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Abstract

In this article a novel algorithm is presented for 2D shape interpolation using the intrinsic
shape parameters of a piecewise linear curve. The skeletons of two given shapes are computed
and the smooth transformation of distance fields is driven by metamorphosis from the skele-
ton of the source object to that of the target one. We introduce feature graphs, linear forms of
skeletons, to guide the construction of intermediate skeleton. If the topologies of the source
object and the target one are different, their feature graphs will be automatically extended with
equivalent topologies. Then we apply the technique of intrinsic shape parameters to the
smooth transition of the extended feature graphs, which will guide the metamorphosis of
the skeletons. Not only can the new approach be capable of morphing between objects with
different topological genus, but also the topologies and the shapes of the intermediate objects
can be controlled efficiently.
© 2003 Elsevier Inc. All rights reserved.

Keywords: Skeleton; Medial axis transformation; Distance transformation; Morphing; Shape interpola-
tion; Shape blending

* Corresponding author.
E-mail addresses: zdgao@163.net (W. Che), yxn@zju.edu.cn (X. Yang), wgz@math.zju.edu.cn
(G. Wang).

1524-0703/$ - see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.gmod.2003.11.001


mail to: zdgao@163.net

W. Che et al. | Graphical Models 66 (2004) 102—-126 103
1. Introduction

Morphing or Metamorphosis, is a fluid transformation and gradual interpolation
from one shape to another. It has received much attention in recent years because of
its wide application to movie and television, computer animation, computer graph-
ics, and industrial design. Shape interpolation is also playing an important role even
in the bio-medical field, where high veracity is required.

1.1. The problem

Given two shapes, there are incalculable transformations that take one shape into
the other. Although it difficult to define an intrinsic morphing sequence between two
arbitrary shapes, an intuitive solution clearly exists to equal human perception. The
metamorphosis should be smooth, and it should keep as much as possible of the two
shapes during the transformation. The morphing problem is usually dealt with as
two subproblems. The first one is to find a correspondence between primitives of
the two shapes. The second one is to find trajectories that corresponding primitives
travel during the morphing process.

A reasonable correspondence between the features of two given shapes is a prere-
quisite to produce an acceptable intermediate sequence. Of course it is a purely sub-
ject aesthetic criteria and relies on the context in which the transformation is
performed. For this reason, user input is crucial for good morphs of the objects. Fea-
ture matching is related to the significant intrinsic characteristic of the objects, or
even the way as the user wants to be. Moreover, we believe that a reasonable corre-
spondence involves not only the correspondence of geometric elements, such as fea-
ture point and feature line, but the correspondence of topological information as
well. Take, for an instance in Fig. 1. It is a transformation between two shapes of
‘A’ and ‘A, in which a reasonable vertex correspondence pattern should be from:
v, to vy (i =1,2,3). However, there are at least two morphing sequences satisfying
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Fig. 1. Morphing between figures and the two morphing schemes are acceptable although they possess the
same vertex correspondence: v/, < v, i =1,2,3.



104 W. Che et al. | Graphical Models 66 (2004) 102—-126

our subjective aesthetic criteria and no one dissents in choosing such a suitable cor-
respondence manner.

The key to such multi-feasibility of feature correspondence is how to distinguish
between the differences of their topologies. We adopt medial axis to represent the
geometric structure of a shape. One property of the medial axis (transform) is that
it preserves the topological information of the original domain and they are homo-
topically equivalent.

In Section 1.2 we will review some related works and will give an overview of our
algorithm in Section 1.3.

1.2. Previous works

The representation types have a strong impact on the algorithms for shape trans-
formation, where polygons in 2D or polyhedrons in 3D are the popular geometric
models in computer graphics at present. The algorithms for polygon or polyhedron
morphing usually consist of two steps: establishing a mapping from each point of the
source object to a point on the target one, then interpolating between each pair of
corresponding points. More details about variants of mesh morphing algorithms
developed up to now can be found in a survey [1].

Mesh morphing can produce surprising effect in virtue of technology of computer
graphics, but it will get into trouble in the case of two shapes which are not topolog-
ically homeomorphous, partly because the current methods are based on the param-
etrization of the shapes and are difficult to address the correspondence issue. That is
to say, performing topological changes to a model can be challenging with a surface
description alone.

Sederberg et al. [17] presented a shape blending method using intrinsic variables,
in which interpolated entities are edge lengths and angles between edges rather than
vertex locations, and this method is also referred as edge-angle interpolation. In [12],
the feature curves of the objects are connected by dependency graphs and the inter-
mediate features are generated by applying this method to the two graphs. By de-
composing two polygons into equivalent star-shaped pieces associated with each
other by skeleton, respectively, Shapira and Rappoport [18] proposed a method that
the trajectories of star-shaped pieces are controlled by skeleton via edge-angle inter-
polation. Blanding generalized the idea of skeleton to the 3D case, in which the to-
pological difference is no longer sensitive as before [5]. The trimmed skeleton of the
symmetric difference between two polygons is the intermediate shape.

Techniques that use implicit function interpolation can handle the change in to-
pologies gracefully and self-intersection surface is avoided [21]. But the user has little
control over the intermediate shapes. In [8], intermediate objects are constructed by a
distance field metamorphosis and the interpolation of the distance field is controlled
by a set of correspondence anchor points with the aid of a warp function. In another
paper [21], the solution to the shape transformation problem is solved as a problem
of scattered data interpolation and it can be generalized to any number of dimen-
sions. Another piece of related work in shape interpolation by distance field was pre-
sented in [16], in which the model of object representation is Union of Circles (UoC).
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Barequet and Sharir [3] presented a novel algorithm for piecewise-linear surface
reconstruction from a series of parallel polygonal cross sections. This algorithm han-
dles slices with multiple nested polygons and does not rely on any resemblance be-
tween them. But if the topologies of two successive polygons are different, it will
abruptly change just at the beginning or at the end of the morph sequence, rather
than evolving gradually. Surazhsky et al. [19] presented an improved method for
morphing between two polygonal shapes on the plane, in which the resulting surface
does contain any horizontal triangles and guarantees that all the topology changes
occur at mid-height.

