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Abstract

Fat conic section and fat conic spline are defined. With well established properties of fat conic splines, the problem of approximating a ruled
surface by a tangent smooth cone spline can then be changed as the problem of fitting a plane fat curve by a fat conic spline. Moreover, the fitting
error between the ruled surface and the cone spline can be estimated explicitly via fat conic spline fitting. An efficient fitting algorithm is also
proposed for fat conic spline fitting with controllable tolerances. Several examples about approximation of general developable surfaces or other

types of ruled surfaces by cone spline surfaces are presented.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Developable surface is a kind of ruled surface that can be
mapped to a plane isometrically. From the viewpoint of
differential geometry, developable surfaces are composed of
general cylinders, general cones, tangent surface of a spatial
curve or a composition of these types of surfaces [1]. With
well established properties, developable surfaces find wide
applications in shape modeling and manufacturing with non-
stretchable material such as paper, leather and steel, etc. [2-7].
Within the types of developable surfaces, cones of revolution
and cone spline of revolution are of special interests. These
surfaces can be represented in parametric form as well as
algebraic form. The offsets are the same type of the original
surfaces and the development of a cone of revolution into a
plane is elementary.

Besides developable surfaces, general types of ruled
surfaces play important roles in geometric modeling and
shape optimization too. With more degrees of freedom, they
can be used to approximate a set of measured data [8,9] or can
be used as intermediate approximation to double curved
surfaces [10,11]. The main goal of this paper is focusing on the
approximation of a ruled surface by a cone spline within
prescribed tolerances.
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To incorporate developable surfaces into a CAD/CAM
system, many researches have been devoted to the represen-
tation of developable surfaces in Bézier or B-spline forms.
Aumann [12] and Lang and Roéschel [13] derived sufficient
conditions when a tensor product Bézier surface is develop-
able. Because the tangent plane at every point on a generator of
a developable surface are the same, then the developable
surface is also the envelope of the set of tangent planes along
all generators. With this property, the definition of a
developable surface is equivalent to the computation of a
curve in duality space. Bodduluri and Ravani [14], Pottmann
and Farin [15] have studied developable B-spline surface and
developable rational B-spline surfaces using duality methods.

The approximation of a given surface by a developable
Bézier or B-spline surface have important application in shape
modeling and manufacturing. By representing the fitted planes
or points in projective space, Hoscheck and Pottmann [16],
Pottmann and Farin [13] presented several methods for
developable surface fitting. These methods can be applied
easily, but the fitting error cannot be controlled efficiently.
Pottmann and Wallner [17] have designed an approximation
algorithm under a proper metric in projective space. Recently,
Park et al. [18] proposed an optimal control algorithm for
developable surface design with which the base curve has to be
solved when the directions of the rules are given.

For the purpose of fabrication, ruled surfaces or a general
type of developable surfaces are preferred to be approximated
by cone spline surfaces or planes. Aumann [2] and Elber [11]
proposed to approximate a skew ruled surface by a set of
triangles. Though the fitting error can be controlled, but
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the approximating surfaces are not smooth any more.
Leopoldseder and Pottmann [19], Leopoldseder [20,21] have
developed several interesting algorithms for approximating
general types of developable surfaces with cone splines. The
algorithms compute the fitting cones using either a Hermite
like interpolation technique or space arc spline method.
However, this method cannot be extended for the approxi-
mation of general types of ruled surfaces directly.

In this paper, we propose an efficient new algorithm for
ruled surface approximation with cone splines. Inspired by
plane curve approximation with conic splines [22-24], we
show that the problem of cone spline approximation can be
changed as fat conic spline fitting. For a ruled surface bounded
by two parallel planes, when it is projected onto one of these
two paralleling planes, we will then obtain a planar fat curve, of
which the boundaries are just the projection of the surface
boundaries. Similarly, the boundaries of cone spline between
two paralleling planes are two conic splines, and the projection
of the cone spline is a fat conic spline. Moreover, the fat conic
spline can be represented as piecewise rational surfaces and the
control polygons of two boundary conic splines are piecewise
parallel. As discussed in the following text, the approximation
of a planar fat curve by a fat conic spline can be implemented
efficiently and the fitting error between two surfaces can be
estimated by these two planar fat curves. Finally, the fitting
cone spline can be obtained by elevating the boundaries of the
fat conic spline onto the original two parallel planes,
respectively.

