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Abstract

We present an efficient geometric algorithm for conic spline curve fitting and fairing through conic arc scaling. Given a set of planar points,

we first construct a tangent continuous conic spline by interpolating the points with a quadratic Bézier spline curve or fitting the data with a

smooth arc spline. The arc spline can be represented as a piecewise quadratic rational Bézier spline curve. For parts of the G1 conic spline

without an inflection, we can obtain a curvature continuous conic spline by adjusting the tangent direction at the joint point and scaling the

weights for every two adjacent rational Bézier curves. The unwanted curvature extrema within conic segments or at some joint points can be

removed efficiently by scaling the weights of the conic segments or moving the joint points along the normal direction of the curve at the

point. In the end, a fair conic spline curve is obtained that is G2 continuous at convex or concave parts and G1 continuous at inflection points.

The main advantages of the method lies in two aspects, one advantage is that we can construct a curvature continuous conic spline by a local

algorithm, the other one is that the curvature plot of the conic spline can be controlled efficiently. The method can be used in the field where

fair shape is desired by interpolating or approximating a given point set. Numerical examples from simulated and real data are presented to

show the efficiency of the new method.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Data fitting by parametric curves can be used in wide

fields such as pattern recognition, image processing,

statistical data analysis and many other industrial appli-

cations. While most curve fitting algorithms try to construct

a smooth curve passing through or near the given points, in

the field of computer aided geometric design, it is often

desirable to fit a point set by a curve close to the points and

which has a please shape [17,26,28]. Even more, the

curvature plot of the fitting curve should consist of as few as

possible monotone pieces or with prescribed curvatures at

selected points [8]. In this paper we address the problem of

data fitting by conic spline for which the shape of the result

curve can be controlled efficiently.

With the capability of representing conics and freeform

curves and surfaces in a unified way, NURBS have become

de facto the state of art in computer aided design [7,21]. The

problems of data fitting by B-spline curves and surfaces

have been studied extensively in the literature. To fit a point

set by a B-spline curve [15,18], knots and parameters

corresponding to the data points are often given ahead, then

least square fitting of the data is often applied and the

control points of the curve can be obtained by solving a

system of linear equations. There are also several methods

to fit the point data by a rational B-spline curve [3,16,27],

but how to set the weights for a fair NURBS curve with

controllable curvature plot is still a challenging problem.

Data fitting by arc spline curves [12,22,30] is another

important method used frequently in tool path description

for machining, robot path planning as well as shape

modeling. When fitting a point set by an arc spline, every

segment can be constructed as an elementary geometric

problem. Then the shape and the number of arcs can be

controlled efficiently. Even more, an arc spline can be

constructed in a fairness manner and the arc segments of the

spline can be reduced efficiently within a prescribed

tolerance [29]. One main shortcoming of the arc spline is

that its curvature is not continuous, so it cannot be used for

high quality shape modeling.

With arc spline as a special case, conic spline curves and

surfaces own a lot of elegant properties which make them a

powerful tool for shape modeling. A conic segment can both
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be represented as an algebraic curve segment and as a

rational Bézier curve [14]. The parametrization of a conic

segment can be controlled efficiently for high order

continuity purpose or surface skinning in homogeneous

space [4,5]. The offset and the CNC interpolator for the

conics can be computed efficiently [9,10]. Farin [6] and

Pottmann [23] have presented a global and a local method

for the construction of curvature continuous conic spline

curve separately. These two methods either have the

limitation that a change of the local parameter may

influence the whole shape or the segments number are

approximately the twice of the interpolating points. Scha-

back [25] has presented a method of conic spline

interpolation by solving a global system of non-linear

equations. Conic spline can also be used to fit a piecewise

linear curve or another smooth curve [1,19,20,24], but how

to control the curvature plot of the conic spline curve have

not been addressed.

Recently, Ahn and Kim [2] and Frey and Field [11]

have presented independently the same result that shows

whether or not a given conic segment has monotone

curvature. This result can be used for the design of a

single conic segment. In this paper we will show how to

construct a curvature continuous conic spline curve from

a tangent continuous conic spline and fair the conic

spline by removing unwanted curvature extrema. We

assume here that the initial G1 conic spline curve be a

tangent continuous quadratic Bézier spline curve inter-

polating a given point sequence or an arc spline curve

approximating a noisy point set [30]. For the latter case,

each arc can be expressed as a quadratic rational Bézier

segment or two of them if the angle is larger than p.

Then for every two adjacent G1 connected conic

segments without inflection, the tangent at the joint

point and the two weights of the Bézier representation

can be reset so that the two new conic segments are

curvature continuous while the tangents and curvatures at

the other two ends are fixed. To obtain a fair conic

spline curve, the additional curvature extrema within

some conic segments or at the joint point of two adjacent

conics can be removed by scaling the weights or moving

the joint points of selected conics. By combining the

method of tangent displacement, weight scaling and end

point moving, an efficient algorithm for fair conic spline

construction is presented.

The organization of the paper is as follows. In Section

2 we will give a brief introduction of conics and the

conditions for various curvature distribution are also

presented. Algorithm for the construction of a curvature

continuous conic spline from an initial G1 spline is

presented in Section 3. In Section 4 we will discuss how

to achieve a fair conic spline curve by resetting the conic

ends and scaling the weights of selected arcs. Examples

are presented in Section 5 and we conclude the paper in

Section 6.