Beier and Neely [4] proposed a feature-based metamorphosis method. An object is
treated as a collection of points that could be influenced by feature lines having a
field of influence. Using this method, an animator begins with establishing corre-
spondence with pairs of line segments between two images. The warp between these
images is determined from the local coordinate systems of a pair of feature line seg-
ments or their weighted average if more pairs are specified. Lerios et al. [13] extended
the feature-based image metamorphosis technique to the metamorphosis of 3D solid
objects based on their geometric features. This method allows the operator to treat
3D geometry in a similar way as 2D image, but more types of feature elements have
to be designed.

These mentioned methods offer the advantage that they are insensitive to the dif-
ferent topologies of objects during the transformation [3-5,8,13,16,19,21]. But they
suffer from the disadvantage that the topologies of intermediate shapes are hard
to be controlled. As pointed out above they cannot be exactly specified just by the
feature correspondence or anchor points.

There are some methods aiming at topological evolution. Takahashi et al. [20] did
research on it about 3D mesh and presented an approach to explicitly and precisely
control a topological transition by inserting and intermediating shape called a key-
frame in between the input 3D meshes at the point where the topological transition
should take place. The resultant 3D mesh is created by interpolating the source
meshes and the key-frame with a tetrahedral 4D mesh and then intersecting the in-
terpolating mesh with another 4D hypersurface. This procedure cannot provide the
users with an intuitive approach to the problem for practical use. A method is pre-
sented based on the modeling of Reeb-based construction for complex shapes [10].
Similar to the skeleton of a shape, the Reeb graph plays an important role in con-
trollable topological changes, as it does here, so the evolution of topology can be
specified by the transformation of the Reeb graph and it allows users to more pre-
cisely and more intuitively design how the morph should be. One drawback of this
method is that the generation of Reeb graph is sensitive to the selection of the height
axis.

1.3. Overview
The main contribution of this article is a novel algorithm for planar shape morp-

hing with controllable interpolation of topologies. The general idea is first to com-
pute the feature graphs of the skeletons when the medial axes of two given shapes
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are obtained and the correspondence between the resulting skeletons have been es-
tablished; then we can construct the isomorphic feature graphs and generate the
in-between ones via intrinsic shape parameters; the intermediate feature graphs will
guide the metamorphosis of the skeletons and we obtain the blending shapes with
combination of their corresponding distance fields. The main steps are listed as
below:

1.3.1. Medial axis transformation

There is a rich history of research on skeletonization, and a complete discussion of
its details is beyond the scope of this paper. A brief account of medial axis transfor-
mation is given in Section 2.1 and the readers interested in it are referred to extensive
literature on this problem. Many algorithms can be applied to the skeletal computa-
tion of a shape [6,9,11,14]. In this paper, the skeleton of a shape are calculated as
presented in [6]. Based on the image thinning technology, we compute the initial skel-
eton with the same topology of the object; then the initial skeleton is deformed and
led to its accurate locations in distance field using Snake model technique. Thus the
generated skeleton is not only locating at accurate positions, but also with correct
connectivity, and topology.

1.3.2. Feature correspondence of skeletal graphs

The correspondence problem is solved as a skeleton matching process. A skeleton
is a geometric graph, called skeletal graph here. In a sense, it is difficult to access ob-
jectively the quality of a given match, being true of human’s aesthetic value. The user
interaction is indispensable to achieve more spectacular, impressive, and accurate re-
sults. We perform the feature correspondence of skeletal graphs in computer-aided
manual manner.

1.3.3. Feature graph

Once the feature correspondence of skeletons is specified, we then create the skel-
etal feature graphs, linear forms of the skeletons, based upon the corresponding fea-
ture vertices. In this paper our discussion will focus on the topic, including definition,
isomorphic construction, and intermediate generation. The details will be described
in Sections 3-5.

1.3.4. Skeleton-driven morphing

With the aid of intermediate feature graphs, the in-between skeletons can be ob-
tained and drive the medial axis transformation of the two original shapes to recon-
struct the intermediate shapes. Furthermore, we show that the solution has a
desirable property that the intermediate skeletal graphs are symmetric with respect
to time step.

In the next section we describe some preliminary works which will be used in the
following sections. In Section 3 we introduce the concept of feature graph for a skel-
etal graph. The detailed algorithms of how to construct two isomorphic feature
graphs and the in-between graphs will be given in Sections 4 and 5. In Section 6
we present the algorithm for the skeleton-driven metamorphosis of distance fields
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Table 1
Glossary
Symbol Description
A, V logical AND and OR operators
AorB object
04 boundary of 4
MA(A) medial axis of 4
MAT(4) medial axis transformation of 4
G skeletal graph
14 vertex set
E edge set
v feature vertex set
G extended geometric graph of G after feature correspondence
T feature graph of G, a linear form of G
A’ temporary denotation of A during some operations, such as vertex split,
edge correspondence
C a curve or an edge of a skeletal graph
vorv vertex
l edge
14 element number of V if V' is a set or length if V' is a vector
P mapping of vertex correspondence on ¥, to Vj
F relation: x and y are in the same family if xFy holds
R denotation: it is denoted as xRy that the families of x and y are adjacent
S extended geometric graph of G after vertex split and edge correspondence
Ay(2) intermediate counterpart from A, to Az at time ¢, where A, and Az are

corresponding variables, say intrinsic angles, about 4 and B, respectively

under the guide of feature graphs and give a compact proof of its symmetric property
with respect to time step. Examples and conclusion are shown in the last two
sections. And notation is summarized in Table 1.

2. Preliminaries

In this section we will review some related techniques and algorithms upon which
our solution is based.

