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Abstract

We present an efficient geometric algorithm for conic spline curve fitting and fairing through conic arc scaling. Given a set of planar points,
we first construct a tangent continuous conic spline by interpolating the points with a quadratic Bézier spline curve or fitting the data with a
smooth arc spline. The arc spline can be represented as a piecewise quadratic rational Bézier spline curve. For parts of the G' conic spline
without an inflection, we can obtain a curvature continuous conic spline by adjusting the tangent direction at the joint point and scaling the
weights for every two adjacent rational Bézier curves. The unwanted curvature extrema within conic segments or at some joint points can be
removed efficiently by scaling the weights of the conic segments or moving the joint points along the normal direction of the curve at the
point. In the end, a fair conic spline curve is obtained that is G> continuous at convex or concave parts and G' continuous at inflection points.
The main advantages of the method lies in two aspects, one advantage is that we can construct a curvature continuous conic spline by a local
algorithm, the other one is that the curvature plot of the conic spline can be controlled efficiently. The method can be used in the field where
fair shape is desired by interpolating or approximating a given point set. Numerical examples from simulated and real data are presented to

show the efficiency of the new method.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Data fitting by parametric curves can be used in wide
fields such as pattern recognition, image processing,
statistical data analysis and many other industrial appli-
cations. While most curve fitting algorithms try to construct
a smooth curve passing through or near the given points, in
the field of computer aided geometric design, it is often
desirable to fit a point set by a curve close to the points and
which has a please shape [17,26,28]. Even more, the
curvature plot of the fitting curve should consist of as few as
possible monotone pieces or with prescribed curvatures at
selected points [8]. In this paper we address the problem of
data fitting by conic spline for which the shape of the result
curve can be controlled efficiently.

With the capability of representing conics and freeform
curves and surfaces in a unified way, NURBS have become
de facto the state of art in computer aided design [7,21]. The
problems of data fitting by B-spline curves and surfaces
have been studied extensively in the literature. To fit a point
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set by a B-spline curve [15,18], knots and parameters
corresponding to the data points are often given ahead, then
least square fitting of the data is often applied and the
control points of the curve can be obtained by solving a
system of linear equations. There are also several methods
to fit the point data by a rational B-spline curve [3,16,27],
but how to set the weights for a fair NURBS curve with
controllable curvature plot is still a challenging problem.

Data fitting by arc spline curves [12,22,30] is another
important method used frequently in tool path description
for machining, robot path planning as well as shape
modeling. When fitting a point set by an arc spline, every
segment can be constructed as an elementary geometric
problem. Then the shape and the number of arcs can be
controlled efficiently. Even more, an arc spline can be
constructed in a fairness manner and the arc segments of the
spline can be reduced efficiently within a prescribed
tolerance [29]. One main shortcoming of the arc spline is
that its curvature is not continuous, so it cannot be used for
high quality shape modeling.

With arc spline as a special case, conic spline curves and
surfaces own a lot of elegant properties which make them a
powerful tool for shape modeling. A conic segment can both
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be represented as an algebraic curve segment and as a
rational Bézier curve [14]. The parametrization of a conic
segment can be controlled efficiently for high order
continuity purpose or surface skinning in homogeneous
space [4,5]. The offset and the CNC interpolator for the
conics can be computed efficiently [9,10]. Farin [6] and
Pottmann [23] have presented a global and a local method
for the construction of curvature continuous conic spline
curve separately. These two methods either have the
limitation that a change of the local parameter may
influence the whole shape or the segments number are
approximately the twice of the interpolating points. Scha-
back [25] has presented a method of conic spline
interpolation by solving a global system of non-linear
equations. Conic spline can also be used to fit a piecewise
linear curve or another smooth curve [1,19,20,24], but how
to control the curvature plot of the conic spline curve have
not been addressed.

Recently, Ahn and Kim [2] and Frey and Field [11]
have presented independently the same result that shows
whether or not a given conic segment has monotone
curvature. This result can be used for the design of a
single conic segment. In this paper we will show how to
construct a curvature continuous conic spline curve from
a tangent continuous conic spline and fair the conic
spline by removing unwanted curvature extrema. We
assume here that the initial G' conic spline curve be a
tangent continuous quadratic Bézier spline curve inter-
polating a given point sequence or an arc spline curve
approximating a noisy point set [30]. For the latter case,
each arc can be expressed as a quadratic rational Bézier
segment or two of them if the angle is larger than .
Then for every two adjacent G' connected conic
segments without inflection, the tangent at the joint
point and the two weights of the Bézier representation
can be reset so that the two new conic segments are
curvature continuous while the tangents and curvatures at
the other two ends are fixed. To obtain a fair conic
spline curve, the additional curvature extrema within
some conic segments or at the joint point of two adjacent
conics can be removed by scaling the weights or moving
the joint points of selected conics. By combining the
method of tangent displacement, weight scaling and end
point moving, an efficient algorithm for fair conic spline
construction is presented.

The organization of the paper is as follows. In Section
2 we will give a brief introduction of conics and the
conditions for various curvature distribution are also
presented. Algorithm for the construction of a curvature
continuous conic spline from an initial G' spline is
presented in Section 3. In Section 4 we will discuss how
to achieve a fair conic spline curve by resetting the conic
ends and scaling the weights of selected arcs. Examples
are presented in Section 5 and we conclude the paper in
Section 6.

