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Abstract

Fat conic section and fat conic spline are defined. With well established properties of fat conic splines, the problem of approximating a ruled

surface by a tangent smooth cone spline can then be changed as the problem of fitting a plane fat curve by a fat conic spline. Moreover, the fitting

error between the ruled surface and the cone spline can be estimated explicitly via fat conic spline fitting. An efficient fitting algorithm is also

proposed for fat conic spline fitting with controllable tolerances. Several examples about approximation of general developable surfaces or other

types of ruled surfaces by cone spline surfaces are presented.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Developable surface is a kind of ruled surface that can be

mapped to a plane isometrically. From the viewpoint of

differential geometry, developable surfaces are composed of

general cylinders, general cones, tangent surface of a spatial

curve or a composition of these types of surfaces [1]. With

well established properties, developable surfaces find wide

applications in shape modeling and manufacturing with non-

stretchable material such as paper, leather and steel, etc. [2–7].

Within the types of developable surfaces, cones of revolution

and cone spline of revolution are of special interests. These

surfaces can be represented in parametric form as well as

algebraic form. The offsets are the same type of the original

surfaces and the development of a cone of revolution into a

plane is elementary.

Besides developable surfaces, general types of ruled

surfaces play important roles in geometric modeling and

shape optimization too. With more degrees of freedom, they

can be used to approximate a set of measured data [8,9] or can

be used as intermediate approximation to double curved

surfaces [10,11]. The main goal of this paper is focusing on the

approximation of a ruled surface by a cone spline within

prescribed tolerances.
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To incorporate developable surfaces into a CAD/CAM

system, many researches have been devoted to the represen-

tation of developable surfaces in Bézier or B-spline forms.

Aumann [12] and Lang and Röschel [13] derived sufficient

conditions when a tensor product Bézier surface is develop-

able. Because the tangent plane at every point on a generator of

a developable surface are the same, then the developable

surface is also the envelope of the set of tangent planes along

all generators. With this property, the definition of a

developable surface is equivalent to the computation of a

curve in duality space. Bodduluri and Ravani [14], Pottmann

and Farin [15] have studied developable B-spline surface and

developable rational B-spline surfaces using duality methods.

The approximation of a given surface by a developable

Bézier or B-spline surface have important application in shape

modeling and manufacturing. By representing the fitted planes

or points in projective space, Hoscheck and Pottmann [16],

Pottmann and Farin [13] presented several methods for

developable surface fitting. These methods can be applied

easily, but the fitting error cannot be controlled efficiently.

Pottmann and Wallner [17] have designed an approximation

algorithm under a proper metric in projective space. Recently,

Park et al. [18] proposed an optimal control algorithm for

developable surface design with which the base curve has to be

solved when the directions of the rules are given.

For the purpose of fabrication, ruled surfaces or a general

type of developable surfaces are preferred to be approximated

by cone spline surfaces or planes. Aumann [2] and Elber [11]

proposed to approximate a skew ruled surface by a set of

triangles. Though the fitting error can be controlled, but
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the approximating surfaces are not smooth any more.

Leopoldseder and Pottmann [19], Leopoldseder [20,21] have

developed several interesting algorithms for approximating

general types of developable surfaces with cone splines. The

algorithms compute the fitting cones using either a Hermite

like interpolation technique or space arc spline method.

However, this method cannot be extended for the approxi-

mation of general types of ruled surfaces directly.

In this paper, we propose an efficient new algorithm for

ruled surface approximation with cone splines. Inspired by

plane curve approximation with conic splines [22–24], we

show that the problem of cone spline approximation can be

changed as fat conic spline fitting. For a ruled surface bounded

by two parallel planes, when it is projected onto one of these

two paralleling planes, we will then obtain a planar fat curve, of

which the boundaries are just the projection of the surface

boundaries. Similarly, the boundaries of cone spline between

two paralleling planes are two conic splines, and the projection

of the cone spline is a fat conic spline. Moreover, the fat conic

spline can be represented as piecewise rational surfaces and the

control polygons of two boundary conic splines are piecewise

parallel. As discussed in the following text, the approximation

of a planar fat curve by a fat conic spline can be implemented

efficiently and the fitting error between two surfaces can be

estimated by these two planar fat curves. Finally, the fitting

cone spline can be obtained by elevating the boundaries of the

fat conic spline onto the original two parallel planes,

respectively.