The organization of the paper is as follows. In Section 2, we
will give the definition of fat conic arc and fat conic spline. In
Section 3, we will present the approximation algorithm. The
fitting error will be analyzed in Section 4. Some numerical
examples are presented in Section 5 and we conclude the paper
in Section 6.

2. Fat conic arc

It is well known that a conic section is the intersection curve
between a plane and a cone of revolution (see Fig. 1). The conic
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Fig. 1. Conic section.

section can be an ellipse, a parabola or a hyperbola according to
the position that the plane lie with respect to the cone. In the
field of computer-aided design, a conic segment can be
represented as one or several pieces of rational quadratic
Bézier curves and on the contrary any rational quadratic Bézier
curve is a conic segment [25,26].

Within this paper, we mean the conic segment by a standard
rational quadratic Bézier curve

RyByy(t) + RywB) »(t) + RyBy (1)
By2(t) + wB; 5(1) + By, (1)

R = , t€]0,1]

where R/(i=0,1,2) are the control points of the Bézier curve,
B;,(t)= Céti(l —t)27i are the Bernstein basis functions of the
curve. Even more, the positive weight w can be used to
characterize the conic type, the curve is a segment of parabola
when the weight w=1, and the curve is a segment of ellipse or
a segment of hyperbola when w is less than or greater than 1,
respectively. Even more, when the control polygon RyR (R, is
an isosceles triangle and w=cos 6 where = Z RyR|R,, then
the quadratic rational Bézier curve is a circular arc.

In a similar way as the definition of a conic section, we can
now define a fat conic arc geometrically. At first, we can
intersect a cone of revolution by two parallel planes, then we
have two conic sections on the paralleling planes (see Fig. 2).
Let the two conic segments between the two planes and two
rulings on the cone be

PyB»(t) + PywB) 5(t) + PyBy (1)

P(r) = s 0,1 1
O = B0 + B0 + By SO

and

o) = QoBoa () + O1wB; (1) + Qsz,z(f)’ re[0.1] @)

By (1) + wB) (1) + By, (1)

respectively, then the cone surface between the two paralleling
planes can be represented as a rational Bézier surface c(s,f)=
(1—=25)P(¢) +sQ(r). When we project the rational Bézier surface
onto one of the paralleling planes, we obtain a fat conic arc on
the plane (see Fig. 3). For the efficiency of fat conic arc fitting,

Fig. 2. Fat conic section.
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Fig. 3. Control mesh of a fat conic arc.

in this paper we consider only the case that P(f) and Q(¢) lie at
just one side of the apex of the cone.

Without loss of generality, we assume that the projection
plane is just the xy-plane. When the rational Bézier surface
c(s,t) has been projected onto the plane, the projected area is
bounded by two conic sections p(?), g(f) and two lines pygo and
P2q2, Where p(f) and g(¢) are the projections of P(f) and Q(r),
pi(i=0,1,2) and ¢(i=0,1,2) are the projections of P,(i=0,1,2)
and Q(i=0,1,2), respectively.

From the above definition, we know that the rational Bézier
surface c(s,t) is a developable surface, then the tangent plane at
every point on one generator of the surface are the same. This
implies that the points Py, Qp, P, and Q; are on a plane.
Similarly, the points Py, Q;, P, and Q, are coplanar too.
Moreover, when the surface c(s,f) is lying on a cone, it can be
easily verified that the three lines PyQq, P10, and P,(, all pass
through the apex of the cone. If the surface c(s,f) lies on a
circular cylinder, these three lines are parallel with each other
and the intersection point becomes infinity. With this analysis,
we have

Theorem 1. Let c(s,t) be a cone patch bounded by two parallel
planes with boundary conics as P(t) and Q(t), then we have
PoP1[lQ0Q1, P1P||010Q, and PyP;||Q0Q-.

From Theorem 1, we know that APyP;P, and AQyQ:0, are
similar triangles and the control polygons of two boundary
conics are piecewise parallel. As to the plane fat conic arc we
have

Theorem 2. The conic segments p(t) and q(t) are two boundary
curves of a fat conic arc if and only if the corresponding
weights of these two conics are the same and the control points
satisfy the following conditions: popillgogi, pip2llgiq and
por2llgoqo.