2. Preliminary information on conics

The standard form for a rational quadratic Bézier curve is

Ro(1 — 1?4+ 2R,wit(1 — £) + Ryt
(1= +2wt(l — 1) + 12

R() = >
where R; (i =0, 1,2) are the control points of the Bézier
curve and w is the middle weight. It is well known that any
rational quadratic Bézier curve is a conic segment [14]. The
curve is a segment of parabola when the weight w = 1, and
the curve is a segment of ellipse or a segment of hyperbola
when w is less than or larger than 1, respectively. If the
control polygon RyR;R, forms an isosceles triangle, let
the angle ZR;RyR, = 6 and set the weight w = cos 6, then
the quadratic rational Bézier curve is a circular arc.
The unsigned curvature for the curve R(f) can be
computed as
/ /!
ki = ROXR @
IR (1)l

then the curvatures at the two ends of the conic segment are

LR, = R)) X (R, — R

k(0) = ,
2 W2HR1 - R()||3

and
1 IR, — Ry) X (R, — R

k(1) = — 1 . 0 2 S 1 ’
2 w ”Rz - R1||

respectively. From the curvature formula, we can see that
the two end curvatures will be scaled simultaneously if the
weight w has been changed.

Suppose that the three control points Ry, R; and R, are
not collinear and w > 0, then the conic segment will not
degenerate to a line. As indicated by Ahn and Kim [2] and
Frey and Field [11], a quadratic rational Bézier curve can be
with monotone curvature plot if and only if the middle
control point R; lies in a region defined by the boundary
points and the middle weight.

Theorem 1. Let

R, — R
U= 2 0 ,
||R2 - R()”
and
||R2 - R0||
r= —,
4w?

then we can define two circles Oy and O, both with radius r
and centered at Oy = Ry + rU and Oy = R, — rU, respect-
ively. If the control point R, lies outside both of the two
circles or inside both of the circles, then the curvature plot
of the conic is with a local maximum value or a local
minimum value. If the control point R lies inside one of the
two circles but outside the other one, then the curvature plot
of the conic segment is monotone when w* > 1/2 and has
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one local maximum value and one local minimum value
when w* < 1/2.

Proof. See Refs. [2,11] [

For the convenience of a fair curve design, we can assign
an integer sign Kt[i] to indicate the curvature type of conic
C; (see Fig. 1). We set Kt[i] = 2 when the control point R,
lies outside both of the two circles O, and O. In this case
the curvature plot has a local maximum. If R, lies inside
both of the two circles Oy and Oy, there is a local minimum
value within the curvature plot, then we set K¢[i] = 0. If R;
lies outside O, but inside O, we set the curvature type
Kt[i] = 1. If Ry lies inside O, but outside O; the curvature
type Kt[i] = —1. When w? > 1/2, and if the curvature type
of a conic section is 1 or —1, the curvature plot of the conic
is monotone increasing or monotone decreasing,
respectively.

To classify the curvature type of a conic segment, we will
have to judge the relationship between the middle control
point R; and the two circles Oy and O;. When R lies on the
circle O, we have

IR, — Rl
22— cos ap = IR, — Ryll. (1)
4w
If R, lies on the circle O;, we have
IR, — Rl
22720(:08 o) = ||R2 - R1|| (2)
4w

When each conic segment is represented as a quadratic
rational Bézier curve, the conic spline curve consisting of m
segments of smooth connected conic pieces can then be
transformed into a rational B-spline curve [21]. The knot
vector for the NURBS curve can be set as 7={0,1,...,m},
where the multiplicity for each interior knot is 2 and

R
o
R, KR LI g,
0o O
(@)
Ry
o
R, = ™ g,
O O
(©)

the multiplicity of the first and the last knots are both 3. The
control polygon of the rational B-spline curve is
PoPP,...P,,,_P,, where P,;_,P,;_|P,; are just the control
polygon of the conic C; (i=1,2,...,m). Every two adjacent
conics C; and C;y are jointed at point P,;, and the points
Py;_1, Py; and P, are collinear when the two conics are
tangent continuous at the joint point. Since the weights
associated with the control polygon of the conic C; are 1,
wy;—1 and 1, then the weights of the NURBS curve are
just the weights of the conics, where wy;_; is the weight
corresponding to the control point P,;_1,(i=1,2,...,m). The
rest weights wo=w, =---=w,,, = 1.

3. G? conic spline fitting

Though there are several algorithms presented in the
literature for fitting a set of points by a conic spline curve [6,
19,23,25], but it is still a challenging problem to fit the data
by a fair and curvature continuous conic spline curve
directly. In this section we fit a conic spline curve to a point
set by first fitting the points with a tangent continuous
quadratic Bézier spline or an arc spline and then construct a
curvature continuous conic spline from the original G
conic spline.