2.1. Skeletal graph

The term skeleton, or medial axis, has been popularly used to describe a line-
thinned caricature of the binary image which summarizes its shape and conveys
information about its size, orientation, and connectivity. There are quite a few equiv-
alence definitions for the skeleton of a shape in a plane, such as the prairie fire model,
the skeleton points being the locations where the propagating wavefront initiated on
the shape boundary “intersects” itself [11].

Let 4 be a domain in a plane. We denote the medial axis of 4 as MA(A). It is
defined as
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MAA) = {p|ped A(3q,q €ANG # g2 = d(p.q1) = d(p.12))}-

Here, d(p, q) is the Euclidian distance of p and gq.
The medial axis transformation of a domain 4 is the ordered pairs of points in
MA(A) and corresponding distances to the boundary of 4, say, 04. This is

MAT(A) = {(p, r)

pEMAA) N r= infd(p,q)}.
q€04

A very important property of medial axis transform is the ability to reconstruct
the object boundary by the reverse transformation.

A skeleton defines a geometric graph, whose vertices correspond to branching
points or leaf points and whose edges correspond to curves connecting two vertices
on which there exist no vertices except for their end-points. In this paper, we mean
the medial axis of a domain by the term skeletal graph without special declaration.

For simplicity and clarification, we assume that any two edges do not share the
same end-point pair. That is, there is only one edge between two adjacent vertices.
If not, new vertices will be inserted to satisfy this assumption. Furthermore, no ver-
tices in the original skeletal graph coincide.

2.2. Morphing between two curves

Let C, and Cp be two simple curves without self-intersection, the morphing be-
tween them can be performed by establishing correspondence between feature points
and tracing their travel trajectories.

We can work out the correspondence between C, and Cp in the same way of [7],
which indicated that an analytic solution to the optimization problems of matching
is too difficult in the general case of C, and Cg. One can provide an approximative
solution over the discrete sample sets of the two curves, which are determined by po-
lygonalizing the curves with a simple recursive divide and conquer algorithm. After
correspondence calculation, they are merged to form a new discrete sample set for
each curve. Let {09, v},...,v"} and {0}, v}, ..., v}} be such one-to-one matching dis-
crete sample sets of C and Cp, respectively. In this paper, we represent C, and Cp
approximatively as piecewise linear curves or spline curves interpolating sample
points, rather than the curves themselves.

We write the intermediate curve from C4 to Cg as Cy(t) = {05(¢), v}, (¢),..., ()}
It can be computed using edge-angle technique, but an equality constraint is en-
forced by v/\(r) — v (¢) = X,(¢), where X,(¢) is achieved in another way (see Section
5). Its detail can be found in (Appendix A).

3. Feature graph
Let G, and Gj3 be the skeletal graphs of two original shapes 4 and B, respectively.

The vertex sets of G,and Gp can be denoted as V; and V3. In this section we aim at
defining the feature graphs of G, and Gj. It concerns vertex correspondence deeply.
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3.1. Vertex correspondence

The necessity for aligning prominent features is evident. In our algorithm, ¥, and
Vg are such features.

Generally speaking, graph matching is a difficult computational problem and
some works addressed this issue to some extent [10,15,16]. In [15], the comparison
between two skeletons focus on branching node, the similarity of which is defined
in terms of the combination of their incident arcs which maximizes the sum of the
related similarity contributes. The branching nodes in the two skeletons are matched
by their similarity via visiting the graphs from these matched nodes until nodes be-
longing to the boundary are reached. Yet this algorithm requires that the nodes
should have at most degree 3. Kanongchayos et al. [10] applied a back-tracking al-
gorithm to the vertex classification and then a digraph isomorphism algorithm to the
correspondence problem of skeletal graphs.

In this paper, we use a totally automatic matching method presented in [16]. In
this method, the distance between every circle of 4 and B are firstly calculated after
computation of UoC and alignment. Then a bipartite graph, where nodes corre-
spond to the circles in 4 and B, respectively, and the weight on the edges are the dis-
tance between them, is defined. A maximum match can be solved by reducing it to a
networking flow problem. This matching process procures a good solution to such a
problem when the shapes of 4 and B are similar but it could fail if they are not. One
feasible choice is to manually introduce some key corresponding vertices to break 4
and B down into several shape components. And the global correspondence is estab-
lished among corresponding subgraphs (see Section 7 for an example). After the
above match process, there are still some remaining vertices of 4 (or B) having no
counterparts. In [16], these remaining vertices are matched to those in B which
matches their nearest neighbor in 4. But this is not a good strategy here because
the distance between two neighbor vertices is probably too big. We use the method
presented in [7] to establish the approximated correspondence of the unmatched ver-
tices according to their matched neighbor vertices. As showed in Fig. 2, the remain-
ing vertex v could be mapped to v} or v using the strategy of [13]. But for better
visual effects, it should be matched to a more appropriate point v}, which is not a
vertex of B.

Suppose ¢, : V4 — Gj is a desirable correspondence, mapping every vertex in V
to its corresponding target in Gy during the transformation from 4 to B. In the same
way we can define ¢, : V3 — G,4. Unfortunately, ¢, and ¢, are not always mappings
between 7, and V3, as mentioned above.

Now we define

Vs = Ve U @, (Va), Vi=V, U @p(Vs).

Then the mappings of vertex correspondence, ¢, and @, are written as extensions
of ¢, to domain V7, and of ¢, to V3, respectively:

@A:Z_)Vl?» (DB:VB_)VA-
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Fig. 2. The correspondence of the unmatched vertex. v/, is matched to v,(i = 1,2) but v} has no corre-
sponding vertex.

Fig. 3. (A) Original skeletal graphs. The vertex set of G, is V; = {v}]i =1,2,3,4} and that of Gj is
Vg = {vi]i = 1,2,3}. Here v} is not a vertex of Gp. (B) Isomorphic skeletal graphs (dashed) and feature
graphs (solid). The vertex set of Gy is ¥y = {v/,|i = 1,2,3,4} and that of Gy is V3 = {v}]i = 1,2,3,4}.
Now v4 is a vertex of Gp. Skeletal graphs and feature graphs. The dashed graphs are skeletal graphs
and the solid ones are their corresponding feature graphs. In (A) or (B), the right corresponds to the object
A and the left to B.