The organization of the paper is as follows. In Section 2, we

will give the definition of fat conic arc and fat conic spline. In

Section 3, we will present the approximation algorithm. The

fitting error will be analyzed in Section 4. Some numerical

examples are presented in Section 5 and we conclude the paper

in Section 6.
2. Fat conic arc

It is well known that a conic section is the intersection curve

between a plane and a cone of revolution (see Fig. 1). The conic
hyperbola

parabola

ellipse

Fig. 1. Conic section.
section can be an ellipse, a parabola or a hyperbola according to

the position that the plane lie with respect to the cone. In the

field of computer-aided design, a conic segment can be

represented as one or several pieces of rational quadratic

Bézier curves and on the contrary any rational quadratic Bézier

curve is a conic segment [25,26].

Within this paper, we mean the conic segment by a standard

rational quadratic Bézier curve

RðtÞZ
R0B0;2ðtÞCR1wB1;2ðtÞCR2B2;2ðtÞ

B0;2ðtÞCwB1;2ðtÞCB2;2ðtÞ
; t2½0; 1�

where Ri(iZ0,1,2) are the control points of the Bézier curve,

Bi;2ðtÞZCi
2t

ið1KtÞ2Ki are the Bernstein basis functions of the

curve. Even more, the positive weight w can be used to

characterize the conic type, the curve is a segment of parabola

when the weight wZ1, and the curve is a segment of ellipse or

a segment of hyperbola when w is less than or greater than 1,

respectively. Even more, when the control polygon R0R1R2 is

an isosceles triangle and wZcos q where qZ:R0R1R2, then

the quadratic rational Bézier curve is a circular arc.

In a similar way as the definition of a conic section, we can

now define a fat conic arc geometrically. At first, we can

intersect a cone of revolution by two parallel planes, then we

have two conic sections on the paralleling planes (see Fig. 2).

Let the two conic segments between the two planes and two

rulings on the cone be

PðtÞZ
P0B0;2ðtÞCP1wB1;2ðtÞCP2B2;2ðtÞ

B0;2ðtÞCwB1;2ðtÞCB2;2ðtÞ
; t2½0; 1� (1)

and

QðtÞZ
Q0B0;2ðtÞCQ1wB1;2ðtÞCQ2B2;2ðtÞ

B0;2ðtÞCwB1;2ðtÞCB2;2ðtÞ
; t2½0; 1�; (2)

respectively, then the cone surface between the two paralleling

planes can be represented as a rational Bézier surface c(s,t)Z
(1Ks)P(t)CsQ(t). When we project the rational Bézier surface

onto one of the paralleling planes, we obtain a fat conic arc on

the plane (see Fig. 3). For the efficiency of fat conic arc fitting,
Fig. 2. Fat conic section.
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Fig. 3. Control mesh of a fat conic arc.
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in this paper we consider only the case that P(t) and Q(t) lie at

just one side of the apex of the cone.

Without loss of generality, we assume that the projection

plane is just the xy-plane. When the rational Bézier surface

c(s,t) has been projected onto the plane, the projected area is

bounded by two conic sections p(t), q(t) and two lines p0q0 and

p2q2, where p(t) and q(t) are the projections of P(t) and Q(t),

pi(iZ0,1,2) and qi(iZ0,1,2) are the projections of Pi(iZ0,1,2)

and Qi(iZ0,1,2), respectively.

From the above definition, we know that the rational Bézier

surface c(s,t) is a developable surface, then the tangent plane at

every point on one generator of the surface are the same. This

implies that the points P0, Q0, P1 and Q1 are on a plane.

Similarly, the points P1, Q1, P2 and Q2 are coplanar too.

Moreover, when the surface c(s,t) is lying on a cone, it can be

easily verified that the three lines P0Q0, P1Q1 and P2Q2 all pass

through the apex of the cone. If the surface c(s,t) lies on a

circular cylinder, these three lines are parallel with each other

and the intersection point becomes infinity. With this analysis,

we have

Theorem 1. Let c(s,t) be a cone patch bounded by two parallel

planes with boundary conics as P(t) and Q(t), then we have

P0P1kQ0Q1, P1P2kQ1Q2 and P0P2kQ0Q2.

From Theorem 1, we know that DP0P1P2 and DQ0Q1Q2 are

similar triangles and the control polygons of two boundary

conics are piecewise parallel. As to the plane fat conic arc we

have

Theorem 2. The conic segments p(t) and q(t) are two boundary

curves of a fat conic arc if and only if the corresponding

weights of these two conics are the same and the control points

satisfy the following conditions: p0p1kq0q1, p1p2kq1q2 and

p0p2kq0q2.

Proof. From the definition of the fat conic arc, if p(t) and q(t)

are two boundary conics of a fat conic arc, the weights of p(t)

and q(t) are equal to the weights of P(t) and Q(t) which are the

boundary curves of the original cone surface, then the

corresponding weights of p(t) and q(t) are the same.