2. Preliminary information on conics

The standard form for a rational quadratic Bézier curve is

RðtÞ ¼
R0ð1 2 tÞ2 þ 2R1wtð1 2 tÞ þ R2t2

ð1 2 tÞ2 þ 2wtð1 2 tÞ þ t2
;

where Ri ði ¼ 0; 1; 2Þ are the control points of the Bézier

curve and w is the middle weight. It is well known that any

rational quadratic Bézier curve is a conic segment [14]. The

curve is a segment of parabola when the weight w ¼ 1; and

the curve is a segment of ellipse or a segment of hyperbola

when w is less than or larger than 1, respectively. If the

control polygon R0R1R2 forms an isosceles triangle, let

the angle /R1R0R2 ¼ u and set the weight w ¼ cos u; then

the quadratic rational Bézier curve is a circular arc.

The unsigned curvature for the curve RðtÞ can be

computed as

kðtÞ ¼
kR0ðtÞ £ R00ðtÞk

kR0ðtÞk3
;

then the curvatures at the two ends of the conic segment are

kð0Þ ¼
1

2

kðR1 2 R0Þ £ ðR2 2 R1Þk
w2kR1 2 R0k

3
;

and

kð1Þ ¼
1

2

kðR1 2 R0Þ £ ðR2 2 R1Þk
w2kR2 2 R1k

3
;

respectively. From the curvature formula, we can see that

the two end curvatures will be scaled simultaneously if the

weight w has been changed.

Suppose that the three control points R0; R1 and R2 are

not collinear and w . 0; then the conic segment will not

degenerate to a line. As indicated by Ahn and Kim [2] and

Frey and Field [11], a quadratic rational Bézier curve can be

with monotone curvature plot if and only if the middle

control point R1 lies in a region defined by the boundary

points and the middle weight.

Theorem 1. Let

U ¼
R2 2 R0

kR2 2 R0k
;

and

r ¼
kR2 2 R0k

4w2
;

then we can define two circles O0 and O1 both with radius r

and centered at O0 ¼ R0 þ rU and O1 ¼ R2 2 rU; respect-

ively. If the control point R1 lies outside both of the two

circles or inside both of the circles, then the curvature plot

of the conic is with a local maximum value or a local

minimum value. If the control point R1 lies inside one of the

two circles but outside the other one, then the curvature plot

of the conic segment is monotone when w2 . 1=2 and has
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one local maximum value and one local minimum value

when w2 , 1=2:

Proof. See Refs. [2,11] A.

For the convenience of a fair curve design, we can assign

an integer sign Kt½i� to indicate the curvature type of conic

Ci (see Fig. 1). We set Kt½i� ¼ 2 when the control point R1

lies outside both of the two circles O0 and O1: In this case

the curvature plot has a local maximum. If R1 lies inside

both of the two circles O0 and O1; there is a local minimum

value within the curvature plot, then we set Kt½i� ¼ 0: If R1

lies outside O0 but inside O1 we set the curvature type

Kt½i� ¼ 1: If R1 lies inside O0 but outside O1 the curvature

type Kt½i� ¼ 21: When w2 . 1=2; and if the curvature type

of a conic section is 1 or 21; the curvature plot of the conic

is monotone increasing or monotone decreasing,

respectively.

To classify the curvature type of a conic segment, we will

have to judge the relationship between the middle control

point R1 and the two circles O0 and O1: When R1 lies on the

circle O0; we have

2
kR2 2 R0k

4w2
cos a0 ¼ kR1 2 R0k: ð1Þ

If R1 lies on the circle O1; we have

2
kR2 2 R0k

4w2
cos a1 ¼ kR2 2 R1k: ð2Þ

When each conic segment is represented as a quadratic

rational Bézier curve, the conic spline curve consisting of m

segments of smooth connected conic pieces can then be

transformed into a rational B-spline curve [21]. The knot

vector for the NURBS curve can be set as t¼ {0;1;…;m};

where the multiplicity for each interior knot is 2 and

the multiplicity of the first and the last knots are both 3. The

control polygon of the rational B-spline curve is

P0P1P2…P2m21P2m where P2i22P2i21P2i are just the control

polygon of the conic Ci ði¼ 1;2;…;mÞ: Every two adjacent

conics Ci and Ciþ1 are jointed at point P2i; and the points

P2i21; P2i and P2iþ1 are collinear when the two conics are

tangent continuous at the joint point. Since the weights

associated with the control polygon of the conic Ci are 1,

w2i21 and 1, then the weights of the NURBS curve are

just the weights of the conics, where w2i21 is the weight

corresponding to the control point P2i21; ði¼ 1;2;…;mÞ: The

rest weights w0 ¼w2 ¼ · · ·¼w2m ¼ 1:

3. G2 conic spline fitting

Though there are several algorithms presented in the

literature for fitting a set of points by a conic spline curve [6,

19,23,25], but it is still a challenging problem to fit the data

by a fair and curvature continuous conic spline curve

directly. In this section we fit a conic spline curve to a point

set by first fitting the points with a tangent continuous

quadratic Bézier spline or an arc spline and then construct a

curvature continuous conic spline from the original G1

conic spline.

With a set of ordered planar points, an initial G1 conic

spline can be obtained by interpolating the points with

piecewise quadratic Bézier curves. If the points are noisy,

we can first fair and fit the data by an arc spline within a

prescribed tolerance [30]. When the data is fitted by an arc

spline, the number of arcs can be reduced efficiently within

another tolerance [29]. For the convenience of representing

circular arcs as rational Bézier curves, we assume that the

central angle for an arc is less than p. If the central angle for

Fig. 1. Curvature type for a conic segment in Bézier form: (a) Kt½i� ¼ 21; (b) Kt½i� ¼ 0; (c) Kt½i� ¼ 1; (d) Kt½i� ¼ 2:
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an arc segment is larger that p, it can be divided into two

segments.