As showed in Fig. 3A, the original mappings of feature correspondence is defined as:
o (0,) =0vp i=1,2,34, and @,(v}) =1, i=1,2,3, respectively. They are not
mappings between ¥, and V;.' So they are extended to those between ¥, and
Vi, (v)) = vh, i =1,2,3,4, and ¢,(vh) = v, i=1,2,3,4.

Definition 1. Each element in ¥, or V3 is called a feature vertex about ¢, or @y,
respectively, or a feature vertex for short.

Definition 2. A geometric graph G, is obtained when the vertex set is extended from
V, to ¥, for G4, and named as the extended geometric graph of G, about V,. And Gy
is defined so for B.

In Fig. 3B, G whose vertex set is V3, is an extended geometric graph of Gz whose
vertex set is V. It is obvious that Vj is a true subset of V.

After definition of G, and Gj, the map of vertex correspondence is a bijection
from ¥, to V3, but not one-to-one map yet.

! Note that v} is not a vertex of B.
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3.2. Feature graph

Definition 3. Given a geometric graph G, whose vertex set is 7, another geometric
graph T satisfies the following conditions:

(1) V is the vertex set of T;

(2) Vu,v € V, u,v are adjacent in G <= u, v are adjacent in T

(3) Each edge of T is a line segment.
then we call T as linear (geometric) graph of G.

It is evident that G and T are isomorphic.

Definition 4. Given two geometric graphs of G, and Gz, G, and Gj are their ex-
tended geometric graphs about ¢, and {,, respectively. Then the linear geometric
graph of G, is the feature graph of G, with feature vertex set 7, denoted as 7,. And
Ty is defined similarly.

For instance as in Fig. 3B, T is a linear graph of G, and G,, and it is also a fea-
ture graph of G4; T is a linear graph of Gj instead of Gy, yet a feature graph of Gj.

The trajectories of feature vertices during morphing are controlled by feature
graphs.

4. Construction of isomorphic feature graphs

The interpolation of G, and G is driven by 7, and T3. In this section, we address
the issue of graph isomorphism of 7, and 73, and the solution is based on the one-to-
one correspondences of vertices and edges.

There are only two sorts of geometric primitives in 7, or T3, point and line seg-
ment, if a closed curve (edge) is regarded as the one whose two end-points coincide.
So the interpolation of the intermediate primitives between 7, and T consists of
three types. That is

(1) Vertex < Vertex

(2) Edge — Edge

(3) Vertex — Edge

A
3.1

Fig. 4. Transformation type. 1.1 is ‘one vertex to one vertex’; 1.2 is ‘one vertex to multi vertices’; 2.1 is ‘one
edge to one edge’; 2.2 is ‘one vertex to one edge’; 3.1 is ‘two vertices to two vertices’; 3.2 is ‘two vertices to
one edge.’ 1.2 and 3.2 may cause the topological change.
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Each transformation type of geometric primitives consists of two operations:
Type 1 includes “one vertex to one vertex”” and “one vertex to multi vertices”’; Type
2 comprises “one edge to one edge” and “one vertex to one edge”’; Type 3 is com-
posed of “two vertices to two vertices” and “two vertices to one edge.” It is evident
that the latter of Type 1 or Type 3 may cause the change of topology (see Fig. 4). In
this section, we will fulfill the process of topology change.

The main goal of this section is to construct isomorphic feature graphs for 7, and
T3, which can be applied to G, and Gj accordingly. The process includes vertex split
and edge correspondence.

4.1. Vertex split

The vertex split in T is performed first. 7, and G, have the same feature vertex set
V,, and we call each one in ¥, as a mother vertex.

VoY € ¥, denote v}y = ¢, (%) € V3 and V' = {v|v € V3 and v # v} and @4z(v) =
4} C V. Let n=|V’|, and denote every element of V' as vi,i=1,...,n in turn.
The mother vertex v puts forth n vertices v\,...,v" (v, i=0,1,...,n, coincide at
one geometric location). Adding the n vertices into ¥, we obtain a new (extended)
vertex set /; while extending the function ¢, from domain ¥, to V; (see Fig. 5):

—! _ @A(U)a UGZ
(PA(U)_{UiB, v=0vi(i=1,...,n).

Definition 5. Vo € {v/,[i=1,...,n}, v is a child vertex of 1 and 9 is the mother
vertex of v.

To express such a vertex relation, we introduce a dashed-oriented edge by which a
mother vertex is connected with one child (see Fig. 5). A dashed-oriented edge usu-
ally has nothing to do but to represent the relation of mother and children. If, how-
ever, the feature graph is not connected after vertex split and edge correspondence,
some dashed edges will participate in the morphing step as connectors among its sub-
parts (see Section 7).

Fig. 5. Vertex split. 1§ is duplicated n times to establish one-to-one correspondences between ¢/, and v},
i=0,1,...,n).



W. Che et al. | Graphical Models 66 (2004) 102-126 113

Definition 6. Suppose V] is the vertex set after vertex split of V. If x,y € V; satisfy
any one of the following conditions:

(1) x and y are in relation of a mother and its child;

(2) x and y have the same mother vertex;

(3) x=y,
then we say x is in relation F with y.

It is evident that V] is partitioned by the equivalence F into |V,| subsets, each one
of which we call a family. We denote that x and y are in the same family as xFy, and
xFy means that xFy fails. The family of x is written as F(x). It is obvious that
F(x) = F(y) if xFy holds. From a viewpoint of geometry, all vertices in a family have
the same coordinates.

Definition 7. Suppose v; and v, are two adjacent vertices of V; or V3. Then F(v;) and
F(vy) are adjacent if v;Fv, holds. We write xRy for any x € F(v,) and y € F(v,).