Furthermore, the control polygons of p(t) and q(t) are the

projections of P(t) and Q(t), respectively, and from Theorem 1,
we have p0p1kq0q1, p1p2kq1q2 and p0p2kq0q2. On the other

hand, if the corresponding edges of Dp0p1p2 and Dq0q1q2 are

parallel, then these two triangles are similar, and it can be

easily derived that the three lines p0q0, p1q1 and p2q2 either

intersect at one common point or are parallel with each other.

When we elevate the triangles on two parallel planes with

different heights, the two space triangles form the control mesh

of a cone patch. If the corresponding weights of p(t) and q(t) are

equal and the weights of the cone surface are defined same with

those as p(t), then p(t) and q(t) are just the projections of the

boundaries of the cone surface bounded by two parallel planes.

So, p(t) and q(t) are two boundary curves of a fat conic

segment.

The theorem is proven. ,

In the same way as the definition of fat conic arcs, the

projection of a tangent smooth cone spline surface bounded by

two parallel planes forms a fat conic spline. Suppose that none

boundary conic arc within a fat conic spline collapses, and

from Theorems 1 and 2 we have

Corollary. The control polygons of two boundary curves

of a G1 fat conic spline are piecewise parallel.
3. Fat conic spline fitting

For a ruled surface r(u,v) bounded by two parallel planes we

will have a planar fat curve by projecting the ruled surface onto

a plane. Without loss of generality we assume that the ruled

surface is r(u,v)Z(1Ku)b0(v)Cub1(v), where b0(v) and b1(v)

are two boundary curves lying on the planes zZh0 and zZh1,

respectively. We choose the xy-plane as the projection plane,

and obtain a plane fat curve by projection. The boundary

curves of the plane fat curve are just the projection of b0(v) and

b1(v) and we still denote the boundaries as b0(v) and b1(v) in the

following text without special declaration.

To compute a cone spline surface approximating the

original ruled surface r(u,v), we should just fit a fat conic

spline curve to the projected fat curve of r(u,v). With a plane fat

conic spline obtained, we will obtain the approximating cone

spline surface by elevating the boundary conic arcs of each fat

conic arc onto planes zZh0 and zZh1, respectively. Within the

rest of this section, we will pay attention to the approximation

of a plane fat curve by a fat conic spline.

3.1. Interpolation by parallel polygons

A planar fat curve is bounded by two curves b0(v), b1(v) as

well as two straight lines connecting the ends of b0(v) and b1(v)

at vZ0 and 1. Because the two straight lines b0(0)b1(0) and

b0(1)b1(1) are determined by b0(v) and b1(v), then we mean

b0(v) and b1(v) when we refer the boundary curves of a fat

curve. Instead of constructing the control polygons or boundary

conic splines directly, we first interpolate the boundary curves

of the original fat curve by two piecewise parallel polygons in

this subsection. The construction of boundary conic splines for

a fitting fat conic spline will be presented in next subsection.
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For two boundary curves b0(v) and b1(v) of a fat

curve, we can interpolate these two curves by two polygons

L0L1.Ln and �L0
�L1. �Ln with pairs of paralleling lines

LiK1Lik �LiK1
�Li ðiZ1; 2;.; nÞ. Because Li and �Li are lying

on b0(v) and b1(v), respectively, we can then assume that

LiZb0(vi) and �LiZb1ð �viÞ, where 0Zv0%v1%.%vnZ1 and

0Z �v0% �v1%.% �vnZ1. When Li is connected to �Li for

iZ0,1,.,n, we will obtain a set of trapezoids or triangles

interpolating the original fat curve (see Fig. 4).

To construct two interpolating parallel polygons, we start

with the beginning points of curves b0(v) and b1(v), i.e. v0Z0,

�v0Z0 and L0Zb0(v0), �L0Zb1ð �v0Þ. After that, we choose

another point on one of the boundary curves such as b0(v) with

a default forward step d. Let the parameter corresponding to the

point be v1, then a new interpolating point is computed as L1Z
b0(v1). To compute the corresponding point on the curve b1(v),

we should compute the intersection points between the curve

b1(v) and a line through �L0 while paralleling L0L1. We check

the solution within the parameter interval ð �v0; �v0Ckf dÞ, where

kf is a constant, which can be picked between 1 and 2 for

most practical cases. If the solutions exist within the interval,

we choose the smallest one for the new point. Then we have

�v1O �v0 and LiK1Lik �LiK1
�Li (see Fig. 4). If there is no solution

within the interval, we can just choose �v1Z �v0 and the line �L0
�L1

collapses to a point.