With a set of ordered planar points, an initial G' conic
spline can be obtained by interpolating the points with
piecewise quadratic Bézier curves. If the points are noisy,
we can first fair and fit the data by an arc spline within a
prescribed tolerance [30]. When the data is fitted by an arc
spline, the number of arcs can be reduced efficiently within
another tolerance [29]. For the convenience of representing
circular arcs as rational Bézier curves, we assume that the
central angle for an arc is less than . If the central angle for

R
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(b)
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Ry 2 AN g,
0o O
(d)

Fig. 1. Curvature type for a conic segment in Bézier form: (a) Kt[i] = —1, (b) Kt[i] = 0, (c) Kt[i] = 1, (d) Kt[i] = 2.
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an arc segment is larger that , it can be divided into two
segments.

We assume that the G' conic spline obtained above
consists of m segments, namely, C;, C,, ..., C,,. The center
angles for the arc spline are 26,,20,,...,20,,, respectively.
Then, each conic segment can be expressed as a rational
quadratic Bézier curve,

Pyiy(1 — 1)* 4+ 2Py ywy_ (1 — 1) + Pyt
(=12 +2wy_t(1 — )+ 1

Ri(t) = )
where the weight wy,_; = cos 6; for the arcs. If it is
a quadratic Bézier curve, the weight can be chosen
as wy;—; = 1. Because any two adjacent arcs C; and C;,,
(i=1,2,...,m — 1) are tangent continuous, then the control
points Py;_1, Py; and P,;, are collinear.

To construct a curvature continuous conic spline from
the G' conic spline, the weights and the tangent at the joint
point for every two adjacent arc segments or conic segments
can be reset to obtain a new pair of G> connected conic
segments. As shown in Fig. 2, C; and C;, | are two adjacent
conics which joint at point P,;, then we can move the point
P,;_, along the line Py;_,P,;_; and move the point Py
along the line P,;,|P,;,, so that the line connecting the two
new points P,; | and P, still passes through the joint
point P,;. In another point of view, we can obtain two new
control points P,;_; and P,;, by rotating the line Py;_; Py;
around the fixed point P,; with an angle 6 and compute the
intersection points with the lines P,;_,P,;—1 and Py;, 1 Py; 15,
respectively.

Let the unsigned angle between the vector P,;_,P,;—;
and the vector P,;_; P,; be «, the unsigned angle between the
vector P,;P,;, and the vector Py; | P,;,, be 3. Because the
new control point P,;_, lies on the line P,;_,P,;_, then we
can assume that Py — Py = A(Py_; — Py;_»). In a
similar way, the new control point P, lies on the line
PyiyaPyity, and we have Poo — Poiyp = m(Paiyn — Pty
Then, if we have the scaling coefficients A and u, we will
obtain the two new control points for the two conics
immediately. From the triangle AP,;_,P5;P,;_, we have

”le',l - le',z”()\ - 1) o ”le' - PZi*l”

3
sin 6 sin(a + 6) )
Based on the triangle APy; Py, Ps;y1, we have
1Py y = Poull 1Py — Poipyll( — 1) @
sin(B—6) sin 0 ’
Ol P; P
K, 2 2+l
Py

P, 2i-2 P, 2it2

Fig. 2. Construct a pair of G* continuous conics by displacing the common
tangent.

From Egs. (3) and (4) we can express the parameters A and
W as two functions of the parameter 6,

1Py, — Pyl in 0
A=14 At T 5)
”PZi*l - le‘,z” Sll’l(0+ 0()
and
1Py — Pyl in 6
= 1 — 2i+1 2i Sin (6)

P21y = Paipyll sin(B — 6)

If we replace the control point P,;_; of the conic C; by a new
control point P,;_, and keep the weights of the curve
unchanged, then the end curvatures of the conic can be
computed as k;(0) = (1/A%)k;(0) and

Asin*(a+ 6
(7;)/@(1),

sin” o

ki(1) =

where k;(0) and k;(1) are the end curvatures of the original
conic segment. In a similar way, the new end curvatures for
the conic C;, can be obtained as

wsin*(B — 6)

l_€i+1 0)= sin3B

ki+1(0),
and k; (1) = (1/ukig (D).

To be sure that the curvature at the first end point of the
new conic C; be fixed or equal to a predefined value such as
the second end curvature of its former conic segment, the
original weight w,;_; should be reset as a new one Wwy;_.
Then we have

1 Wiy
—ki(0)—=— =k;_(1). 7
/\2 l( )V_V%i_l i 1( ) ( )
If i = 1 or P,;_, is an inflection, we may set k(0) = k;(0) for
Eq. (7). Then the new weight can be set as

A ki(0)  wy—
R O

At the same time, the curvature at the other end of the conic
C; has been changed as

A sin?(? + 6) k(D) v_v%i,l
sin’ o W3i_1

In the same way, the weight w,, | for the conic C;,| can be
changed as W,;, | = (Wp;1 1)/, and the end curvatures of the
new conic are

3 qin3
W sin’ (B — )
———k;11(0),
SiIl3B 1+1( )
and k;(1). To be sure that the new end curvatures at the
joint point of the two conics C; and C;, are equal, we need
Asin’®(a + 6) wiy W sin’(B—6)

. k(1 :
sin*a i )v'v%l.,l sin® B

kiz1(0). (8)
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Substituting Eq. (7) into Eq. (8), we have

) ) sin a ( ki (0)k;(0) \ /3

A 0) = -0 A ) N
(et 0) = psinB = O Gp ( k(D) ®

By expressing A and u as the functions of 6, Eq. (9) can be

changed into

sin(a + 0) — s, sin(B — 6) + (59 + s15,)sin 6 = 0, (10)

where
1Py — Pyl
SO = —’
1Py;—1 = Paisl
1Py — Pyl
§] = —————,
L Py, — Poyl
and
o sin o ( kiy1(0)k;(0) )1/3
2 sin B\ ko (Dk(D )

By expanding the sine function, we have A sin -+ Bcos =0,
where A=cosa+s,cosB+sy+s1s, and B=sina—s,sinf.
The solution to Eq. (10) is #=arctan(—B/A).