Proof. From the definition of the fat conic arc, if p(f) and g(¢)
are two boundary conics of a fat conic arc, the weights of p(f)
and ¢(¢) are equal to the weights of P(¢) and Q(¢) which are the
boundary curves of the original cone surface, then the
corresponding weights of p(f) and ¢(¢f) are the same.
Furthermore, the control polygons of p(f) and ¢(f) are the
projections of P(7) and Q(¢), respectively, and from Theorem 1,

we have popillgoqi, Pip2llgigz and popallgogs. On the other
hand, if the corresponding edges of Apgp p, and Agoq,q, are
parallel, then these two triangles are similar, and it can be
easily derived that the three lines poqo, p1q; and p,g, either
intersect at one common point or are parallel with each other.
When we elevate the triangles on two parallel planes with
different heights, the two space triangles form the control mesh
of a cone patch. If the corresponding weights of p(¢) and ¢(7) are
equal and the weights of the cone surface are defined same with
those as p(¢), then p(#) and ¢g(¢) are just the projections of the
boundaries of the cone surface bounded by two parallel planes.
So, p(f) and ¢(f) are two boundary curves of a fat conic
segment.
The theorem is proven. []

In the same way as the definition of fat conic arcs, the
projection of a tangent smooth cone spline surface bounded by
two parallel planes forms a fat conic spline. Suppose that none
boundary conic arc within a fat conic spline collapses, and
from Theorems 1 and 2 we have

Corollary. The control polygons of two boundary curves
of a G' fat conic spline are piecewise parallel.

3. Fat conic spline fitting

For a ruled surface r(u,v) bounded by two parallel planes we
will have a planar fat curve by projecting the ruled surface onto
a plane. Without loss of generality we assume that the ruled
surface is r(u,v)= (1 —u)bo(v) +ub,(v), where by(v) and b(v)
are two boundary curves lying on the planes z=hy and z=h,,
respectively. We choose the xy-plane as the projection plane,
and obtain a plane fat curve by projection. The boundary
curves of the plane fat curve are just the projection of by(v) and
b1(v) and we still denote the boundaries as by(v) and b(v) in the
following text without special declaration.

To compute a cone spline surface approximating the
original ruled surface r(u,v), we should just fit a fat conic
spline curve to the projected fat curve of r(u,v). With a plane fat
conic spline obtained, we will obtain the approximating cone
spline surface by elevating the boundary conic arcs of each fat
conic arc onto planes z=h, and z=h,, respectively. Within the
rest of this section, we will pay attention to the approximation
of a plane fat curve by a fat conic spline.

3.1. Interpolation by parallel polygons

A planar fat curve is bounded by two curves by(v), b1(v) as
well as two straight lines connecting the ends of by(v) and b (v)
at v=0 and 1. Because the two straight lines by(0)b{(0) and
bo(1)by(1) are determined by by(v) and b,(v), then we mean
by(v) and b;(v) when we refer the boundary curves of a fat
curve. Instead of constructing the control polygons or boundary
conic splines directly, we first interpolate the boundary curves
of the original fat curve by two piecewise parallel polygons in
this subsection. The construction of boundary conic splines for
a fitting fat conic spline will be presented in next subsection.
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For two boundary curves bo(v) and b;(v) of a fat
curve, we can interpolate these two curves by two polygons
LoL,...L, and LyL,...L, with pairs of paralleling lines
Lo LILL; (i=1,2,...,n). Because L; and L; are lying
on by(v) and b,(v), respectively, we can then assume that
L;=by(v;) and L; = b,(¥;), where 0=v,<v,<...<v,=1 and
0=7,<% <...<¥,=1. When L; is connected to L; for
i=0,1,...,n, we will obtain a set of trapezoids or triangles
interpolating the original fat curve (see Fig. 4).

To construct two interpolating parallel polygons, we start
with the beginning points of curves by(v) and b;(v), i.e. vo=0,
P9=0 and Ly=bo(v), Ly=b,(¥y). After that, we choose
another point on one of the boundary curves such as by(v) with
a default forward step 0. Let the parameter corresponding to the
point be vy, then a new interpolating point is computed as L; =
bo(v1). To compute the corresponding point on the curve b(v),
we should compute the intersection points between the curve
by(v) and a line through L, while paralleling LoL;. We check
the solution within the parameter interval (v, v + k70), where
k¢ is a constant, which can be picked between 1 and 2 for
most practical cases. If the solutions exist within the interval,
we choose the smallest one for the new point. Then we have
v, >y and L, L;||IL,,L; (see Fig. 4). If there is no solution
within the interval, we can just choose ¥, = ¥, and the line LyL,
collapses to a point.