When we have obtained a pair of parallel lines LiK1Li and
�LiK1

�Li interpolating two boundary curves b0(v) and b1(v), we

can then choose the end points Li and �Li as the beginning points

of next pair of interpolating parallel lines. Again we compute a

line interpolating the curve b0(v) or b1(v) firstly for new parallel

line computation, and a default rule for curve selection is that

we choose a curve with smaller parameter vi or �vi. This choice

will make the generators of the fat conic arc more compatible

with those of the original fat curve. Whether Li and �Li can be

accepted or should be recomputed depends on the fitting

accuracy of a corresponding cone surface. This procedure can

be implemented independently or along with cone spline fitting

procedure, and will end until the last two end points of b0(v)

and b1(v) have been interpolated.
3.2. Construction of boundary conic splines

With a set of parallel lines interpolating two boundaries of

the original fat curve, every line segment can be considered as

the chord of an interpolating conic arc. To determine a conic

arc fitting one of the original boundary curves, we should
b0(v)

b1(v)

Fig. 4. Interpolating a fat curve by a pair of parallel polygons.
construct its control polygon and compute weights for all

control points.

Let LiK1Li and �LiK1
�Li (iZ1,2,.,n) be the set of parallel

lines interpolating the boundary curves b0(v) and b1(v), we

should compute a common tangent direction Ti at Li or �Li for

iZ1,2,.,n. To guarantee the existence of conic segments

between every two consecutive interpolation points, we

compute the tangent directions according to the following

two rules. The first rule is local convexity. Assume that the

chord LiK1Li does not collapse, the angle from TiK1 to the

chord and the angle from the chord to Ti are with the same sign.

Moreover the intersection point of the tangent line along TiK1

and the tangent line along Ti exists and lies at the same side

with TiK1 to the chord LiK1Li. Secondly, the tangent Ti should

also be close to the derivative direction of b0
0ðviÞ and b0

0ð �viÞ

simultaneously so that the final approximating conic sections

are close to the boundary curves. When local convexity

property holds, it means the existence of a conic arc

interpolating the ends as well as the end tangents at LiK1Li.

To compute the tangents satisfying the above two rules, we

can just compute the tangents sequently. A default tangent

direction at Li and �Li is computed as the average of derivatives

at these two points

Vi Z
b0
0ðviÞCb0

1ð �viÞ

kb0
0ðviÞCb0

1ð �viÞk
: (3)

If iZ0 we choose TiZVi. For iO0, if LiK1Li or �LiK1
�Li

collapses, we compute vector Ti at �Li or Li. In the following

paragraph we compute Ti at Li under the assumption that LiK1Li

does not collapse. If TiK1, LiK1Li and Vi satisfy the local

convexity condition we choose TiZVi. If these three vectors do

not satisfy the local convexity property, there are two cases,

which should be dealt independently. The first case is that the

angle from TiK1 to LiK1Li and the angle from LiK1Li to Vi have

different signs. The second case is that even though the above

two angles have same sign but two tangent lines through chord

ends do not intersect or the intersection point lies on an

unexpected side. If the second case holds, we can disturb vector

Vi so that the disturbed Vi satisfies the local convexity

condition. Then the disturbed vector will be picked as Ti. If

the first case holds we reflect the initial Vi with respect to the

chord LiK1Li. Let Wi be the reflected vector we have

Wi Z
2ðViUiÞUiKVi

k2ðViUiÞUiKVik
; (4)

where UiZLiKLiK1=sLiKLiK1s. For most practical cases

TiK1, LiK1Li and Wi will satisfy the local convexity property,

and then we can choose TiZWi. In case Wi still cannot satisfy

the requirement it should be disturbed further as in second case

and a disturbed vector will be picked as Ti.

With all the tangent directions at the interpolation points

properly defined, we can compute the intersection point Ri

between the line through the point LiK1 with direction TiK1 and

the line through Li with direction Ti. In a similar way, we

compute the intersection point �Ri between the line through

the point �LiK1 with direction TiK1 and the line through �Li with
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b0(v)
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Fig. 5. Construction of a fat conic arc. The dashed curves are boundaries of a fat

curve and the solid curves are of a fat conic arc.
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direction Ti. If the positions of LiK1 and Li are different, then

the points LiK1, Ri and Li form the control polygon of a fitting

conic segment. Similarly, �LiK1, �Ri and �Li form the control

polygon of another conic arc when two points �LiK1 and �Li are

different from each other. If none of these two control polygons

collapses to a point, the two triangles DLiK1RiLi and D �LiK1
�Ri
�Li

are similar triangles. From Theorem 2, the fat curve defined by

these two conic segments with consistent weights is a fat conic

arc (see Fig. 5).