Repeat the above process for all mother vertices in 7, and obtain the extended ¥}
of V4, leading to the extended T} of T, whose vertex set is V;. Meanwhile, the corre-
spondence mapping of ¢, : V4 — Vj is extended to ¢/, : V; — V3.

The operation of vertex split can be applied to B in the same manner. Then it can
be shown that ¢/, and @), define the one-to-one mappings between V; and ¥, respec-
tively, and ((Z);)_l = @j.

On the other hand, the original edges connected with a mother vertex of v may
be reassigned to her children of v!,...,v" for better visual effects. It is done as
following:

FOR (all the mother vertex # adjacent to v9)

IF (), (t)F g/, (e) A @,(9)R%, ()
(30, € F(12) = @, (¢)Fel,(8) V 6/, (v,) R, () THEN
Reassign 0% to v/,.
END FOR

4.2. Edge correspondence

The one-to-one mapping has been constructed between vertex sets of T and T}
after vertex split, but that between edge sets £/, of T and E}, of T still requires edge
correspondence to be defined.

We will only discuss the correspondence of edge set £/, in 7 since the correspon-
dence of the edge set E}, in T} is similar to that in T7.

V¢ € Ej,,with two end points v} and v3, denote v}, = @}(v}), v’ = @}(v3). Then

(1) v}, F?. Insert a new edge between v} and v%. Of course, this operation will be

ignored if v} and v} is adjacent already.

(2) v Fv2. If F(v!)RF(v%) holds, a new edge is inserted between v!, and v?; other-

wise particular measures must be taken as following (see Fig. 6):

Insert a new vertex v}, onto the edge vjv3 and move it onto the edge viv3 in G,
whose location could be the midpoint of the edge vhv3 in Gp or specified by user.
Then o}, as a mother vertex, give birth to a child vertex 77 which is connected with
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Fig. 6. Default edge correspondence when the edge vhv3 has no counterpart in 7).

v} by a dashed-oriented edge, and the edge v is reassigned to v3. Accordingly, v}
(v%) puts forth a child vertex ¢!, (72). A new edge is inserted between v} and o}, which
is a solid-oriented edge indicating that v} is a mother. So does between v and .
Finally for one-to-one mapping of edge v}, and #* are connected by a dashed edge
indicating that they are not in a family. It is easy to see that the edge correspondence
process contains vertex split: 7, is extended to V; U {v},0%} and Vj is extended
to ¥, U {0y, 03}. So we renew the definition of @/, and @, on {o},7%} and {7}, 73},
respectively:
B = ) =5 ey =l e =1

If unsatisfied with the automatic edge correspondence, the user is allowed to in-
terfere and govern the editing process of edge correspondence by manually inserting
vertices into the edited edge and specifying their correspondence counterparts. Be-
cause this process depends on the context in which editing is performed, a fully com-
mon algorithm seems impossible for the general case, but it should conform to the
rules of vertex and edge correspondence stated above. For instance, the user lays
his (her) account for the pattern (a) in Fig. 1. Then the user adds a new vertex ¢!, into
the edge v%v} and defines ¢/,(v}) = v}. Then the following steps are similar to those
mentioned above, as shown in Fig. 7.

It is easy to prove that a unified bijective mapping of vertex and edge can be made
between 7 and 7T} after correspondence operation of 7, and Tj. That is, there is
no need for additional mappings of edge since they can be specified by the vertex
mappings of ¢/, and @} based on the above assumption of G, and G;.

2
2 3y
vV, ]—)‘:1 ¥ "B

Fig. 7. User-controlled edge correspondence.
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In the following sections, our discussion will focus on the extended 7 and Tj
instead of 7, and 7. So we will still denote, for short, @/, @, Vi, Vg, T, Ty as
@4, Op> Vi, V, Ty, Tp, respectively, without confusion.

5. Generation of intermediate feature graph

Feature graph reveals the topological structure of a shape in a simpler manner
and dominates in our approach because the trajectories of feature vertices are
determined by their corresponding feature graphs. For further process using the
edge-angle blending technique, we must know the length and angle of each edge.

Suppose ¢, is an edge of 7. If ¢, is a degenerate form, say |¢,| = 0, there is no
natural angle definition for ¢,. In fact, such a case could come into being due to
the above vertex and edge correspondence. We call such an edge as a zero edge which
will disturb the interpolation using intrinsic shape parameters.

5.1. Computation of the angle for zero edges

5.1.1. Angle of zero edges

For simplicity and clarification, when A, is a denotation of one certain variable
about 4, we denote the counterpart of A, as Ap related to object B in case they
are involved in the same context.

One can observe a simple fact: there exists no more than one zero edge in any pair
of corresponding edges ¢, in T, and ¢z in Ty because the construction process of @,
and ¢, impliedly specify the edge correspondence and it is not allowed that two ver-
tices coincide at one position in G4 and Gp. Without loss of generality, let |¢4] =0
and |¢z| # 0. We will confirm the angle of ¢, according to the intrinsic angles among
the adjacent and corresponding edges of £, and /3, respectively.

Let v4 be an end point of /,. Denote NE(¢4,v4) as the set of edges connected with
¢4 at vy, whose length is nonzero or whose length is zero but direction has been spec-
ified, and NE({z,vp) is defined similarly for B. Then we define

E(EB,UB) = {b3|b3 S NE(ZBJ)B) A bA (S NE(£A7UA)},

o E(lg,v3) # ¢ We search two edges in E({z,v3), say, £, and (ﬁ,z which are the first
edges barged up against in the clockwise and anticlockwise directions from /p, re-
spectively. Suppose the intrinsic angle is 0)9 between /5 and ¢}, and Hé between /3
and /3. The corresponding angles of 4, 0; and Ofl, should satisfy the following
conditions (see Fig. 8):

(1) £4, 0%, % and lg, ¢}, (% around v, and v are in the same order, clockwise or an-
ticlockwise, respectively.
0, _ 0

AN

2 ¢} and 3 may be the same edge.
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Fig. 8. Direction angle of a zero edge /.

e E(¢g,vz) = ¢ The direction of ¢, is still uncertain and any value can be set.
Once 0!, and 0’ are fixed, the direction of £, can be specified. We write the prin-
ciple calculating the angle of zero-edge ¢ as CA(¢,v), where v is an end point of /.