We assume that the G1 conic spline obtained above

consists of m segments, namely, C1;C2;…;Cm: The center

angles for the arc spline are 2u1; 2u2;…; 2um; respectively.

Then, each conic segment can be expressed as a rational

quadratic Bézier curve,

RiðtÞ ¼
P2i22ð1 2 tÞ2 þ 2P2i21w2i21tð1 2 tÞ þ P2it

2

ð1 2 tÞ2 þ 2w2i21tð1 2 tÞ þ t2
;

where the weight w2i21 ¼ cos ui for the arcs. If it is

a quadratic Bézier curve, the weight can be chosen

as w2i21 ¼ 1: Because any two adjacent arcs Ci and Ciþ1

ði ¼ 1; 2;…;m 2 1Þ are tangent continuous, then the control

points P2i21;P2i and P2iþ1 are collinear.

To construct a curvature continuous conic spline from

the G1 conic spline, the weights and the tangent at the joint

point for every two adjacent arc segments or conic segments

can be reset to obtain a new pair of G2 connected conic

segments. As shown in Fig. 2, Ci and Ciþ1 are two adjacent

conics which joint at point P2i; then we can move the point
�P2i21 along the line P2i22P2i21 and move the point �P2iþ1

along the line P2iþ1P2iþ2 so that the line connecting the two

new points �P2i21 and �P2iþ1 still passes through the joint

point P2i: In another point of view, we can obtain two new

control points �P2i21 and �P2iþ1 by rotating the line P2i21P2iþ1

around the fixed point P2i with an angle u and compute the

intersection points with the lines P2i22P2i21 and P2iþ1P2iþ2;

respectively.

Let the unsigned angle between the vector P2i22P2i21

and the vector P2i21P2i be a; the unsigned angle between the

vector P2iP2iþ1 and the vector P2iþ1P2iþ2 be b: Because the

new control point �P2i21 lies on the line P2i22P2i21; then we

can assume that �P2i21 2 P2i22 ¼ lðP2i21 2 P2i22Þ: In a

similar way, the new control point �P2iþ1 lies on the line

P2iþ2P2iþ1; and we have P2iþ2 2 �P2iþ1 ¼ mðP2iþ2 2 P2iþ1Þ:

Then, if we have the scaling coefficients l and m; we will

obtain the two new control points for the two conics

immediately. From the triangle DP2i21P2i
�P2i21; we have

kP2i21 2 P2i22kðl2 1Þ

sin u
¼

kP2i 2 P2i21k
sinðaþ uÞ

: ð3Þ

Based on the triangle DP2i
�P2iþ1P2iþ1; we have

kP2iþ1 2 P2ik
sinðb2 uÞ

¼
kP2iþ2 2 P2iþ1kðm2 1Þ

sin u
: ð4Þ

From Eqs. (3) and (4) we can express the parameters l and

m as two functions of the parameter u;

l ¼ 1 þ
kP2i 2 P2i21k
kP2i21 2 P2i22k

sin u

sinðuþ aÞ
; ð5Þ

and

m ¼ 1 2
kP2iþ1 2 P2ik
kP2iþ2 2 P2iþ1k

sin u

sinðb2 uÞ
: ð6Þ

If we replace the control point P2i21 of the conic Ci by a new

control point �P2i21 and keep the weights of the curve

unchanged, then the end curvatures of the conic can be

computed as �kið0Þ ¼ ð1=l2Þkið0Þ and

�kið1Þ ¼
l sin3ðaþ uÞ

sin3a
kið1Þ;

where kið0Þ and kið1Þ are the end curvatures of the original

conic segment. In a similar way, the new end curvatures for

the conic Ciþ1 can be obtained as

�kiþ1ð0Þ ¼
m sin3ðb2 uÞ

sin3b
kiþ1ð0Þ;

and �kiþ1ð1Þ ¼ ð1=m2Þkiþ1ð1Þ:

To be sure that the curvature at the first end point of the

new conic Ci be fixed or equal to a predefined value such as

the second end curvature of its former conic segment, the

original weight w2i21 should be reset as a new one �w2i21:

Then we have

1

l2
kið0Þ

w2
2i21

�w2
2i21

¼ ki21ð1Þ: ð7Þ

If i ¼ 1 or P2i22 is an inflection, we may set kð0Þ ¼ kið0Þ for

Eq. (7). Then the new weight can be set as

�w2i21 ¼

ffiffiffiffiffiffiffiffiffiffi
kið0Þ

ki21ð1Þ

s
w2i21

l
:

At the same time, the curvature at the other end of the conic

Ci has been changed as

l sin3ðaþ uÞ

sin3a
kið1Þ

w2
2i21

�w2
2i21

:

In the same way, the weight w2iþ1 for the conic Ciþ1 can be

changed as �w2iþ1 ¼ ðw2iþ1Þ=m; and the end curvatures of the

new conic are

m3 sin3ðb2 uÞ

sin3b
kiþ1ð0Þ;

and kiþ1ð1Þ: To be sure that the new end curvatures at the

joint point of the two conics Ci and Ciþ1 are equal, we need

l sin3ðaþ uÞ

sin3a
kið1Þ

w2
2i21

�w2
2i21

¼
m3 sin3ðb2 uÞ

sin3b
kiþ1ð0Þ: ð8ÞFig. 2. Construct a pair of G2 continuous conics by displacing the common

tangent.
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Substituting Eq. (7) into Eq. (8), we have

l sinðaþ uÞ ¼ m sinðb2 uÞ
sin a

sin b

kiþ1ð0Þkið0Þ

ki21ð1Þkið1Þ

� �1=3

: ð9Þ

By expressing l and m as the functions of u; Eq. (9) can be

changed into

sinðaþ uÞ2 s2 sinðb2 uÞ þ ðs0 þ s1s2Þsin u ¼ 0; ð10Þ

where

s0 ¼
kP2i 2 P2i21k
kP2i21 2 P2i22k

;

s1 ¼
kP2iþ1 2 P2ik
kP2iþ2 2 P2iþ1k

;

and

s2 ¼
sin a

sin b

kiþ1ð0Þkið0Þ

ki21ð1Þkið1Þ

� �1=3

:

By expanding the sine function, we have AsinuþBcosu¼0;

where A¼cosaþs2 cosbþs0þs1s2 and B¼sina2s2 sinb:

The solution to Eq. (10) is u¼arctanð2B=AÞ:

When u is obtained, the two scaling factors l and m are

given by Eqs. (5) and (6), and the new control points and the

new weights for the conics with G2 continuity are obtained.

If the curvatures kið0Þ and kiþ1ð1Þ for the two conics are

fixed, the left and the right curvatures at the point P2i will

become as

�kið1Þ ¼
l3 sin3ðaþ uÞ

sin3a
kið1Þ;

and

�kiþ1ð0Þ ¼
m3 sin3ðb2 uÞ

sin3b
kiþ1ð0Þ:

It can be easily concluded from the equation �kið1Þ ¼ �kiþ1ð0Þ

that when the inequality kið1Þ , kiþ1ð0Þ holds, u will be a

positive number, and then we have l . 1 and m , 1:

Consequently, we have �kið1Þ . kið1Þ and �kiþ1ð0Þ , kiþ1ð0Þ:

When kið1Þ . kiþ1ð0Þ; the directions of the inequalities

should be inversed. With this fact, we can smooth a G1 conic

spline by a curvature continuous conic spline, and we can

also obtain a G2 connected conic spline curve by a local

algorithm. Even more, if the initial conic spline interpolates

a given point set, the G2 conic spline also interpolate the

same point set.

4. Fair curve construction through conic scaling

Though the conic spline constructed above is G2

continuous except at inflection points, it may still be

possible to reduce the number of curvature extrema. In this

section we will discuss how to reduce the curvature extrema

by moving the positions of the joint points (Section 4.1) and

scaling the weights (Section 4.2).

4.1. Conic arc scaling with control points resetting

In the first case, we show that if the curvature at the joint

point of two adjacent conics is an unwanted extremum, it

can be removed or smoothed by resetting the position of the

joint point. In this paper we define a joint point with an

unwanted curvature extremum if the curvature at the point is

a local minimum or a local maximum and the two joining

conic segments own at least one another curvature

extremum within the conic segments or at the other two

ends. For example, if two adjacent conic segments both

have local maximum curvature extrema within the conics,

the curvature at the joint point is a local minimum one. In

this case the curvature types of the two conics are ð2; 2Þ: If

the curvature types of a pair of adjacent conics are one of the

types ð2; 2Þ; ð2; 1Þ; ð21; 2Þ; the curvature at the joint point is

an unwanted minimum. If the two conics have monotone

decreasing and monotone increasing curvature plot like

ð21; 1Þ and at least one curvature of the two ends of the

conic pair is a local extremum, then the curvature at the joint

point is also defined as an unwanted local extremum. In a

similar way we can define the joint point with an unwanted

maximum curvature just by replacing 2 by 0, 1 by 21 and

21 by 1 of the local minimum curvature patterns.

If the curvature at the joint point of conics Ci and Ciþ1 is

a local curvature extremum as defined above, we should

then move the joint point P2i along the normal direction at

the point (see Fig. 3), so that the number of curvature

extrema within the two conics and at the joint point can be

reduced or the curvature difference of adjacent curvature

extrema can be smoothed. When the point P2i has been

moved, the curvatures of the two conic segments at the point

are generally not equal to each other any more. We can then

construct a G2 connected conic pair by rotating the common

tangent with the new joint point fixed.

Let V be the unit vector paralleling the normal at the

joint point P2i and lying at the opposite side of the

tangent line with respect to the conic curve itself, we can

then push the joint point along the vector V to a new

position as �P2i ¼ P2i þ hV : Consequently, the control

points P2i21 and P2iþ1 will be pulled to two new

positions along the lines P2i22P2i21 and P2iþ2P2iþ1;

respectively. These two new points can also be defined

Fig. 3. Fair a pair of conics by disturbing the joint point.
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by the equations �P2i21 2 P2i22 ¼ l0ðP2i21 2 P2i22Þ and
�P2iþ1 2 P2iþ2 ¼ m0ðP2iþ1 2 P2iþ2Þ: Then, the signed dis-

tance between points P2i and �P2i can be obtained as

h ¼ kP2i21 2 P2i22kðl0 2 1Þsin a

¼ kP2iþ1 2 P2iþ2kðm0 2 1Þsin b: ð11Þ

With this definition, if we can obtain one of the two

scalar factors m0 or l0; the other one can be obtained

immediately.