With the control polygon obtained for each conic arc, we

compute the weights for these conic arcs by optimal curve

fitting. Suppose that all conic segments are in standard form,

we should then just compute the weight corresponding to each

middle control point. As illustrated in Fig. 5, LiK1RiLi and
�LiK1

�Ri
�Li are the control polygons of a pair of conic arcs Ai(t)

and Bi(t). The weights corresponding to the middle control

points Ri and Ri are both wi, and we have these two conic arcs

as

AiðtÞZ
LiK1B0;2ðtÞCRiwiB1;2ðtÞCLiB2;2ðtÞ

B0;2ðtÞCwiB1;2ðtÞCB2;2ðtÞ
; t2½0; 1�

and

BiðtÞZ
LiK1B0;2ðtÞCRiwiB1;2ðtÞC �LiB2;2ðtÞ

B0;2ðtÞCwiB1;2ðtÞCB2;2ðtÞ
; t2½0; 1�

The weight wi should be computed so that both of conics

Ai(t) and Bi(t) are as close as possible to b0(v) and b1(v),

respectively.

Floater [23] has presented an error estimation formula for

conic approximation. The main idea of Floater’s method is to

represent the conic segment in implicit form and compute the

bound of a point to the implicit curve. Let point b0(v) be a

point within the triangle DLiK1RiLi, and t0, t1 and t2 are

the barycentric coordinates of the point with respect to the

triangle, then one can define an algebraic function as

fwðb0ðvÞÞZ4w2
i t0t2Kt21. The point b0(v) lies on the conic

segment Ai(t) if and only if fw(b0(v))Z0. In a similar way, if

point b1(v) lies within the triangle DLiK1RiLi, one can define

another function fw(b1(v)) by using the barycentric coordinates.

The weight wi can be computed under the assumption that the

sum of fw(b0(v)) and fwðb1ðyÞÞ are zero for all those points lying

within either of the two triangles. By denoting DLiK1RiLi and
D �LiK1
�Ri
�Li as Di and �Di, respectively, we haveð

b0ðvÞ2Di

fwðb0ðvÞÞdvC

ð

b1ðvÞ2�Di

fwðb1ðvÞÞdv Z 0: (5)

Though the solution exists theoretically for Eq. (5), but it is

difficult to solve the equation exactly. For practical compu-

tation, we can just sample several points within the triangles

from the original two boundary curves b0(v) and b1(v) and

solve the discrete equation directly.

3.3. The fitting algorithm

To construct a cone spline surface within a prescribed

tolerance, we should compute the fitting cone spline globally or

sequently. For global approach, we can construct an initial

approximating cone spline surface using a default forward step.

And then we pick segments with larger fitting error on the

initial fat curve and refit the corresponding fat curve segments

with more fat conic arcs. As for the sequent method we

compute and test every new cone patch, and a new patch will

be joined to current cone spline only when it is within the

prescribed tolerance. If the fitting error is larger than a

predefined criterion, we can just shorten the forward step d by a

factor ks and compute another cone surface. This procedure can

be repeated until a cone patch with the given tolerance has been

found. In this way, we obtain a cone spline within a given

tolerance sequently. In this paper, we adopt the second method

for cone spline surface approximation.

The fat conic spline fitting algorithm for cone spline

approximation within a given tolerance is summarized as

follows.

Fat conic spline fitting algorithm.

Input (r(u,v), tol, d0)

Output (ci(s,t), iZ1,2,.,n)

v0Z �v0Z0, L0Zb0(v0), �L0Zb1ð �v0Þ;
Compute T0;

iZ1; set dZd0;
while (viK1!1 or �viK1!1) {

Compute vi, �vi, Li and �Li;

Compute Ti;

Compute Ai(t) and Bi(t);

Compute fitting error err(Ai(t), Bi(t), r(u,v));

if (err!tol) {output ci(s,t); iCC; reset dZd0;}
else dZksd;}
4. Error estimation for cone spline approximation

In previous sections, we have shown that the approximation

of a ruled surface by a cone spline surface can be reduced to the

problem of fitting a fat plane curve with a fat conic spline

curve. In Section 4, we will show how to compute the fitting

error for cone spline approximation via fat conic spline fitting.

The fitting error between a ruled surface and a cone spline is

usually consisting of two parts: boundary error and skew error.