When we have obtained a pair of parallel lines L;,_,L; and
L,_,L; interpolating two boundary curves by(v) and b,(v), we
can then choose the end points L; and L, as the beginning points
of next pair of interpolating parallel lines. Again we compute a
line interpolating the curve by(v) or b,(v) firstly for new parallel
line computation, and a default rule for curve selection is that
we choose a curve with smaller parameter v; or v;. This choice
will make the generators of the fat conic arc more compatible
with those of the original fat curve. Whether L; and L; can be
accepted or should be recomputed depends on the fitting
accuracy of a corresponding cone surface. This procedure can
be implemented independently or along with cone spline fitting
procedure, and will end until the last two end points of by(v)
and b,(v) have been interpolated.

3.2. Construction of boundary conic splines
With a set of parallel lines interpolating two boundaries of
the original fat curve, every line segment can be considered as

the chord of an interpolating conic arc. To determine a conic
arc fitting one of the original boundary curves, we should

by(v)

by(v)

Fig. 4. Interpolating a fat curve by a pair of parallel polygons.

construct its control polygon and compute weights for all
control points.

Let L, _L; and L,_,L; (i=1,2,...,n) be the set of parallel
lines interpolating the boundary curves bo(v) and b((v), we
should compute a common tangent direction 7; at L; or L; for
i=1,2,...,n. To guarantee the existence of conic segments
between every two consecutive interpolation points, we
compute the tangent directions according to the following
two rules. The first rule is local convexity. Assume that the
chord L;_L; does not collapse, the angle from 7;_; to the
chord and the angle from the chord to 7; are with the same sign.
Moreover the intersection point of the tangent line along 7;_
and the tangent line along 7; exists and lies at the same side
with T;_; to the chord L;_|L;. Secondly, the tangent 7; should
also be close to the derivative direction of bj(v;) and b{(¥;)
simultaneously so that the final approximating conic sections
are close to the boundary curves. When local convexity
property holds, it means the existence of a conic arc
interpolating the ends as well as the end tangents at L, |L;.

To compute the tangents satisfying the above two rules, we
can just compute the tangents sequently. A default tangent
direction at L; and L, is computed as the average of derivatives
at these two points

o by(v;) + by () 3)
R OERACH] N

If i=0 we choose T;=V,. For i>0, if L,_L; or L, L,
collapses, we compute vector T; at L; or L;. In the following
paragraph we compute 7; at L; under the assumption that L; _|L;
does not collapse. If T;_, L;—L; and V; satisfy the local
convexity condition we choose T;=V,. If these three vectors do
not satisfy the local convexity property, there are two cases,
which should be dealt independently. The first case is that the
angle from 7;_, to L;_,L; and the angle from L; _,L; to V; have
different signs. The second case is that even though the above
two angles have same sign but two tangent lines through chord
ends do not intersect or the intersection point lies on an
unexpected side. If the second case holds, we can disturb vector
V; so that the disturbed V; satisfies the local convexity
condition. Then the disturbed vector will be picked as T;. If
the first case holds we reflect the initial V; with respect to the
chord L; _L;. Let W, be the reflected vector we have

2(V;UYU,; —V;

= L €]
12(v;UpU; — Vil

where U;=L;,—L;/lIL;—L;_;|l. For most practical cases
T;—, L;—L; and W; will satisfy the local convexity property,
and then we can choose 7;=W,. In case W; still cannot satisfy
the requirement it should be disturbed further as in second case
and a disturbed vector will be picked as T;.

With all the tangent directions at the interpolation points
properly defined, we can compute the intersection point R;
between the line through the point L; _ ; with direction 7;_; and
the line through L; with direction 7;. In a similar way, we
compute the intersection point R; between the line through
the point L,_; with direction T;_; and the line through L; with
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Fig. 5. Construction of a fat conic arc. The dashed curves are boundaries of a fat
curve and the solid curves are of a fat conic arc.

direction T;. If the positions of L;_; and L; are different, then
the points L;_ 1, R; and L; form the control polygon of a fitting
conic segment. Similarly, L, ;, R, and L; form the control
polygon of another conic arc when two points L,_; and L; are
different from each other. If none of these two control polygons
collapses to a point, the two triangles AL, _R;L; and AL, |R;L;
are similar triangles. From Theorem 2, the fat curve defined by
these two conic segments with consistent weights is a fat conic
arc (see Fig. 5).