When 0 is obtained, the two scaling factors A and u are
given by Eqs. (5) and (6), and the new control points and the
new weights for the conics with G? continuity are obtained.
If the curvatures k;(0) and k; (1) for the two conics are
fixed, the left and the right curvatures at the point P,; will
become as

A sind(a + 6)

ki(1) = o ki(1),

and

. w’ sin*(B — 6)

ki1(0) = ——————k;1(0).

sin’B
It can be easily concluded from the equation k;(1) = k;,;(0)
that when the inequality k;(1) < k;;;1(0) holds, 6 will be a
positive number, and then we have A >1 and p <1.
Consequently, we have k;(1) > k;(1) and k., 1(0) < k;,,(0).
When k;(1) > k;1(0), the directions of the inequalities
should be inversed. With this fact, we can smooth a G' conic
spline by a curvature continuous conic spline, and we can
also obtain a G? connected conic spline curve by a local
algorithm. Even more, if the initial conic spline interpolates
a given point set, the G> conic spline also interpolate the
same point set.

4. Fair curve construction through conic scaling

Though the conic spline constructed above is G>
continuous except at inflection points, it may still be
possible to reduce the number of curvature extrema. In this
section we will discuss how to reduce the curvature extrema

by moving the positions of the joint points (Section 4.1) and
scaling the weights (Section 4.2).

4.1. Conic arc scaling with control points resetting

In the first case, we show that if the curvature at the joint
point of two adjacent conics is an unwanted extremum, it
can be removed or smoothed by resetting the position of the
joint point. In this paper we define a joint point with an
unwanted curvature extremum if the curvature at the point is
a local minimum or a local maximum and the two joining
conic segments own at least one another curvature
extremum within the conic segments or at the other two
ends. For example, if two adjacent conic segments both
have local maximum curvature extrema within the conics,
the curvature at the joint point is a local minimum one. In
this case the curvature types of the two conics are (2, 2). If
the curvature types of a pair of adjacent conics are one of the
types (2,2), (2, 1), (—1,2), the curvature at the joint point is
an unwanted minimum. If the two conics have monotone
decreasing and monotone increasing curvature plot like
(—1,1) and at least one curvature of the two ends of the
conic pair is a local extremum, then the curvature at the joint
point is also defined as an unwanted local extremum. In a
similar way we can define the joint point with an unwanted
maximum curvature just by replacing 2 by 0, 1 by —1 and
—1 by 1 of the local minimum curvature patterns.

If the curvature at the joint point of conics C; and C;, is
a local curvature extremum as defined above, we should
then move the joint point P,; along the normal direction at
the point (see Fig. 3), so that the number of curvature
extrema within the two conics and at the joint point can be
reduced or the curvature difference of adjacent curvature
extrema can be smoothed. When the point P,; has been
moved, the curvatures of the two conic segments at the point
are generally not equal to each other any more. We can then
construct a G* connected conic pair by rotating the common
tangent with the new joint point fixed.

Let V be the unit vector paralleling the normal at the
joint point P,; and lying at the opposite side of the
tangent line with respect to the conic curve itself, we can
then push the joint point along the vector V to a new
position as P,; = P,; + hV. Consequently, the control
points P,;_; and Py, will be pulled to two new
positions along the lines Py_,P,_; and Py 2Py,
respectively. These two new points can also be defined

_ _ AV _

Pyy Py P
P2i-1._.-< a h P/

%1
Py;
Bo
Uo
Psis Psin

Fig. 3. Fair a pair of conics by disturbing the joint point.
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by the equations Py, | — Py = Ag(Pai—; — Pa;i—») and
P2i+1 - P2i+2 = I'LO(PZH-I - le'_tz). Then, the Signed dis-
tance between points P,; and P,; can be obtained as

h= ”PZ[*I - P2[,2||(A0 - l)sin a

=Py = Paipall(po — Dsin B. (11)

With this definition, if we can obtain one of the two
scalar factors ugy or Ay, the other one can be obtained
immediately.