As to the boundary error, we notice that the distance from



Ai(t)=b0(v)

Bi(t)=b1(v+ ∆v)

π0

π1

Fig. 6. The skew error between the ruled surface and the cone surface. The

dashed curves are boundaries of a ruled surface while the solid curves are of a

cone spline.
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a boundary curve of one surface to the other one is no larger

than the distance between two corresponding boundary curves

on a projection plane. Then, we will compute the boundary

error between a ruled surface and a cone spline as the distance

between corresponding boundary curves of two projected fat

curves. On another hand, even though the boundary error

vanishes, there may still exists a gap between the original ruled

surface and the fitting cone spline surface because of the

inconsistency between the projected generators from these two

surfaces. We refer this type of fitting error as skew error (see

Fig. 6).

As introduced in Section 3, Ai(t) and Bi(t), t2[0,1] are two

boundary conics of a fat conic segment interpolating the

original fat curve with boundaries b0(v) and b1(v) (see Fig. 5).

The distance from Ai(t) to b0(v) and the distance from b0(v) to

Ai(t) can be defined as

dHðAiðtÞ; b0ðvÞÞZ max
t2½0;1�

min
v2½viK1;vi�

distðAiðtÞ; b0ðvÞÞ

and

dHðb0ðvÞ;AiðtÞÞZ max
v2½viK1;vi�

min
t2½0;1�

distðb0ðvÞ;AiðtÞÞ;

respectively. Then the Hausdorf distance between Ai(t) and

b0(v) is defined as

DHðAiðtÞ; b0ðvÞÞZmaxfdHðAiðtÞ; b0ðvÞÞ; dHðb0ðvÞ;AiðtÞÞg: (6)

By replacing Ai(t) with Bi(t), b0(v) with b1(v) and the

interval [viK1,vi] with ½ �viK1; �vi� we have the definition of

Hausdorf distance DH(Bi(t), b1(v)) between Bi(t) and b1(v).

It should be noted that the distance from a point b0(v) to

the conic section Ai(t) can be estimated explicitly when

b0(v) lies in the triangle formed by the control polygon of

Ai(t) (see Ref. [23]). However, not all points on the original

boundary curves satisfy this condition in practice. Then we

should compute the distance between two curves numeri-

cally, i.e. by computing the maximum distance of densely

sampled points from b0(v) to the interpolating conic arc

Ai(t). By the same way we compute the distance from curve

b1(v) to Bi(t).
Besides boundary error, we should also compute the interior

deviation between the ruled surface and the cone surface. In the

following text, we compute the distance from the ruled surface

to the cone surface and the distance from the cone surface to the

ruled surface under the assumption that the boundary error

vanishes. Moreover, we will show that both of these two types

of distances can be reduced to the distance computation from a

line to a surface.

Let Ai(t)Bi(t) be a generator on the cone surface, the two

end points of the line lie on two paralleling planes,

respectively, we compute the bound of the distance from

line Ai(t)Bi(t) to the ruled surface r(u,v) (see Fig. 6). Assume

that points Ai(t) and Bi(t) also lie on the ruled surface, i.e.

there exist v and Dv such that Ai(t)Zb0(v) and Bi(t)Zb1(vC
Dv) hold, and the four end points of generators b0(v)b1(v) and

b0(vCDv)b1(vCDv) of the ruled surface form a bilinear

surface. To compute the bound of the distance from the line

Ai(t)Bi(t) to the original ruled surface, we compute the

distance from the line Ai(t)Bi(t) to the bilinear surface and the

distance from the bilinear surface to the ruled surface. Firstly,

we define the thickness h(v) of the bilinear surface as the

distance between two diagonals of the quadrangle defined by

b0(v)b1(v) and b0(vCDv)b1(vCDv). Then the distance from

the line Ai(t)Bi(t) to the bilinear surface is bounded by h(v). It

is clear that h(v) vanishes just when this quadrangle is on a

plane. Let L0(v) be the line connecting b0(v) and b0(vCDv),

and L1(v) is the line connecting b1(v) and b1(vCDv), then the

bound of the distance from the line L0(v) to the curve b0(v)

and the bound of distance from the line L1(v) to the curve

b1(v) can be computed as follows [27]:

dHðb0ðvÞ; L0ðvÞÞ%e0ðvÞZ
1

8
Dv2 sup

v
kb00

0ðvÞk;

dHðb1ðvÞ; L1ðvÞÞ%e1ðvÞZ
1

8
Dv2 sup

v
kb00

1ðvÞk:

At this time, the error from the bilinear surface to the ruled

surface is bounded by max(e0(v),e1(v)). Finally we have the

error bound from the line Ai(t)Bi(t) to the ruled surface as

dðvÞZmaxðe0ðvÞ; e1ðvÞÞChðvÞ: (7)