5.1.2. Initialization of the direction of zero edges
There may be more than one zero-edge in 7, or T3. We take a pair of correspond-
ing non-zero edges as the reference ones, on which the specification of angles of the
other zero-edges is based. If there is no such a pair of edges, though this case seldom
appears in practice, any pair could be, such as the pair in the center of their graphs or
specified by user, denoted as ¢4 and ¢ yet. On the basis of above-mentioned conclu-
sion, only one of them is a zero-edge, say 4, and its angle can be designed to that of
{3 since there is no “reasonable” pair of nonzero-edge and any direction could be
allowed. The algorithm is as following:
Calculate the direction of all nonzero-edge in 7, and Ty
Select a pair of edges (¢4, ¢5) as reference edges and calculate their angles
Push(¢,) Mark(¢,)
WHILE (Stack is not empty)
Pop an edge in stack to ¢,
Push all the unmarked and adjacent edges of ¢ to the stack and mark them
¢g =Corresponding edge of /,4in Ty
IF (Both angles of ¢, and /3 have been calculated) CONTINUE
IF (The angle of ¢, is not calculated)

=1,

ELSE ¢ = {3

Angl =CA(¢, ¢ — vy)

Ang2 =CA(¢, ¢ — v,)

(601 y (1)2) = Welght(£)3

Set the angle of ¢ to be w; * Angl + w, x Ang?2.
END WHILE.

SIF E(6,0 —0) #® A E({,£ — 15) # ® THEN (o), ;) = (0.5,0.5) ELSE IF E((,{ — 1)) # ®
THEN (w1, ) = (1,0) ELSE (w1, ,) = (0,1).
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5.2. Generation of intermediate feature graph

After the initialization of zero edges, we can set about the computation of inter-
mediate feature graphs.

5.2.1. Vertex indexing

Firstly, a pair of corresponding vertices in 7, and T3, uy and up, are chosen as the
base vertices. The other vertices are then indexed starting from the base vertices in
the breath-first manner. The vertices having the same index n belong to the same le-
vel n and are denoted as UM7U”A7..., ,,A for 4 or v)) g, 0} 4, .-, le for B in turn. In
particular, let vj , = uA and vo » = up. Meanwhile, we chose a pair of corresponding
edges connected to vf , or vf , as reference edges (Refer to the above section for the
selection principle), whose another end points are denoted as v qor ol vl and
v)., , are adjacent if we write E/ = v, 4V, and it is done for B in the same manner.
5.2.2. Generation of intermediate feature graphs

The generation of intermediate feature graphs is practically the process of tracing
the travel trajectories of feature vertices, from which the morphing will benefit be-
tween the source skeleton and the target one. It is illustrated with 7,(¢) from 4 to B.

We use the method in [12] to produce the intermediate feature graph 7,(z):

(1) Locate v ,();

(2) Using the edge-angle blending technique, calculate the intermediate edge of
the reference edge, £’ (¢), whose intrinsic definition is calculated with respect
to the x axis.

(3) Interpolate the edges in level 0 to compute £, (), (i # 0), whose intrinsic
definition are designed to those with respect to the reference edge zg(;

(4) Interpolate the edges in f level /(> 1), whose intrinsic definition are
determined with respect to the edges in level / — 1 adjacent to E‘,’ y

Some details of the algorithm for the generation of 7,(¢) in this paper are different

from that in [10] because we must guarantee it to be symmetric with respect to ¢ (see
Fig. 14). See Section 6.3 and (Appendix B) for more details.

6. Skeleton-driven shape morphing

In this section, we describe our algorithm for the smooth interpolation between A
and B via their feature graphs.

The aim of morphing is to find a continuous interpolation function W(¢,Y),
0<¢<1, where Y is a planar point set. It satisfies on domain 4 and B:

W(0,4) =4, W(l,4)=B
W(0,B) =B, W(1,B)=4

Let W (¢, V;) be the restriction of function W(¢,4) on V; and W (¢, V3) be that of
W(t,B) on V. It is obvious that we have defined W (¢, V;) and W (¢, V3) in Section 5.
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In this section we will give their definition on 4 and B due to W (¢, V) and W (¢, V),
respectively. Similarly as above, we illustrate it by the construction of W (¢,4) from A
to B.

6.1. Morphing of original skeleton graph

By applying the isomorphic operation of vertex and edge in T, to G4, we will ob-
tain the extended geometric graph S, of G, which processes the same geometry, say
vertex set, and same topology, say connectivity, as T;. The difference between S, and
T, is the shape of their edges, where the edge shape in S, relies on G4, but not line
segment simply and solely as in 7. Similarly, we get Sj.

It is no doubt that 7,(¢) gives rise to the vector X (¢) of the two end-points of each
edge C',(¢) in S,(¢), where i is the corresponding edge index. So S,(#) can be guided to
shape directly driven by T,(¢), each edge of which is calculated in the same way as
mentioned in the Section 2.2.

Thus, we have defined W (¢,4) on domain G,. That is, W(t,G4) = Su(¢).

6.2. Skeleton-driven 2D distance field metamorphosis

Given two domains of 4 and B, the interpolation from 4 to B can be transformed
into that from MAT(4) to MAT (B) because a medial axis transformation can exactly
reconstruct its corresponding shape. Thus we define

MAT (t,4) = {(p,r) | p € S4(t),r = (1 — t)ry + trg Where (p4,r,) € MAT(A4)

in which W(t,p,) = p and (ps,rs) € MAT(B)in which W (1 — ¢, ps) = p}.
We take MAT(t,A) as the intermediate shape from 4 to B. That is
W(t,A) = MAT(t, A).

6.3. Symmetric property

It is a desirable property that the transformation would be symmetric with respect
to time step, namely, W should be symmetric with respect to ¢ [2]:

W(t,A) = W(1 —tB).