When the control points P,;_; and P,; for the conic C;
have been moved to new positions, the lengths of two
polygon legs have been changed as 1Py | — Py ,ll =

)\OHPZi—l - le‘_zn and ”le‘ - pZi—l” = 60||P2i - le‘_]”,
where
1Py — Pyisll
o=1— M(/\o — 1)cos a.
||P2i - P2i—l”

The end curvatures of the conic will become (SO/A%)ki(O)

and (Ay/ 8%)ki(1). To be sure that the new conic is still G>

continuous with its adjacent conic C;_;, the end curvature

k;(0) of the conic C; should be kept unchanged. Then, we

can set the new weight as

Wai—1
Ao

Woi—1 = 0p»

and the two new end curvatures of the conic are k;(0) =
k;(0) and k;(1) = (Ag/Sg)ki(l). In a similar way we can set
the new weight for the conic C;; as

_ Wit
Woit1 = m Vo1,
0

where

6, =1— 1Py — Paigol

-1 )
[Py — Pyl H0 V%P

and the two end curvatures are k;, ;(0) = (,LL?,/(S?)k,-H(O) and
kip1(1) = kip1(1). From Eq. (11), if Ay > 1, then po > 1
and it can be easily verified that both k;(1) > k;(1) and
k;11(0) > k;,1(0) hold. On the other hand, if the point Py; is
pulled in the opposite direction, the left and the right
curvatures at the point will both be decreased.

If we want the conic C; to be with monotone curvature
plot, the new control point P,;_; should lie inside one but
outside the other one of the two circles centered along the
chord P,;_,P,; as defined in Theorem 1. Let the angle
LPy;_1Py_»Py; = oy, and because the disturbance h is
always very small comparing with the lengths of the control
polygon, «a, can be chosen approximately as the original
angle, i.e. oy = L P,;—1P5;_»P5;. To compute the permitted
range of the scaling factor \,, we can just compute the
scalars by which the control point P,;_; lies on the circle O,
or on the circle O, we have

”132[' - le',z”

4_2 COS oy = A()”PZi*l - le',z”, (12)
Wai-1

IPy; — Pyl - _
%COS((X - ao) = ||P2i - P2i—1”' (13)
4wy

From the triangle AP,; ,P,;P,; |, we have

HPZi - P2i—2|| _ A()”PZi—l - P2i—2”
sin « sin(a — «ap)

and by substituting the expression of w,;_1, Eq. (12) can be
changed into

agAs + bohg + ¢y = 0, (14)
where ag = (1/2)cos oy sin a,

Py = Pyl

by = ————————wj,;_sin(a — ap)cos a
0 ”le_ _ P2i71” 2i—1 0 >
and
IPy;— — Pyl .
co= —(1 + Hcos a)w%i_lsm(a - ap).
Py — Py

On the other hand, from the triangle APy; , PPy we
also have an identity

szi - P2i*2l| _ HPZi - Pzi*]”
sin « sin «

then Eq. (13) can be changed into
aiAf + by Ao+ ¢ =0, (15)
where a; = (1/2)cos(a — ap)sin a,

Py = Pyl

b, = Wh;_1 sin ag cos «
1 ||P2i _ P2i71” 2i—1 0 )
and
_ 1Py — Pyl 2
cg=—[14+ ——————cos a|wj;,_; sin a.
”PZi - P2i*l”

For most practical cases, 0 < «, oy < 7/2, then we have
ag >0, by > 0 and ¢y < 0. In this case, there is one and
only one positive root of Eq. (14) and we choose the solution
as

)Lg _bo + ﬂb% - 4(106'0 .

2610

Similar result also hold for Eq. (15) and the positive solution
can be obtained as

)‘1 —b1+11b%—4a161

0 =
2a1

If Kt[i] = —1, the control point P,;_; lies inside the circle
O, and in this case we have

||P2i - le',z”

4W2' COS & > ||P2i—l - P2i—2|l'
2i—1
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Substituting

_ Woi—1

Wh:i_ 1 = 5 R
2i—1 )\0 0

into Eq. (12), we can then conclude that AJ < 1. Similarly,
from Eq. (13) we have A} > 1. By the same method, we
have A) > 1 and A} < 1 when Kz[i] = 1,A) > land A} > 1
when Kt[i] =2, A < 1 and A} < 1 when Kz[i] = 0. In the
case that the curvature k;(1) of point P,; is a local minimum,
the curvature type of conic C; must be Kt[i]= —1 or
Kt[i] = 2. Then the scaling factor Ay should be selected
bigger than 1 and the curvature k;(1) will be increased. On
the other hand, if Kz[i] = 1 or Kt[i] = 0, Ay can be chosen
less than 1 and the curvature k;(1) will be decreased. If there
is no positive real solution to Egs. (14) or (15), we can just
choose A = A} = 1.

The criteria for the choice of A is that the local curvature
extrema should be reduced or smoothed while the curvature
difference of the conic at two ends should be made as small
as possible. We choose Ay = 1.1A} — 0.1AJ as the initial
value of the scaling factor. With this choice, if A > A we
have Ay > A} > A), and if A} < A9, we have Ay < A} < AD.
This choice can be used for fast convergence purpose for
most practical cases. But, even if AJ and A} are both bigger
than 1, it is still possible that XO < 1 and a local minimum
curvature may be decreased further if Ay < 1. So, we just
choose Ay =A) when (A, — 1)(A) — 1) <0. Then the
curvature k;(1) of the conic C; will be increased if the
original curvature at the point P,; is a local minimum value
or k;(1) will be decreased if the original curvature at the
point is a local maximum value.