When the control points P2i21 and P2i for the conic Ci

have been moved to new positions, the lengths of two

polygon legs have been changed as k �P2i21 2 P2i22k ¼
l0kP2i21 2 P2i22k and k �P2i 2 �P2i21k ¼ d0kP2i 2 P2i21k;
where

d0 ¼ 1 2
kP2i21 2 P2i22k
kP2i 2 P2i21k

ðl0 2 1Þcos a:

The end curvatures of the conic will become ðd0=l
2
0Þkið0Þ

and ðl0=d
2
0Þkið1Þ: To be sure that the new conic is still G2

continuous with its adjacent conic Ci21; the end curvature

kið0Þ of the conic Ci should be kept unchanged. Then, we

can set the new weight as

�w2i21 ¼
w2i21

l0

ffiffiffi
d0

p
;

and the two new end curvatures of the conic are �kið0Þ ¼

kið0Þ and �kið1Þ ¼ ðl3
0=d

3
0Þkið1Þ: In a similar way we can set

the new weight for the conic Ciþ1 as

�w2iþ1 ¼
w2iþ1

m0

ffiffiffi
d1

p
;

where

d1 ¼ 1 2
kP2iþ1 2 P2iþ2k
kP2i 2 P2iþ1k

ðm0 2 1Þcos b;

and the two end curvatures are �kiþ1ð0Þ ¼ ðm3
0=d

3
1Þkiþ1ð0Þ and

�kiþ1ð1Þ ¼ kiþ1ð1Þ: From Eq. (11), if l0 . 1; then m0 . 1

and it can be easily verified that both �kið1Þ . kið1Þ and
�kiþ1ð0Þ . kiþ1ð0Þ hold. On the other hand, if the point P2i is

pulled in the opposite direction, the left and the right

curvatures at the point will both be decreased.

If we want the conic Ci to be with monotone curvature

plot, the new control point �P2i21 should lie inside one but

outside the other one of the two circles centered along the

chord P2i22
�P2i as defined in Theorem 1. Let the angle

/P2i21P2i22
�P2i ¼ a0; and because the disturbance h is

always very small comparing with the lengths of the control

polygon, a0 can be chosen approximately as the original

angle, i.e. a0 < /P2i21P2i22P2i: To compute the permitted

range of the scaling factor l0; we can just compute the

scalars by which the control point �P2i21 lies on the circle O0

or on the circle O1; we have

2
k �P2i 2 P2i22k

4 �w2
2i21

cos a0 ¼ l0kP2i21 2 P2i22k; ð12Þ

2
k �P2i 2 P2i22k

4 �w2
2i21

cosða2 a0Þ ¼ k �P2i 2 �P2i21k: ð13Þ

From the triangle DP2i22
�P2i

�P2i21; we have

k �P2i 2 P2i22k
sin a

¼
l0kP2i21 2 P2i22k

sinða2 a0Þ
;

and by substituting the expression of �w2i21; Eq. (12) can be

changed into

a0l
2
0 þ b0l0 þ c0 ¼ 0; ð14Þ

where a0 ¼ ð1=2Þcos a0 sin a;

b0 ¼
kP2i21 2 P2i22k
kP2i 2 P2i21k

w2
2i21sinða2 a0Þcos a;

and

c0 ¼ 2 1 þ
kP2i21 2 P2i22k
kP2i 2 P2i21k

cos a

� �
w2

2i21sinða2 a0Þ:

On the other hand, from the triangle DP2i22
�P2i

�P2i21 we

also have an identity

k �P2i 2 P2i22k
sin a

¼
k �P2i 2 �P2i21k

sin a0

;

then Eq. (13) can be changed into

a1l
2
0 þ b1l0 þ c1 ¼ 0; ð15Þ

where a1 ¼ ð1=2Þcosða2 a0Þsin a;

b1 ¼
kP2i21 2 P2i22k
kP2i 2 P2i21k

w2
2i21 sin a0 cos a;

and

c1 ¼ 2 1 þ
kP2i21 2 P2i22k
kP2i 2 P2i21k

cos a

� �
w2

2i21 sin a0:

For most practical cases, 0 , a; a0 , p=2; then we have

a0 . 0; b0 . 0 and c0 , 0: In this case, there is one and

only one positive root of Eq. (14) and we choose the solution

as

l0
0 ¼

2b0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

0 2 4a0c0

q
2a0

:

Similar result also hold for Eq. (15) and the positive solution

can be obtained as

l1
0 ¼

2b1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 2 4a1c1

q
2a1

:

If Kt½i� ¼ 21; the control point P2i21 lies inside the circle

O0 and in this case we have

2
kP2i 2 P2i22k

4w2
2i21

cos a0 . kP2i21 2 P2i22k:
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Substituting

�w2i21 ¼
w2i21

l0

ffiffiffi
d0

p
;

into Eq. (12), we can then conclude that l0
0 , 1: Similarly,

from Eq. (13) we have l1
0 . 1: By the same method, we

have l0
0 . 1 and l1

0 , 1 when Kt½i� ¼ 1; l0
0 . 1 and l1

0 . 1

when Kt½i� ¼ 2; l0
0 , 1 and l1

0 , 1 when Kt½i� ¼ 0: In the

case that the curvature kið1Þ of point P2i is a local minimum,

the curvature type of conic Ci must be Kt½i� ¼ 21 or

Kt½i� ¼ 2: Then the scaling factor l0 should be selected

bigger than 1 and the curvature �kið1Þ will be increased. On

the other hand, if Kt½i� ¼ 1 or Kt½i� ¼ 0; l0 can be chosen

less than 1 and the curvature �kið1Þ will be decreased. If there

is no positive real solution to Eqs. (14) or (15), we can just

choose l0
0 ¼ l1

0 ¼ 1:

The criteria for the choice of l0 is that the local curvature

extrema should be reduced or smoothed while the curvature

difference of the conic at two ends should be made as small

as possible. We choose ~l0 ¼ 1:1l1
0 2 0:1l0

0 as the initial

value of the scaling factor. With this choice, if l1
0 . l0

0 we

have ~l0 . l1
0 . l0

0; and if l1
0 , l0

0; we have ~l0 , l1
0 , l0

0:

This choice can be used for fast convergence purpose for

most practical cases. But, even if l0
0 and l1

0 are both bigger

than 1, it is still possible that ~l0 , 1 and a local minimum

curvature may be decreased further if l0 , 1: So, we just

choose ~l0 ¼ l1
0 when ð ~l0 2 1Þðl1

0 2 1Þ , 0: Then the

curvature kið1Þ of the conic Ci will be increased if the

original curvature at the point P2i is a local minimum value

or kið1Þ will be decreased if the original curvature at the

point is a local maximum value.