Before proving this property, we must have a clear idea of what purpose we want
the equality of two geometric graphs to be. In this paper, it means that these two
graphs coincide with each other entirely. For example, T,(¢) = T3(1 — ¢) holds if
the geometric coordinates of their corresponding vertices are equal because Ty(¢)
and T(1 — ¢) are isomorphic in the sense of edge-angle blending and are linear geo-
metric graphs. That is, if VU'ZA(I) eVi(t) = v, () = U’ZB(I —1), Ty(t) = Ts(1 — 1)
holds.

Property. W (t,4) = W(1 —¢,B).
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Proof. We have shown that 7(¢) = T3(1 — ¢) in (Appendix B) The constructive proof
is self-explanatory. On the other hand, since 7,(¢) gives rise to the vector X (¢) of the
two end-points of each edge C/(¢) in S,(¢) and X/(r) = X}(1 —¢) holds, C'(¢) =
Ci(1 —1) holds. Thus we have S,(¢) =Sz(1 —1), leading to MAT(1,4) =
MAT(1 —t,B). That is, W(t,A) = W(l —t,B).

7. Example

In this section we give a few examples that illustrate the behavior of our
algorithm.

Fig. 9 shows the extended skeletal graphs of two shapes ‘d’ and ‘e,” where the fea-
ture vertices are represented by dots, respectively. And we mark the feature vertices
with relevant numbers for clarification. The vertices encircled by a red circle are re-
garded as a whole with a same number. Although the graphs of ‘d’ and ‘¢’ have been
extended, we can learn how our approach works in detail to some extent. In this ex-
ample, vertices of 1, 3, and 4 could be the key ones for correspondence. They divide
jointly the whole shapes of ‘d’ and ‘e’ into three subparts, respectively. The different
manner of the correspondence of subparts (or key vertices) can generate different
morphing effects. Fig. 10 shows two available patterns of the shape interpolation be-
tween ‘d’ and ‘e’ due to different correspondence. One pattern is realized by breaking
down the circle substructures of ‘d’ and ‘¢’ into the linear ones, including topological
change, as shown in Fig. 10B. It is realized by specifying correspondence of subparts
such that d123 to e3654, d34-e43, e4563-d3271 and the detailed correspondence of
each subpart can be reflected on in Fig. 10A by readers. If, however, we specify that
d123-e1723, d34—e34, d3654-3654 (see Fig. 10C), another pattern transforms ‘d’ to
‘e’ mainly via a rotational transformation, in which orientation and position change
a lot instead of topological structure as in Fig. 10D.

Fig. 9. (A) ‘d’ shape (B) ‘¢’ shape Extended skeletal graphs.
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Fig. 10. Morphing between the letter ‘d” and ‘¢’. (A) is the morphing of the skeletons in one manner and
(B) is the counterpart morphing of medial axis transformation driven by (A). (C) and (D) are the corre-
sponding pair of morphing but in another manner.

Fig. 11 is a metamorphosis of ‘X’ and ‘O.” A normal consideration gives rise to
scheme (a) and attention should be paid to its natural and smooth process in which
the ‘X’ shape is not broken into pieces as in [21]. Another strange consideration is
shown in Fig. 11B although someone may feel it unpleasant. Because the shape of
X’ is broken up into two pieces, a dashed edge located at the separate position of
the centre of X’ should exert an influence of connection on the feature graph be-
tween the two separate parts. Thus all the primitives of vertices and edges in the fea-
ture graph can be visited from the based vertex through the gangway of such a
dashed edge.
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AX2000

\va.f'\/‘\
A A/

Fig. 11. Morphing between the letters ‘X’ and ‘O.

Fig. 12. Morphing between a tiger and a unicorn.

In Fig. 12, a normal interpolation process is shown, in which two shapes of a uni-
corn and a tiger are the source and the target objects, respectively.

8. Conclusion

In this paper, we present an algorithm for shape interpolation by applying skeletal
representation to control topological structure. It combines the context of transfor-
mation with the user’ subjective aesthetic criteria to the most extent, to achieve the
compelling effect of controllable topologies of intermediate shapes. On the other
hand, more interesting animations are possible if transition rates differs from part
to part in-between images [22]. So we can set different transition control for different
edges since each edge of feature graph is relatively independent.
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The main limitation of our method is the difficulty of totally automatic correspon-
dence of feature vertices in the general case. It usually requires more or less manual
involvement for reasonable and different correspondences when one shape is obvi-
ously dissimilar to the other. Another important issue is the control of the texture
detail. There was no mention of the problems in this paper. In fact, they partly lead
to the symmetric property of our algorithm, which is proposed for further work.
We are getting ready for that.
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Appendix A. Morphing between two curves

For simplicity and clarification, let {x,%}={4,B}. Given two curves
Cy= {5, 0l,...,v1} and Cp = {1}, v},...,vh}, we write their intermediate curves
as C,(t) = {1°(1),v(¢), ..., 0" (¢)}, where * shows that C, is regarded as the source ob-
ject and C; as the target one, say, C,.(0) = C,, C,(1) = C;. And in this way, if 4, is a
denotation of one variable about object *, we denote its the counterpart of A, as A;
but related to object * in case they are involved in the same context, and its corre-
sponding denotation of intermediate shape as A.(¢)from * to % at time ¢.

The travel trajectories of C.(#) can be traced by using intrinsic shape parameters
shown in Fig. 13. Let X, = " — 1°. We desire that X.(z) = v"(¢) — 1°(¢) for C.(¢),
where X, (¢) can be obtained in advance (see Section 5). Since the desire can not be
met just by interpolating intrinsic shape parameters linearly, we can adjust the edge
lengths only to do so [17]

Fig. 13. Intrinsic variables.
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(1 =L+t + D (t) =L (1) + D.(t), i=0,1,...,n.