To compute another scaling factor w for the conic C;, 4,
we can just replace Py;_5, Py, Wo—1, g and a within
Eqs. (12) and (13) by Paiya. Poiy1s Woiyr. Bo and B,
respectively, then we have another two quadratic equations
with the unknown puy. By the same procedure we can
obtain an initial value of g as wg = (iy. According to Eq.
(11) the choices of Ay and p are dependent on each other.
If we choose wy = fiy, we can also compute another value
for A as A from Eq. (11). Then the final choice for A, can
be set as Ay = (Ay + Ay)/2 and the value of u, can be
modified from Eq. (11) again.

To be sure that the new conic segments are with the same
curvature sign as the original one, the position of the point
P,; should not only be close to the original position, but also
the point P,; should be kept in a fixed domain. The two
points Py;_», P»;,, and the intersection point of two tangent
lines at these two points forms a triangle (see Fig. 4). Let the
intersection points of the triangle with the normal line
through the point P,; be P, and P,, then the point P,; should
be moved within the line segment P, P,.

Though P,; can be moved on the whole line segment
P, P, theoretically, we set upper and lower bounds for
scalars Ay or u for robust numerical computation. If P, lies
on the line P,; _,P»;_1, then the upper bound of the scalar A,

Paint

Py Painy

Fig. 4. The scaling bounds for the adjacent conic pair.

can be set as

P, — Pyl
A =14027————,
1Py -y = Pai sl

and the upper bound of u, can be derived from Eq. (11). If P,
lies on the line P,;,P;; 1, we can set the upper bound u,, for
the scalar u, first and compute the upper bound A, for A with
M- When A or u excels their upper bounds, we can reset A
and u just as the corresponding bounds. The lower bounds
for the scalars Ay and u, can be set as a fixed number such as
0.5.If Ag or ug is less than 0.5, it can then be set as 0.5 and the
other one will be computed from Eq. (11) accordingly.

4.2. Conic arc fairing by weights scaling

The curvature extrema at the joint points can be reduced
and smoothed efficiently by changing the positions of the
points. However, the additional curvature extrema within
some conic segments may not be removed by this method.
To obtain a fair conic spline curve in the end, conic
segments with unwanted curvature extrema can be faired by
scaling the intermediate weights further.

Before defining the unwanted curvature extremum within
a conic segment, we can first define the condition when a
conic with one local curvature extremum can be accepted. If
neither of the two end curvatures of the conic segment is a
local extremum, nor the two adjacent conics have local
curvature extrema, the curvature extremum within the conic
is defined as an accepted extremum. With this definition, a
conic segment with one local maximum curvature plot
should be connected to a conic with monotone increasing
curvature plot and followed by another conic with monotone
decreasing curvature plot. Similarly, the previous conic and
the next one to a conic with a local minimum curvature value
should have monotone decreasing and monotone increasing
curvature plots, respectively. Then any conic segment with a
local curvature extremum but its adjacent conics does not
satisfy the fairness criterion should be faired.

From Theorem 1, we can check the curvature type of the
conic C; by two circles defined with the control points P,;_5,
P>, Py; and the weight w,;_; (see the dashed circles in
Fig. 5). Whether the curvature plot of the conic is monotone
or not will be determined by the relationship between the
point P,;_; and the two circles. To remove the curvature
extremum of the conic segment, we can then adjust the two
circles by scaling the weight w,;_; with the control polygon
of the conic fixed.
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Fig. 5. Fair a conic segment by adjusting the intermediate weight.

Let the angle £P,_{P5_»P, = ap and the angle
£ Psyi_oP,iPy;i—1 = a;, we should determine the permitted
range for the weight w,;_; so that the curvature plot of the
conic segment is monotone. If oy > w/2 or a; > w/2, the
curvature of the conic cannot be made monotone just by
scaling the weight, so we will keep the weight unchanged.
Otherwise, we will choose a new intermediate weight for the
conic so that its curvature extrema will be reduced. Assume
that if the weight is scaled as w,;_ [ the circle O, will pass

the point P,;_;, then we have
”Pz[' - le',z”
—= =2 c0s ap = 1Py — Pyl 16
A0y 1lo)? e 2i-1 2i-2 (16)

On the other hand, we can set the weight as wy;_;/; so that
the point P,;_; lies on the circle O;. We have

||P2 - P2‘_2||
2%005 (23] =||P2'_P2'_1||. (17)
4wy 111)? l l

From Eq. (16) we have

I = 1 \/ ”le' - P2i—2|| COS &
=
||P2i—1 - P2i—2|| 2

i

Woi—1

and from Eq. (17) we have

1 ||P2i - P2i—2” COS
||P2i - P2i—l” 2

11:

Woi—1

Without loss of generality, we can assume that ay < ¢,
then [y > [;. If wy;_;1; > +/2/2, then any weight bigger than
wo;_11; and less than w,; [, can be used to construct a conic
with monotone curvature plot. If the curvature type of the
conic segment C; has a local maximum value or Kt[i] = 2,
we can choose [ = min(/y,/;); and if the curvature type
Kt[i] = 0, we choose ! = max(ly, /). With this choice, the
curvatures at the two ends can be deformed as little as
possible while the fairness of the conic segment has been
improved. Then the new weight for the conic can be chosen
as Wo;—; = lwy_;, and the end curvatures of the conic
segment can be obtained as k;(0) = k;(0)/> and k;(1) =
k,(1)/[*>. If the weight w,;_, of the conic C; satisfies the
inequality wo;—; < \2/2 and Kt[i] = 1 or Kt[i] = —1, there
are one local maximum value and one local minimum value
within the curvature plot of the conic. In this case, we can
reset the new weight as #,;_; = /2/2 and the two curvature
extrema within the conic segment can then be reduced or
removed.