To compute another scaling factor m0 for the conic Ciþ1;

we can just replace P2i22; P2i21; �w2i21; a0 and a within

Eqs. (12) and (13) by P2iþ2; P2iþ1; �w2iþ1; b0 and b;

respectively, then we have another two quadratic equations

with the unknown m0: By the same procedure we can

obtain an initial value of m0 as m0 ¼ ~m0: According to Eq.

(11) the choices of l0 and m0 are dependent on each other.

If we choose m0 ¼ ~m0; we can also compute another value

for l0 as �l0 from Eq. (11). Then the final choice for l0 can

be set as l0 ¼ ð ~l0 þ �l0Þ=2 and the value of m0 can be

modified from Eq. (11) again.

To be sure that the new conic segments are with the same

curvature sign as the original one, the position of the point
�P2i should not only be close to the original position, but also

the point �P2i should be kept in a fixed domain. The two

points P2i22; P2iþ2 and the intersection point of two tangent

lines at these two points forms a triangle (see Fig. 4). Let the

intersection points of the triangle with the normal line

through the point P2i be Pt and Pb; then the point �P2i should

be moved within the line segment PbPt:

Though �P2i can be moved on the whole line segment

PbPt theoretically, we set upper and lower bounds for

scalars l0 or m0 for robust numerical computation. If Pt lies

on the line P2i22P2i21; then the upper bound of the scalar l0

can be set as

lu ¼ 1 þ 0:2
kPt 2 P2i21k

kP2i21 2 P2i22k
;

and the upper bound of m0 can be derived from Eq. (11). If Pt

lies on the line P2iþ2P2iþ1; we can set the upper bound mu for

the scalarm0 first and compute the upper bound lu forl0 with

mu:When l0 orm0 excels their upper bounds, we can reset l0

and m0 just as the corresponding bounds. The lower bounds

for the scalars l0 and m0 can be set as a fixed number such as

0.5. If l0 orm0 is less than 0.5, it can then be set as 0.5 and the

other one will be computed from Eq. (11) accordingly.

4.2. Conic arc fairing by weights scaling

The curvature extrema at the joint points can be reduced

and smoothed efficiently by changing the positions of the

points. However, the additional curvature extrema within

some conic segments may not be removed by this method.

To obtain a fair conic spline curve in the end, conic

segments with unwanted curvature extrema can be faired by

scaling the intermediate weights further.

Before defining the unwanted curvature extremum within

a conic segment, we can first define the condition when a

conic with one local curvature extremum can be accepted. If

neither of the two end curvatures of the conic segment is a

local extremum, nor the two adjacent conics have local

curvature extrema, the curvature extremum within the conic

is defined as an accepted extremum. With this definition, a

conic segment with one local maximum curvature plot

should be connected to a conic with monotone increasing

curvature plot and followed by another conic with monotone

decreasing curvature plot. Similarly, the previous conic and

the next one to a conic with a local minimum curvature value

should have monotone decreasing and monotone increasing

curvature plots, respectively. Then any conic segment with a

local curvature extremum but its adjacent conics does not

satisfy the fairness criterion should be faired.

From Theorem 1, we can check the curvature type of the

conic Ci by two circles defined with the control points P2i22;

P2i21; P2i and the weight w2i21 (see the dashed circles in

Fig. 5). Whether the curvature plot of the conic is monotone

or not will be determined by the relationship between the

point P2i21 and the two circles. To remove the curvature

extremum of the conic segment, we can then adjust the two

circles by scaling the weight w2i21 with the control polygon

of the conic fixed.

Fig. 4. The scaling bounds for the adjacent conic pair.
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Let the angle /P2i21P2i22P2i ¼ a0 and the angle

/P2i22P2iP2i21 ¼ a1; we should determine the permitted

range for the weight w2i21 so that the curvature plot of the

conic segment is monotone. If a0 . p=2 or a1 . p=2; the

curvature of the conic cannot be made monotone just by

scaling the weight, so we will keep the weight unchanged.

Otherwise, we will choose a new intermediate weight for the

conic so that its curvature extrema will be reduced. Assume

that if the weight is scaled as w2i21l0 the circle O0 will pass

the point P2i21; then we have

2
kP2i 2 P2i22k
4ðw2i21l0Þ

2
cos a0 ¼ kP2i21 2 P2i22k: ð16Þ

On the other hand, we can set the weight as w2i21l1 so that

the point P2i21 lies on the circle O1: We have

2
kP2i 2 P2i22k
4ðw2i21l1Þ

2
cos a1 ¼ kP2i 2 P2i21k: ð17Þ

From Eq. (16) we have

l0 ¼
1

w2i21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kP2i 2 P2i22k
kP2i21 2 P2i22k

cos a0

2

s
;

and from Eq. (17) we have

l1 ¼
1

w2i21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kP2i 2 P2i22k
kP2i 2 P2i21k

cos a1

2

s
:

