

5. Examples and comparison

We have tested the new algorithms with a lot of different
types of geometric models and we sample a few here to
show the results. The comparisons with butterfly subdivi-
sion scheme and modified butterfly method are also
presented.

In the first example the original control mesh is a
simplified fandisk model (see Fig. 8(a)). There are some
salient features on the mesh, moreover, the triangle sizes
differ from each other greatly. To interpolate the mesh by

Fig. 9. (a) Initial control mesh; (b) butterfly subdivision surface; (c) normal based subdivision; and (d) surface interpolation under tangent plane constraint.
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(d)

(b)
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(e)

Fig. 10. (a) Initial control mesh; (b) interpolation using butterfly lgorithm; (c) interpolation using modified butterfly algorithm; (d) normal based subdivision;

and (e) interpolation under tangent plane constraint.

a piecewise smooth surface with sharp edges and sharp
corners preservation, we use the face based subdivision
scheme. Without special care of the features, we obtain an
interpolating surface after three times of subdivision in
Fig. 8(b). All surfaces within this paper are flat shaded to
show the smoothness or features on the surface. From the
figures we can see that the curved regions become smoother
while flat regions and sharp features are preserved well. To
view the regularity of the interpolating surface, the
subdivided mesh is illustrated together with the shaded
surface (see Fig. 8(c)). Although the triangle sizes of the
original mesh are ugly irregular, the final surface still looks
well.

In the second example, we interpolate a head model
using butterfly subdivision scheme, normal based subdivi-
sion scheme and subdivision under tangent plane constraint,
respectively. The butterfly subdivision surface after three
times of subdivision is shown in Fig. 9(b). It can be noticed
that there appear several singular points in the surface.

In Fig. 9(c) and (d) are two interpolating surfaces using
normal based subdivision method and subdivision under
tangent plane constraint. There is hardly any unnecessary
undulation and distortion in the interpolating surfaces.
Because we compute subdivision parameter for surface in
Fig. 9(d) based on initial estimation of new vertices using
normal based subdivision, these two surfaces are very
similar.

In the last two examples we compare the new subdivision
method with butterfly subdivision method. A solid star
model with uniform triangulation is presented in Fig. 10(a).
In Fig. 10(b) and (c) are interpolating surfaces by butterfly
subdivision scheme and modified butterfly subdivision
scheme after three times of subdivision. In Fig. 10(d) and
(e) are interpolating surfaces using normal based subdivi-
sion scheme and subdivision under tangent plane constraint.
These last two figures also show that the fairness of the
interpolating surface has been improved under the tangent
plane constraint compared to using the normal based

Fig. 11. (a) Initial control mesh; (b) interpolation using butterfly algorithm; and (c) interpolation using normal based subdivision scheme.
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subdivision algorithm directly. Comparing the surfaces by
new method with surfaces by butterfly subdivision algor-
ithm, the deformation and undulation near sharp edges and
concave corners have been removed efficiently. In Fig. 11,
we present another interesting example for surface interp-
olation using butterfly subdivision scheme (Fig. 11(b)) and
normal based subdivision scheme (Fig. 11(c)). Both
examples in Figs. 10 and 11 show that the surfaces obtained
by the new method look more fairly and naturally than some
previous methods.

6. Conclusions and discussions

We have proposed two new subdivision schemes, face
based subdivision scheme and normal based subdivision
scheme, for surface interpolation of triangle meshes. Face
based subdivision scheme computes new vertices by solving
a least square fitting problem. Several interesting properties
of this scheme have been investigated. As a result, flat
regions are always smoothed while features are preserved
well during subdivision.

Normal based subdivision scheme is another simple
scheme for surface interpolation. The limit surfaces by this
scheme are G' smooth. Moreover, the surface shapes can be
improved further under the constraints of tangent planes and
neighboring triangles together. The examples we have
tested also show that the shapes of the interpolating surfaces
using this new method are more fair and natural than using
some traditional subdivision methods.

There are several interesting topics that deserve further
study in the future. For face based subdivision, how to choose
the fitting coefficients for optimal piecewise smooth surface
construction is an interesting topic. For normal based
subdivision, the new problem is how to design a convexity
preserving subdivision scheme for surface interpolation. We
have computed the new vertex corresponding to every edge
with regular topology split, but we believe that this method
also works for new vertex computation corresponding to
some other types of topology split.
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