As to the distance from a line b0(v)b1(v) on the ruled

surface to the cone spline surface, it can be computed in a

similar way. Without loss of generality, we assume that

b0(v)ZAi(t) and b1(v)ZBi(tKDt), the fitting error can also be

divided into two components. The first part of fitting error is

due to the inconsistency of parameters, and the error bounds

on either boundary curves are as

dHðAiðtÞ; �L0ðtÞÞ% �e0ðtÞZ
1

8
Dt2 sup

t
kA00

i ðtÞk;

dHðBiðtÞ; �L1ðtÞÞ% �e1ðtÞZ
1

8
Dt2 sup

t
sB00

i ðtÞs;

where �L0ðtÞ is a line connecting two points Ai(t) and

Ai(tKDt), �L1ðtÞ is a line connecting two points Bi(t) and

Bi(tKDt). Let �hðtÞ be the distance between two lines
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Fig. 7. Approximating a generalized cone surface by cone spline surface: (a) the original surface; (b) fitting the extended fat curve by a fat conic spline; (c) the

extended fitting cone spline surface with control mesh; (d) the approximating cone spline surface.
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Ai(tKDt)Bi(t) and Ai(t)Bi(tKDt), then the skew error from

the line b0(v)b1(v) to the cone surface is bounded by

�dðtÞZmaxð �e0ðtÞ; �e1ðtÞÞC �hðtÞ: (8)

The total bound for the distance between the original ruled

surface and thefitting cone spline surface cannowbecomputedas

maxfDHðAi; b0Þ;DHðBi; b1ÞgCmaxðd0; d1Þ; (9)

where d0Zsupv dðvÞ and d1Zsupt
�dðtÞ.
5. Implementation and examples

As discussed in Section 3, when we interpolate a plane fat

curve by two polygons with piecewise parallel lines, some line

segments may collapse to points, and the trapezoids defined by

parallel lines will degenerate to triangles (see Fig. 4). Though a

fat conic section can still be defined for each trapezoid or

triangle, but for collapsed lines the boundary conic arcs

collapse to points, and the fitting conic arcs join with only C0

continuity at the degenerate points. If the boundaries of a

planar fat conic spline are not smooth, the corresponding cone

spline surface will have no tangent plane at the degenerate
boundary points. To obtain a tangent smooth cone spline

surface in the end, we should fit the boundary curves of original

fat curve by fat conic spline with smooth boundaries.

To remove boundary singularities of a cone spline surface

bounded by two parallel planes, one can just trim the cone

spline surface with two new parallel planes lying between the

original ones. Then, if we want to construct a tangent

continuous cone spline surface we can extend the original

ruled surface in either directions and trim the fitting cone spline

surface with original two parallel planes. Assume that zZh0
and h1 be two parallel bounding planes, we extend the ruled

surface to two new parallel planes zZ �h0 and �h1, where �h0hh0
and �h1ih1. In the following examples, we choose h0Z(4/3)h0K
(h1/3) and h1Z(4/3)h1K(h0/3). Let �pi and �qi be the control

points of boundary conic arcs of an extended fat conic arc, the

control points of the final fat conic spline can be obtained as

pi Z
�h1Kh0

�h1K �h0

�pi C
h0K �h0

�h1K �h0

�qi;

qi Z
h1K �h0

�h1K �h0

�pi C
�h1Kh1

�h1K �h0

�qi:
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Within the rest of this section we present several interesting

examples concerning the approximation of ruled surfaces by

cone spline surfaces. To be consistent with the fitting algorithm

we use b0(v) and b1(v) to stand for the boundaries of extended

fat curves while the boundaries of original fat curves are just

0.8b0(v)C0.2b1(v) and 0.2b0(v)C0.8b1(v). We shorten the

forward step dwith 0.9dwhen the fitting error of a cone patch is

larger than a predefined criterion. In Figs. 7–9, surfaces with

grey color are the fitting cone spline surfaces while the red ones

are the original ruled surfaces. For plane fat curve fitting, the

outside curves are the boundaries of extended fat curves (light

color) and the fitting conic splines (deep color) while the

interior curves are boundaries of original fat curves. The

dashed polygons are control polygons of the fitting conic

splines and the solid polygons are interpolating parallel

polygons.

In the first example, we approximate a section of a

generalized cone surface by a spline of cone surface of

revolution (see Fig. 7). The boundary curves of the original

ruled surface are two spirals, and the extended boundaries

are also spirals which are b0(v)Z((0.2Cv)cos(3.5pv)),

(0.2Cv)sin(3.5pv) and b1(v)Zb0(v)!1.5 (see Fig. 7(b)).

When the height between two bounding planes of the extended

ruled surface is 1 and the permission tolerance is 0.001, we

obtain an extended cone spline with seven patches (Fig. 7(c)).