When the weight for the conic C; has been changed, the
curvatures at the two ends are not equal to the curvatures of
two adjacent conics any more. To achieve the curvature
continuity with the conic C;_, we can adjust the tangent at
point P,;_, with Py, fixed as introduced in Section 3.
The tangent at point P,; can also be adjusted while fixing
the point P; so that the conic C; joins with G* continuity to
the conic C;; too.

4.3. The algorithm

To obtain a fair conic spline curve fitting a set of ordered
points, we can first fit the points by a tangent continuous
Bézier spline or an arc spline curve. These initial G' conic
spline curve will be represented as a quadratic rational B-
spline curve. For every two adjacent conic segments without
inflection, the common tangent and their intermediate
weights will be adjusted. By setting new intermediate
control points of every conic in Bézier representation and
new weights for these points, the conic spline curve is
curvature continuous at convex or concave parts.

The conic spline curves obtained above can be faired
further by removing the unwanted curvature extrema. We
will reduce the unwanted curvature extrema by adjusting the
control points and the weights of conics in two main steps.
Firstly, we can check every joint point and try to remove the
unwanted curvature extrema at the joint points by moving
the positions of the points. After that we can check all conic
segments in turn and remove the unwanted curvature
extrema within some conic segments by scaling the weights.
When a joint point has been moved or a weight has been
changed, the new end curvatures of the conic are not equal
to the curvatures of its neighboring conics any more. We
should then adjust the tangent directions at the joints to
make a curvature continuous conic spline curve. But,
adjusting a common tangent at a joint point may arouse
unwanted curvature extrema within adjacent conic seg-
ments. On another hand, the end curvatures of a conic may
become local extrema when the curvature type of the conic
has been changed too. Then we can fair the conic spline
curve by repeating the above two steps. The repeat
procedure will not be stopped until all the local curvature
extrema are accepted or a prescribed iteration number has
been reached. We can accelerate the convergence speed by
repeating the first step for joint point resetting with a few
times before adjusting the weights for conics with unwanted
local curvature extrema. Although convergence cannot be
proven, satisfactory convergence was observed in all the
examples we tried. It should be noted that different fairness
criteria may influence the convergence speed.

For each time of fairing, we need three independent
functions, TangentRotating (P,;), PointResetting (P,;) and
WeightScaling (C;). TangentRotating (P,;) is a function to
construct a curvature continuous conic pair by rotating the
tangent at the joint and resetting two intermediate weights of
the conics. To compute how to move the joint point P»;
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along the normal direction at the point we use the function
PointResetting (P,;). WeightScaling (C;) can be used to
reduce or remove the curvature extrema within a conic
segment by adjusting the weight corresponding to the
middle control point of the conic C;. If we want to construct
an interpolating curve, we can just omit the point moving
step in the following algorithm. For a conic spline with
inflection points, we can either divide the curve into convex
and concave parts and fair every part independently, or fair
the whole curve in a uniform procedure, but joint point
moving or weight scaling are only applied for two adjacent
conic segments or three adjacent segments without
inflection. In this paper we choose the second method
because it gives a more compact program.
The algorithm for fair conic spline fitting:

Step 1. Fit the data by a G' conic spline curve consisting
of m segments;
Step 2. Construct a G> continuous conic spline from the
initial spline;
Step 3. Compute the curvature type for each conic
segment;
Step4.1.Fori=1;i<m;i++) {
If (the curvature at the point P,; is an unwanted local
extremum) {
PointResetting (P»;);
TangentRotating (P;);
}

}
Step 4.2. Repeat step 4.1 for 3 times;

Step 5. For (i =2;i <m; i+ +) {
If (conic C; has unwanted local curvature extrema) {
WeightScaling (C));
TangentRotating (P,;_»);
TangentRotating (P,;);
}

}
Step 6. Repeat step4 and step 5 until all the unwanted

curvature extrema have been removed or a certain
iteration number has been reached.

5. Examples and comparison

We have tested the algorithm for many examples and we
show a few examples here to illustrate the efficiency of the
algorithm.