Here superscripts denote index, not exponentiation.
Our goal is to find D°(¢), D!(¢),...,D"(¢) so that the objective function

2
~ ( D.(1)
D(t),D(t),...,D"(t)) = e
f( *()7 *()7 ? *()) ;(LL,*>

is minimized subject to the two equality constraints enforced by

Xo(8) = (0. (1), 2:(0)) = vi(e) = v)(1):

{ (PEDS(I),Di(t), D) =30 {Li(f) +D.(1)
¢ (D(1), DL(1), ..., D(t) = 321y [LL(e) + Di(1)
Here ¢ is a constant parameter in [0, 1] and the meaning of each variable is as

following:

cosal —x,.(t) =0
sine! —y,(¢) =0"

L=l =0 48N, i=1,...,n
Le)=0—-0L +¢t, i=1,...,n
(1) = (1 — 1)ad + 102,
0.()=1=0)0, +10, i=1,....n
()=o) +0.(), i=1,....n,

where SN is a small number to avoid division by zero. The optimal solution to the
objective function is similar to [17]. According to the objective function and its
constraints we have

D,(1)=Dy(1—1) i=0,1,...,n.
So if %(¢) = v%(1 — ¢) and X, (1) = Xp(1 — 1), C4(t) = Cp(1 — 1) holds.

Appendix B. Generation of intermediate feature graph

Here we present our method of how to produce the intermediate the feature
graphs between T, and T3. And It is also a constructive proof of 7,(¢) = Tz(1 — ¢).

(1) The intermediate position of the base point

The travel trajectories of the base vertices in 7, and T3 can be obtained by a func-
tion g(¢), 0 <¢< 1, which satisfies the boundary conditions:

2(0) =vp,, &) =1j,

It is common that g() is calculated using the linear interpolation of vf , and v{ ,.
That is

g(t) = (1 = 1)vg, + 1y -

We cannot help believing that it is natural and optimal if the intermediate coor-
dinates, regarding 7, and T as source object, respectively, can be represented as:
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vou() = g(0), vo(t) =g(1 —1).

It is evident that vf ,(¢) = v z(1 — ¢) holds.

(2) Recursive generation of 7,(¢)

Let y(ﬁj{ L 41, ) be the intrinsic angle of £/  and ok L Its intermediate value at
time ¢ is y, (07, 0%, ) =(1— t)y(fn*,éﬁl *) + o(6l-, 0%, ), * being the source
object.

Denote the length of ¢/, as L’J and the angle with respect to x axis as 0” and let
LI (t) = (1 —¢t)LJ, +tL’,{* 9” Lt ) (1- t)@” + 107 .

We will prove it by mductlon on the level number n of vertices in V,(t).

e 1 = 0. There exits only the base point in the level 0. As mentioned above, we know

vo4 (1) = vg5(1 —1).

e n = 1. First, we take v, into account. Since its immediate coordinate is fixed by
the reference edges of ZO*, whose intrinsic angle, 007*, is calculated with respect
to x axis, we have

i{)(]l) 0()[)
U?‘A(t) = L?EL(I)G 0a) 4 Ug‘A(t)v U(l)‘B(t) = L??B( )e' 0s) 4 Ug‘B(t)v

where i* = —1.
Taking notice of LY, (r) = LY, (1 — 1), 0y, (1) = Ops (1 — 1), ), (t) = 03 5(1 — 1), we
know ' ' ' ' ’

U(I)A(t) = U?AB(l —1).

Then we continue calculating v} (¢)(i # 0). The intrinsic definition of £, is
defined with respect to (., so

081,* (t) =V (zgo*a ng*’ t) + 08()*(0

According  to 9, (€0, 0, 1) = ps(00%, €05, 1 — 1) and 60, (1) = O (1 — 1),
0y ,(£) = 0y 5(1 — £) holds. Thus v} ,(r) = v} ,(1 — ¢) holds.

Suppose v, (6) = vl 5 (1 —2) if 0!, , () = v} 5(1 — 7) holds, where n< 1.
e n=1+1.We need to prove v}, ,(t) = v}, 5(1 — ).

Denote the vertices in level / adjacent to v/, , as vj LU
tion of v}, () is computed as follows.

P
i i i ol
Ul+1 * E “1“ 17511 [0/ E o

Here, o/ = 1/(SN + L — L)) and ), (1) is the new position of vy, calcu-
lated by linear interpolation of intrinsic parameters of Kf“* solely. Zj”; may possess
more than one intrinsic parameter, for it can be adjacent to more than one edge,
as shown in Fig. 14.

Denote the vertices adjacent to ¢ inlevel / — 1 as v}*,, b =0, 1,...,q. The direc-
tion of E’,“*( ) is concerned with 6’,“”;’;( 0), 6% (1), .. 61,“”;’ *’( t) in the sense of edge-an-
gle blending, for E;“* shapes an intrinsic angle 9’”'() with respect to each one of
Z’,‘b’f*(b =0,1,...,q). We write the formulae as F, (KII“’]f*,Ell‘”f*, . ,Ef‘i’fﬁ*,t ¢, Here
it is defined as

nx?

vj‘* in turn. The posi-
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I
Vl+1,*

Fig. 14. Connection relation of v}, , to other vertices in higher level.

9 q
Dal () — ko k1 kqJ jal \ _ Kpj kb Jai k)
Q;a*(t) - F;f(el—fﬁwﬂl—fdd cee ’glii"*7t7 e]d* - ﬁ] av* El’—f7*7€[7*?t / ﬁl ‘.
b=0 b=0

knJ 1
Here " = —1 —
P = S

Obviously, we have @;(r) = éjj(l —1). Thus

—ai i ipjal jai il (1— i
o1y (1) = Ly ()" = Lig (1 — 0)e"s! ™) = g (1 —1)

Since o) is independent of ¢, we get v}, ,(£) = v}, z(1 — 7).

According to mathematical induction principle, we know that the corresponding
vertices in 7,(tf) and T73(l —¢) have the same coordinates, leading to
Ty(t) = Tp(1 —1).
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