Without loss of generality, we can assume that a0 , a1;

then l0 . l1: If w2i21l1 .
ffiffi
2

p
=2; then any weight bigger than

w2i21l1 and less than w2i21l0 can be used to construct a conic

with monotone curvature plot. If the curvature type of the

conic segment Ci has a local maximum value or Kt½i� ¼ 2;

we can choose l ¼ minðl0; l1Þ; and if the curvature type

Kt½i� ¼ 0; we choose l ¼ maxðl0; l1Þ: With this choice, the

curvatures at the two ends can be deformed as little as

possible while the fairness of the conic segment has been

improved. Then the new weight for the conic can be chosen

as �w2i21 ¼ lw2i21; and the end curvatures of the conic

segment can be obtained as �kið0Þ ¼ kið0Þ=l
2 and �kið1Þ ¼

kið1Þ=l
2: If the weight w2i21 of the conic Ci satisfies the

inequality w2i21 ,
ffiffi
2

p
=2 and Kt½i� ¼ 1 or Kt½i� ¼ 21; there

are one local maximum value and one local minimum value

within the curvature plot of the conic. In this case, we can

reset the new weight as �w2i21 ¼
ffiffi
2

p
=2 and the two curvature

extrema within the conic segment can then be reduced or

removed.

When the weight for the conic Ci has been changed, the

curvatures at the two ends are not equal to the curvatures of

two adjacent conics any more. To achieve the curvature

continuity with the conic Ci21; we can adjust the tangent at

point P2i22 with P2i22 fixed as introduced in Section 3.

The tangent at point P2i can also be adjusted while fixing

the point P2i so that the conic Ci joins with G2 continuity to

the conic Ciþ1 too.

4.3. The algorithm

To obtain a fair conic spline curve fitting a set of ordered

points, we can first fit the points by a tangent continuous

Bézier spline or an arc spline curve. These initial G1 conic

spline curve will be represented as a quadratic rational B-

spline curve. For every two adjacent conic segments without

inflection, the common tangent and their intermediate

weights will be adjusted. By setting new intermediate

control points of every conic in Bézier representation and

new weights for these points, the conic spline curve is

curvature continuous at convex or concave parts.

The conic spline curves obtained above can be faired

further by removing the unwanted curvature extrema. We

will reduce the unwanted curvature extrema by adjusting the

control points and the weights of conics in two main steps.

Firstly, we can check every joint point and try to remove the

unwanted curvature extrema at the joint points by moving

the positions of the points. After that we can check all conic

segments in turn and remove the unwanted curvature

extrema within some conic segments by scaling the weights.

When a joint point has been moved or a weight has been

changed, the new end curvatures of the conic are not equal

to the curvatures of its neighboring conics any more. We

should then adjust the tangent directions at the joints to

make a curvature continuous conic spline curve. But,

adjusting a common tangent at a joint point may arouse

unwanted curvature extrema within adjacent conic seg-

ments. On another hand, the end curvatures of a conic may

become local extrema when the curvature type of the conic

has been changed too. Then we can fair the conic spline

curve by repeating the above two steps. The repeat

procedure will not be stopped until all the local curvature

extrema are accepted or a prescribed iteration number has

been reached. We can accelerate the convergence speed by

repeating the first step for joint point resetting with a few

times before adjusting the weights for conics with unwanted

local curvature extrema. Although convergence cannot be

proven, satisfactory convergence was observed in all the

examples we tried. It should be noted that different fairness

criteria may influence the convergence speed.

For each time of fairing, we need three independent

functions, TangentRotating ðP2iÞ; PointResetting ðP2iÞ and

WeightScaling ðCiÞ: TangentRotating ðP2iÞ is a function to

construct a curvature continuous conic pair by rotating the

tangent at the joint and resetting two intermediate weights of

the conics. To compute how to move the joint point P2i

Fig. 5. Fair a conic segment by adjusting the intermediate weight.
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along the normal direction at the point we use the function

PointResetting ðP2iÞ: WeightScaling ðCiÞ can be used to

reduce or remove the curvature extrema within a conic

segment by adjusting the weight corresponding to the

middle control point of the conic Ci: If we want to construct

an interpolating curve, we can just omit the point moving

step in the following algorithm. For a conic spline with

inflection points, we can either divide the curve into convex

and concave parts and fair every part independently, or fair

the whole curve in a uniform procedure, but joint point

moving or weight scaling are only applied for two adjacent

conic segments or three adjacent segments without

inflection. In this paper we choose the second method

because it gives a more compact program.

The algorithm for fair conic spline fitting:

Step 1. Fit the data by a G1 conic spline curve consisting

of m segments;

Step 2. Construct a G2 continuous conic spline from the

initial spline;

Step 3. Compute the curvature type for each conic

segment;

Step 4.1. For (i ¼ 1; i , m; i þþ) {

If (the curvature at the point P2i is an unwanted local

extremum) {

PointResetting ðP2iÞ;

TangentRotating ðP2iÞ;

}

}

Step 4.2. Repeat step 4.1 for 3 times;

Step 5. For (i ¼ 2; i , m; i þþ) {

If (conic Ci has unwanted local curvature extrema) {

WeightScaling ðCiÞ;

TangentRotating ðP2i22Þ;

TangentRotating ðP2iÞ;

}

}

Step 6. Repeat step4 and step 5 until all the unwanted

curvature extrema have been removed or a certain

iteration number has been reached.

5. Examples and comparison

We have tested the algorithm for many examples and we

show a few examples here to illustrate the efficiency of the

algorithm.