In example 1 we sample a set of random points from a
locally convex plane curve

rotLft 2,2
X(t) = —— , te[-2,2],
(0 21\ [ ]

then these points form a locally convex polygon. At first we
interpolate the points by a tangent continuous quadratic

Bézier spline curve, where the tangent at every interior point
is selected paralleling the line connecting its former and next
points and the tangents at two ends are determined by the rule
that the control polygon of the first and last Bézier curves
form two isosceles triangles (see dashed line in Fig. 6(a)).
After that, we have tested two methods to construct curvature
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Fig. 6. (a) Interpolating a set of points by locally convex conic splines: the
G' conic spline (dashed) and a fair, G*> conic spline (solid); (b) the
curvature plot of initial G' conic spline (dashed) and of G? conic spline with
fixed control polygon (solid); (c) the curvature plots of the interpolating G
conic spline before (dashed) and after (solid) fairing.
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continuous conic spline curves interpolating the sampled
points. One method is to keep the control polygon unchanged
and compute weights for every conic based on curvature
continuity condition [6]. The curvature plot of the G> conic
spline is shown in Fig. 6(b). The second method is our tangent
rotating method presented in Section 3. By computing the
new tangent direction and new intermediate weights for
every two adjacent conics, we can obtain a curvature
continuous conic spline too. One advantage of the second
method is that it is a local method. Even more, the curvature
extrema within some conic segments can be reduced
efficiently by scaling the intermediate weights and rotating
the tangents at the joint points, a fair interpolating curve is
obtained in the end (see Fig. 6(c)).

In the second example, the original data were sampled
from the contour of a bone section. The data points are noisy
and irregular. We first approximate the data by an arc spline
within tolerance 0.35X 1072 and then reduce the arc
segments within another tolerance 0.2 X 1072, The tiny
arcs are also merged and only 34 arcs are left. When the
arc spline is obtained, we can construct a fair G*> conic
spline from the arc spline (see Fig. 7(a)). The arc spline
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and the conic spline in rational B-spline forms are plotted in
Fig. 7(b). The curvature plot of an arc spline interpolating
the original noisy points and the curvature plot of the final
approximating arc spline are shown in Fig. 7(c). For curve
parts without inflection, curvature continuous conic spline
can be obtained from the arc spline. Even more, the
unwanted curvature extrema of the conic spline can be
reduced efficiently (see Fig. 7(d)).

In the third example, we fit the profile of a mouse section
by an arc spline first and then construct a fair conic spline
from the arc spline (Fig. 8(a)). With the same method as
example 2, we obtain an arc spline by fitting the data within
tolerance 0.5 X 1072, Because the arc lengths and arc
angles of the initial arc spline are not uniform, the deviation
of the final conic spline from the arc spline varies non-
uniformly along the whole curve (see Fig. 8(b) and (c)).
From the curvature plots in Fig. 8(d) and (e), we obtain a fair
conic spline curve fitting the original data in the end.

The algorithm presented in this paper has been
implemented on a SGI octane workstation with MIPS
R10000. Because we fair a conic spline by a local algorithm
and we reduce curvature extrema only by moving selected
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Fig. 7. (a) Approximating the profile of a bone section by an arc spline (dashed) and a fair conic spline (solid); (b) the arc spline (dashed) and the conic spline
(solid) with control polygons; (c) curvature plot of an arc spline interpolating the original noisy data (thin) and the curvature plot of a fair fitting arc spline
(thick); (d) curvature plots of the G? conic spline before (dashed) and after (solid) fairing.
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Fig. 8. (a) Approximating a mouse section by an arc spline (dashed) and a fair conic spline (solid); (b) the arc spline (dashed) and the conic spline (solid) with
control polygons; (c) zoom in a curve part selected in Fig. 8(b); (d) curvature plot of an arc spline interpolating the original noisy data (thin) and the curvature
plot of a fair fitting arc spline (thick); (e) curvature plots of the G2 conic spline before (thin) and after (thick) fairing.

points and scaling selected weights, the curve can be faired in 6. Conclusions

real time. The conic number, the iteration number, the total

number for point move, the total number for weight scaling In this paper we have presented a geometric method
and the time for conic spline fairing are listed in Table 1. for constructing curvature continuous conic spline from
Table 1

The iteration number and fairing time, etc. for the three examples

Points Conics Iteration Point move Weight scaling Time (s)
Convex curve 21 20 5 0 47 0.43
Bone section 138 34 28 121 111 0.46

Mouse section 204 54 20 185 195 0.65
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an initial tangent continuous conic spline curve and fair the
conic spline curve by removing additional curvature
extrema within the curve. The original G curve is obtained
by interpolating a point set with quadratic Bézier spline or
fitting a set of noisy data with an arc spline. By representing
the conic spline in piecewise rational quadratic Bézier
curves, we can then change the control points and weights of
adjacent conic pairs to make curvature continuous conic
spline curve. The new conic spline interpolates the same set
of points if the original conic spline interpolates the data at
the conic ends. To fair a conic spline curve, the curvature
extrema can be reduced efficiently by scaling selected conic
segments. The final conic spline curves are G> continuous at
convex or concave parts and G' continuous at inflection
points. If a curvature continuous curve is desired, the parts
containing inflection points can be replaced by cubic curves
or other curves with inflections [13,17].

The method presented in this paper can be used in the
fields where the shape quality is more desired than the
accuracy of the fitting. In this paper we remove the additional
curvature extrema for every two or three adjacent conic
segments. In fact, this method can be extended to fair a conic
spline with some other fairness criteria. For example, there is
at most one curvature extremum within a curve part
consisting of four, five or even more consecutive segments
or a curve part with prescribed length. Then the conic spline
can be faired by a similar fairing algorithm.
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