With the control polygon obtained for each conic arc, we
compute the weights for these conic arcs by optimal curve
fitting. Suppose that all conic segments are in standard form,
we should then just compute the weight corresponding to each
middle control point. As illustrated in Fig. 5, L;_R;L; and
L, R,L; are the control polygons of a pair of conic arcs A,(?)
and B;(7). The weights corresponding to the middle control
points R; and R; are both w;, and we have these two conic arcs
as

Ly 1Boy(t) + Riw;B (1) + LB (1)

A = , t€][0,1]
By, (1) + w;B (1) + By (1)

and

B.1) = Li1Bo(t) + Riw;B (1) + LiB; (1) Cre[o.]

B, (t) + wiB ) 2(1) + By (D)

The weight w; should be computed so that both of conics
A{t) and B,(t) are as close as possible to bo(v) and b(v),
respectively.

Floater [23] has presented an error estimation formula for
conic approximation. The main idea of Floater’s method is to
represent the conic segment in implicit form and compute the
bound of a point to the implicit curve. Let point by(v) be a
point within the triangle AL; _R;L;, and 7o, 7; and 7, are
the barycentric coordinates of the point with respect to the
triangle, then one can define an algebraic function as
fw(bo(v))=4w,-27'07'2—7’%. The point by(v) lies on the conic
segment A«(¢) if and only if f,,(bp(v))=0. In a similar way, if
point by(v) lies within the triangle AL; |R;L;, one can define
another function f,,(b{(v)) by using the barycentric coordinates.
The weight w; can be computed under the assumption that the
sum of f,,(bo(v)) and f,,(b (v)) are zero for all those points lying
within either of the two triangles. By denoting AL;_R;L; and

AL, R,L; as 4; and 4;, respectively, we have

Fulbo(¥)dv + j Fulbr(1)dv = 0. 5)

by(v)€4; by (v)E4;

Though the solution exists theoretically for Eq. (5), but it is
difficult to solve the equation exactly. For practical compu-
tation, we can just sample several points within the triangles
from the original two boundary curves by(v) and b;(v) and
solve the discrete equation directly.

3.3. The fitting algorithm

To construct a cone spline surface within a prescribed
tolerance, we should compute the fitting cone spline globally or
sequently. For global approach, we can construct an initial
approximating cone spline surface using a default forward step.
And then we pick segments with larger fitting error on the
initial fat curve and refit the corresponding fat curve segments
with more fat conic arcs. As for the sequent method we
compute and test every new cone patch, and a new patch will
be joined to current cone spline only when it is within the
prescribed tolerance. If the fitting error is larger than a
predefined criterion, we can just shorten the forward step 6 by a
factor k; and compute another cone surface. This procedure can
be repeated until a cone patch with the given tolerance has been
found. In this way, we obtain a cone spline within a given
tolerance sequently. In this paper, we adopt the second method
for cone spline surface approximation.

The fat conic spline fitting algorithm for cone spline
approximation within a given tolerance is summarized as
follows.

Fat conic spline fitting algorithm.

Input (r(u,v), tol, dq)

Output (ci(s,t), i=1,2,...,n)

vo="y=0, Lo="bo(vo), Lo = b (Vp);

Compute To;

i=1; set 6=293;

while (v;— <l orv,_; <1) {
Compute v;, ¥;, L; and L;;
Compute T;;
Compute A,(7) and B(1);
Compute fitting error err(A,(¢), Bi(1), r(u,v));
if (err<tol) {output c,(s,f); i+ +; reset 6=23q;}
else 0=k0;}

4. Error estimation for cone spline approximation

In previous sections, we have shown that the approximation
of a ruled surface by a cone spline surface can be reduced to the
problem of fitting a fat plane curve with a fat conic spline
curve. In Section 4, we will show how to compute the fitting
error for cone spline approximation via fat conic spline fitting.

The fitting error between a ruled surface and a cone spline is
usually consisting of two parts: boundary error and skew error.
As to the boundary error, we notice that the distance from
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At)=by(v)

Fig. 6. The skew error between the ruled surface and the cone surface. The
dashed curves are boundaries of a ruled surface while the solid curves are of a
cone spline.

a boundary curve of one surface to the other one is no larger
than the distance between two corresponding boundary curves
on a projection plane. Then, we will compute the boundary
error between a ruled surface and a cone spline as the distance
between corresponding boundary curves of two projected fat
curves. On another hand, even though the boundary error
vanishes, there may still exists a gap between the original ruled
surface and the fitting cone spline surface because of the
inconsistency between the projected generators from these two
surfaces. We refer this type of fitting error as skew error (see
Fig. 6).