The cone spline surface fitting the original ruled surface can be

obtained by trimming the extended cone spline surface

(Fig. 7(d)). For this example no boundary conic arc collapses

even for the extended fat conic spline, and the weights wis for

these fat conic arcs are 0.6444, 0.6153, 0.6318, 0.6389, 0.67,

0.6487 and 0.8992, respectively.
In the second example, we approximate a non-develop-

able ruled surface by cone spline surface (see Fig. 8). The

boundaries of the original ruled surface are two Bézier

curves of degree 9. Then the extended boundary curves

b0(v) and b1(v) are also Bézier curves. The control points

for b0(v) are (0,1.5), (0,1.5), (0,0), (0,0), (1,K0.075),

(1,K0.075), (3,0), (3,0), (3,1.5), (3,1.5) and the control

points for b1(v) are (0,1.5), (0,0.5), (0,0), (0,0), (0.5,0),

(2.5,0), (3,0), (3,0), (3,0.5), (3,1.5). The height for the

extended ruled surface is 1 and the given tolerance is 0.06

for this example. Though b0(v) and b1(v) coincide at two

end points, a plane fat conic spline curve with 16 pieces has

been constructed fitting this extended fat curve (Fig. 8(b)).

When some interpolating trapezoids degenerate to triangles

for plane curve fitting, there exist some singularities at the

boundaries of the fitting cone spline surface (Fig. 8(c)).

Finally, a tangent smooth cone spline surface is obtained by

trimming the extended cone spline surface (Fig. 8(d)). The

maximum fitting error is 0.0545 and the weights wis for the

fat conic spline are 6.1257, 2, 0.6376, 1.3328, 1.0636,

1.0342, 7.7169, 1.1272, 1.0006, 1.0322, 1.0251, 1.0541,

60.9157, 2, 2.2879, 2. When b0(v) and b1(v) lie outside of

the triangles formed by the control polygons of a fat conic

arc, the corresponding weight for this fat arc is set a default

value 2.

In the third example, we approximate another bounded ruled

surface with height 1.8 by a cone spline surface. The height of

extended ruled surface is 3 and the extended boundary curve

b0(v) is a cubic Bézier curve with control points (K2,K2),

(4,8), (5,K8) and (12,1). The extended boundary b1(v)Z
b0(v)Cp(v), where p(v)Z3(tan[p/8 cos(pv)]cos[p/2C0.1
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sin(pv)], tan[p/8 cos(pv)]sin[p/2C0.1 sin(pv)]). We apply

two different forward steps and fitting tolerances for this

example. With forward step 0.3 and permission tolerance 0.2,

we obtain a fat conic spline with seven fat arcs (Fig. 9(b)). A fat

conic spline with 15 fat arcs is obtained by choosing forward

step 0.1 and permission tolerance 0.1 (Fig. 9(c)). The fitting

cone spline surfaces under different forward steps and

tolerances are illustrated in Fig. 9(d) and (e), respectively.

The weight wis for the first fat conic spline are 1.0574, 1.1139,
Table 1

Example Figure Forward

step

Tolerance Max error Patch

number

1 7 0.5 0.001 9.717!10K4 7

2 8 0.1 0.06 0.0545 16

3a 9 0.3 0.2 0.1992 7

3b 9 0.1 0.1 0.0998 15
0.0737, 0.3805, 1.0682, 1.0301, 2.0 and the weights for the

second fat conic spline are 1.0031, 1.0299, 1.0043, 1.1244,

22.7854, 0.0048, 0.0166, 0.5616, 2, 0.3319, 1.0078, 1.1335,

1.0143, 1.1865, 2.

The forward steps, tolerances, max fitting error and patch

numbers for the above mentioned examples are listed in

Table 1.
6. Conclusion and discussions

In this paper, we have presented a new method for

approximating a ruled surface by cone spline surfaces within

prescribed tolerances. Assume that the original ruled surface

lies between two parallel planes, we have a plane fat curve by

projecting the ruled surface onto a plane paralleling the original

bounding planes. On the selected plane, we fit the projected fat

curve by a fat conic spline. The fitting error for cone surface
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approximation can be estimated efficiently via fat conic spline

approximation.

The assumption that a ruled surface to be approximated

is bounded by two paralleling planes may not be valid for

general types of ruled surfaces. If this case do occur, we

can just divide the original ruled surface into two or several

sub-ruled surfaces of which every sub-ruled surface can be

bounded by a pair of paralleling planes. If one want to

approximate a double curved surface by a cone spline

surface, a ruled surface can first be constructed fitting the

original surface, and then a developable surface is obtained

by approximating the ruled surface.
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Geom Des 1991;8(5):409–20.
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