In example 1 we sample a set of random points from a

locally convex plane curve

XðtÞ ¼
t2 2 1

t2 þ 1

t

1

 !
; t [ ½22; 2�;

then these points form a locally convex polygon. At first we

interpolate the points by a tangent continuous quadratic

Bézier spline curve, where the tangent at every interior point

is selected paralleling the line connecting its former and next

points and the tangents at two ends are determined by the rule

that the control polygon of the first and last Bézier curves

form two isosceles triangles (see dashed line in Fig. 6(a)).

After that, we have tested two methods to construct curvature

Fig. 6. (a) Interpolating a set of points by locally convex conic splines: the

G1 conic spline (dashed) and a fair, G2 conic spline (solid); (b) the

curvature plot of initial G1 conic spline (dashed) and of G2 conic spline with

fixed control polygon (solid); (c) the curvature plots of the interpolating G2

conic spline before (dashed) and after (solid) fairing.
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continuous conic spline curves interpolating the sampled

points. One method is to keep the control polygon unchanged

and compute weights for every conic based on curvature

continuity condition [6]. The curvature plot of the G2 conic

spline is shown in Fig. 6(b). The second method is our tangent

rotating method presented in Section 3. By computing the

new tangent direction and new intermediate weights for

every two adjacent conics, we can obtain a curvature

continuous conic spline too. One advantage of the second

method is that it is a local method. Even more, the curvature

extrema within some conic segments can be reduced

efficiently by scaling the intermediate weights and rotating

the tangents at the joint points, a fair interpolating curve is

obtained in the end (see Fig. 6(c)).

In the second example, the original data were sampled

from the contour of a bone section. The data points are noisy

and irregular. We first approximate the data by an arc spline

within tolerance 0:35 £ 1022 and then reduce the arc

segments within another tolerance 0:2 £ 1022: The tiny

arcs are also merged and only 34 arcs are left. When the

arc spline is obtained, we can construct a fair G2 conic

spline from the arc spline (see Fig. 7(a)). The arc spline

and the conic spline in rational B-spline forms are plotted in

Fig. 7(b). The curvature plot of an arc spline interpolating

the original noisy points and the curvature plot of the final

approximating arc spline are shown in Fig. 7(c). For curve

parts without inflection, curvature continuous conic spline

can be obtained from the arc spline. Even more, the

unwanted curvature extrema of the conic spline can be

reduced efficiently (see Fig. 7(d)).

In the third example, we fit the profile of a mouse section

by an arc spline first and then construct a fair conic spline

from the arc spline (Fig. 8(a)). With the same method as

example 2, we obtain an arc spline by fitting the data within

tolerance 0:5 £ 1022: Because the arc lengths and arc

angles of the initial arc spline are not uniform, the deviation

of the final conic spline from the arc spline varies non-

uniformly along the whole curve (see Fig. 8(b) and (c)).

From the curvature plots in Fig. 8(d) and (e), we obtain a fair

conic spline curve fitting the original data in the end.

The algorithm presented in this paper has been

implemented on a SGI octane workstation with MIPS

R10000. Because we fair a conic spline by a local algorithm

and we reduce curvature extrema only by moving selected

Fig. 7. (a) Approximating the profile of a bone section by an arc spline (dashed) and a fair conic spline (solid); (b) the arc spline (dashed) and the conic spline

(solid) with control polygons; (c) curvature plot of an arc spline interpolating the original noisy data (thin) and the curvature plot of a fair fitting arc spline

(thick); (d) curvature plots of the G2 conic spline before (dashed) and after (solid) fairing.
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points and scaling selected weights, the curve can be faired in

real time. The conic number, the iteration number, the total

number for point move, the total number for weight scaling

and the time for conic spline fairing are listed in Table 1.

6. Conclusions

In this paper we have presented a geometric method

for constructing curvature continuous conic spline from

Fig. 8. (a) Approximating a mouse section by an arc spline (dashed) and a fair conic spline (solid); (b) the arc spline (dashed) and the conic spline (solid) with

control polygons; (c) zoom in a curve part selected in Fig. 8(b); (d) curvature plot of an arc spline interpolating the original noisy data (thin) and the curvature

plot of a fair fitting arc spline (thick); (e) curvature plots of the G2 conic spline before (thin) and after (thick) fairing.

Table 1

The iteration number and fairing time, etc. for the three examples

Points Conics Iteration Point move Weight scaling Time (s)

Convex curve 21 20 5 0 47 0.43

Bone section 138 34 28 121 111 0.46

Mouse section 204 54 20 185 195 0.65
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an initial tangent continuous conic spline curve and fair the

conic spline curve by removing additional curvature

extrema within the curve. The original G1 curve is obtained

by interpolating a point set with quadratic Bézier spline or

fitting a set of noisy data with an arc spline. By representing

the conic spline in piecewise rational quadratic Bézier

curves, we can then change the control points and weights of

adjacent conic pairs to make curvature continuous conic

spline curve. The new conic spline interpolates the same set

of points if the original conic spline interpolates the data at

the conic ends. To fair a conic spline curve, the curvature

extrema can be reduced efficiently by scaling selected conic

segments. The final conic spline curves are G2 continuous at

convex or concave parts and G1 continuous at inflection

points. If a curvature continuous curve is desired, the parts

containing inflection points can be replaced by cubic curves

or other curves with inflections [13,17].

The method presented in this paper can be used in the

fields where the shape quality is more desired than the

accuracy of the fitting. In this paper we remove the additional

curvature extrema for every two or three adjacent conic

segments. In fact, this method can be extended to fair a conic

spline with some other fairness criteria. For example, there is

at most one curvature extremum within a curve part

consisting of four, five or even more consecutive segments

or a curve part with prescribed length. Then the conic spline

can be faired by a similar fairing algorithm.
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