As introduced in Section 3, A;(f) and B,(¢), t<[0,1] are two
boundary conics of a fat conic segment interpolating the
original fat curve with boundaries by(v) and b;(v) (see Fig. 5).
The distance from A,(¢) to by(v) and the distance from by(v) to
A(f) can be defined as

du(A1), b)) = max  min _dist(A;(¢), by(»))

t€[0,1] vE[v;—,v;]
and

dy(bo(v),Ai(1)) = max min dist(by(v),A;(7)),

vE[v,_1,v;] t€[0,1]
respectively. Then the Hausdorf distance between A«f) and
bo(v) is defined as

Dy(A;(1), bo(v)) = max{dy(A;(1), by(v)), dy(by(v), Ai(1)}.  (6)

By replacing A,(f) with By(f), bo(v) with b;(v) and the
interval [v,—1,v;] with [V,_;,V;] we have the definition of
Hausdorf distance Dy(B(¢), b1(v)) between B,(t) and b,(v).

It should be noted that the distance from a point by(v) to
the conic section A,(f) can be estimated explicitly when
bo(v) lies in the triangle formed by the control polygon of
Ai(t) (see Ref. [23]). However, not all points on the original
boundary curves satisfy this condition in practice. Then we
should compute the distance between two curves numeri-
cally, i.e. by computing the maximum distance of densely
sampled points from by(v) to the interpolating conic arc
Ai(f). By the same way we compute the distance from curve
b](V) to B[([).

Besides boundary error, we should also compute the interior
deviation between the ruled surface and the cone surface. In the
following text, we compute the distance from the ruled surface
to the cone surface and the distance from the cone surface to the
ruled surface under the assumption that the boundary error
vanishes. Moreover, we will show that both of these two types
of distances can be reduced to the distance computation from a
line to a surface.

Let A(t)B,(t) be a generator on the cone surface, the two
end points of the line lie on two paralleling planes,
respectively, we compute the bound of the distance from
line A;(f)B(?) to the ruled surface r(u,v) (see Fig. 6). Assume
that points A,(¢f) and B(¢) also lie on the ruled surface, i.e.
there exist v and Av such that A (#)=by(v) and B(t)=b,(v+
Av) hold, and the four end points of generators by(v)b;(v) and
bo(v+Av)b (v+Av) of the ruled surface form a bilinear
surface. To compute the bound of the distance from the line
AH)B(t) to the original ruled surface, we compute the
distance from the line A;(#)B;(¢) to the bilinear surface and the
distance from the bilinear surface to the ruled surface. Firstly,
we define the thickness h(v) of the bilinear surface as the
distance between two diagonals of the quadrangle defined by
bo(v)b1(v) and bo(v+Av)b;(v+ Av). Then the distance from
the line A;(¢)B;(f) to the bilinear surface is bounded by A(v). It
is clear that h(v) vanishes just when this quadrangle is on a
plane. Let Ly(v) be the line connecting bo(v) and bo(v+ Av),
and L(v) is the line connecting b,(v) and b,(v+ Av), then the
bound of the distance from the line Ly(v) to the curve by(v)
and the bound of distance from the line L;(v) to the curve
by(v) can be computed as follows [27]:

1
di(by(), Lo(v)) < ep(v) = gsz sup [lbg)|l,

1
dy(by (), Li(v) < e, (v) = gsz sup [IB{ ).

At this time, the error from the bilinear surface to the ruled
surface is bounded by max(eg(v),e;(v)). Finally we have the
error bound from the line A;(#)B;(¢) to the ruled surface as

d(v) = max(eg(v), e;(v)) + h(v). @)

As to the distance from a line by(v)bi(v) on the ruled
surface to the cone spline surface, it can be computed in a
similar way. Without loss of generality, we assume that
bo(v)=A(t) and b;(v)=B,(t— Ar), the fitting error can also be
divided into two components. The first part of fitting error is
due to the inconsistency of parameters, and the error bounds
on either boundary curves are as

_ 1
du(Ai(1), Ly(1) < &y(t) = gArz sup [lA/ (DI,

_ 1
du(Bi(0), Li(0) < &,(t) = gmz sup 1B/ (1)l

where Ly(f) is a line connecting two points Aff) and
A(t—Ap, L) is a line connecting two points B;j(f) and
Bi(t—Ar). Let h(r) be the distance between two lines
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Fig. 7. Approximating a generalized cone surface by cone spline surface: (a) the original surface; (b) fitting the extended fat curve by a fat conic spline; (c) the
extended fitting cone spline surface with control mesh; (d) the approximating cone spline surface.

A (t—ANB{(t) and A(f)B;(t— At), then the skew error from
the line bo(v)b,(v) to the cone surface is bounded by

d(t) = max(ey(1), &,(t)) + h(?). (8)

The total bound for the distance between the original ruled
surface and the fitting cone spline surface can now be computed as

maX{DH(Ai, bo), DH(Bi’ b] )} + max(do, dl)’ (9)
where d, = sup, d(v) and d, = sup, d(t).

5. Implementation and examples

As discussed in Section 3, when we interpolate a plane fat
curve by two polygons with piecewise parallel lines, some line
segments may collapse to points, and the trapezoids defined by
parallel lines will degenerate to triangles (see Fig. 4). Though a
fat conic section can still be defined for each trapezoid or
triangle, but for collapsed lines the boundary conic arcs
collapse to points, and the fitting conic arcs join with only C°
continuity at the degenerate points. If the boundaries of a
planar fat conic spline are not smooth, the corresponding cone
spline surface will have no tangent plane at the degenerate

boundary points. To obtain a tangent smooth cone spline
surface in the end, we should fit the boundary curves of original
fat curve by fat conic spline with smooth boundaries.

To remove boundary singularities of a cone spline surface
bounded by two parallel planes, one can just trim the cone
spline surface with two new parallel planes lying between the
original ones. Then, if we want to construct a tangent
continuous cone spline surface we can extend the original
ruled surface in either directions and trim the fitting cone spline
surface with original two parallel planes. Assume that z=h,
and h; be two parallel bounding planes, we extend the ruled
surface to two new parallel planes z="h, and h;, where ho(hq
and /1, )h,. In the following examples, we choose hy=(4/3)hy—
(h1/3) and hy=(4/3)h; — (ho/3). Let p; and g; be the control
points of boundary conic arcs of an extended fat conic arc, the
control points of the final fat conic spline can be obtained as

_hy—hy | hg—hy _
pl hl _}_lopl hl —}_lo ql’
hy —h hy—h
ql = _1 _0 _l + _1 _1 ql
hy —hy hy —hg
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Fig. 8. Rule surface approximation by cone spline surface: (a) the original ruled surface; (b) the extended fitting cone spline surface; (c) the extended fitting cone

spline surface; (d) the cone spline surface fitting the original surface.

Within the rest of this section we present several interesting
examples concerning the approximation of ruled surfaces by
cone spline surfaces. To be consistent with the fitting algorithm
we use bo(v) and b(v) to stand for the boundaries of extended
fat curves while the boundaries of original fat curves are just
0.8bo(v)+0.2b1(v) and 0.2bo(v)+0.8b,(v). We shorten the
forward step ¢ with 0.96 when the fitting error of a cone patch is
larger than a predefined criterion. In Figs. 7-9, surfaces with
grey color are the fitting cone spline surfaces while the red ones
are the original ruled surfaces. For plane fat curve fitting, the
outside curves are the boundaries of extended fat curves (light
color) and the fitting conic splines (deep color) while the
interior curves are boundaries of original fat curves. The
dashed polygons are control polygons of the fitting conic
splines and the solid polygons are interpolating parallel
polygons.

In the first example, we approximate a section of a
generalized cone surface by a spline of cone surface of
revolution (see Fig. 7). The boundary curves of the original
ruled surface are two spirals, and the extended boundaries
are also spirals which are bo(v)=((0.2+v)cos(3.51v)),
(0.2+v)sin(3.51tv) and b(v)=by(v) X 1.5 (see Fig. 7(b)).
When the height between two bounding planes of the extended
ruled surface is 1 and the permission tolerance is 0.001, we
obtain an extended cone spline with seven patches (Fig. 7(c)).
The cone spline surface fitting the original ruled surface can be
obtained by trimming the extended cone spline surface
(Fig. 7(d)). For this example no boundary conic arc collapses
even for the extended fat conic spline, and the weights w;s for
these fat conic arcs are 0.6444, 0.6153, 0.6318, 0.6389, 0.67,
0.6487 and 0.8992, respectively.

In the second example, we approximate a non-develop-
able ruled surface by cone spline surface (see Fig. 8). The
boundaries of the original ruled surface are two Bézier
curves of degree 9. Then the extended boundary curves
bo(v) and bi(v) are also Bézier curves. The control points
for bo(v) are (0,1.5), (0,1.5), (0,0), (0,0), (1,—0.075),
(1,—0.075), (3,0), (3,0), (3,1.5), (3,1.5) and the control
points for b;(v) are (0,1.5), (0,0.5), (0,0), (0,0), (0.5,0),
(2.5,0), (3,0), (3,0), (3,0.5), (3,1.5). The height for the
extended ruled surface is 1 and the given tolerance is 0.06
for this example. Though bo(v) and b;(v) coincide at two
end points, a plane fat conic spline curve with 16 pieces has
been constructed fitting this extended fat curve (Fig. 8(b)).
When some interpolating trapezoids degenerate to triangles
for plane curve fitting, there exist some singularities at the
boundaries of the fitting cone spline surface (Fig. 8(c)).
Finally, a tangent smooth cone spline surface is obtained by
trimming the extended cone spline surface (Fig. 8(d)). The
maximum fitting error is 0.0545 and the weights w;s for the
fat conic spline are 6.1257, 2, 0.6376, 1.3328, 1.0636,
1.0342, 7.7169, 1.1272, 1.0006, 1.0322, 1.0251, 1.0541,
60.9157, 2, 2.2879, 2. When by(v) and b((v) lie outside of
the triangles formed by the control polygons of a fat conic
arc, the corresponding weight for this fat arc is set a default
value 2.

In the third example, we approximate another bounded ruled
surface with height 1.8 by a cone spline surface. The height of
extended ruled surface is 3 and the extended boundary curve
bo(v) is a cubic Bézier curve with control points (—2,—2),
4,8), (5,—8) and (12,1). The extended boundary b(v)=
bo(v)+p(v), where p(v)=3(tan[7t/8 cos(mv)]cos[m/2+0.1
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Fig. 9. Approximating a ruled surface by cone spline surfaces: (a) the original ruled surface between two parallel planes; (b) plane fat curve fitting with a larger
tolerance; (c) plane fat curve fitting with a smaller tolerance; (d) the approximating cone spline surface under (b); (e) the approximating cone spline surface under (c).

sin(tv)], tan[7t/8 cos(mv)]sin[7/2 +0.1 sin(1tv)]). We apply
two different forward steps and fitting tolerances for this
example. With forward step 0.3 and permission tolerance 0.2,
we obtain a fat conic spline with seven fat arcs (Fig. 9(b)). A fat
conic spline with 15 fat arcs is obtained by choosing forward
step 0.1 and permission tolerance 0.1 (Fig. 9(c)). The fitting
cone spline surfaces under different forward steps and
tolerances are illustrated in Fig. 9(d) and (e), respectively.
The weight w;s for the first fat conic spline are 1.0574, 1.1139,

Table 1

Example  Figure Forward  Tolerance Max error Patch
step number

1 7 0.5 0.001 9.717Xx10™* 7

2 8 0.1 0.06 0.0545 16

3a 9 0.3 0.2 0.1992 7

3b 9 0.1 0.1 0.0998 15

0.0737, 0.3805, 1.0682, 1.0301, 2.0 and the weights for the
second fat conic spline are 1.0031, 1.0299, 1.0043, 1.1244,
22.7854, 0.0048, 0.0166, 0.5616, 2, 0.3319, 1.0078, 1.1335,
1.0143, 1.1865, 2.

The forward steps, tolerances, max fitting error and patch

numbers for the above mentioned examples are listed in
Table 1.

6. Conclusion and discussions

In this paper, we have presented a new method for
approximating a ruled surface by cone spline surfaces within
prescribed tolerances. Assume that the original ruled surface
lies between two parallel planes, we have a plane fat curve by
projecting the ruled surface onto a plane paralleling the original
bounding planes. On the selected plane, we fit the projected fat
curve by a fat conic spline. The fitting error for cone surface
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approximation can be estimated efficiently via fat conic spline
approximation.

The assumption that a ruled surface to be approximated
is bounded by two paralleling planes may not be valid for
general types of ruled surfaces. If this case do occur, we
can just divide the original ruled surface into two or several
sub-ruled surfaces of which every sub-ruled surface can be
bounded by a pair of paralleling planes. If one want to
approximate a double curved surface by a cone spline
surface, a ruled surface can first be constructed fitting the
original surface, and then a developable surface is obtained
by approximating the ruled surface.
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