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Abstract

In this paper, we present an efficient sub-optimal algorithm for fitting smooth planar parametric curves by G' arc splines. To fit a
parametric curve by an arc spline within a prescribed tolerance, we first sample a set of points and tangents on the curve adaptively as
well as with enough density, so that an interpolation biarc spline curve can be with any desired high accuracy. Then, we construct new biarc
curves interpolating local triarc spirals explicitly based on the control of permitted tolerances. To reduce the segment number of fitting arc
spline as much as possible, we replace the corresponding parts of the spline by the new biarc curves and compute active tolerances for new
interpolation steps. By applying the local biarc curve interpolation procedure recursively and sequentially, the result circular arcs with no
radius extreme are minimax-like approximation to the original curve while the arcs with radius extreme approximate the curve parts with
curvature extreme well too, and we obtain a near optimal fitting arc spline in the end. Even more, the fitting arc spline has the same end points
and end tangents with the original curve, and the arcs will be jointed smoothly if the original curve is composed of several smooth connected
pieces. The algorithm is easy to be implemented and generally applicable to circular arc interpolation problem of all kinds of smooth
parametric curves. The method can be used in wide fields such as geometric modeling, tool path generation for NC machining and robot path
planning, etc. Several numerical examples are given to show the effectiveness and efficiency of the method. © 2002 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

Arc spline is a kind of geometric curve made of circular
arcs and straight line segments. The offset of an arc spline is
another arc spline, and it is often used as the description of
tool path of CNC machinery as well as an efficient modeling
tool [1-4]. Because of its simplicity, the arc spline method
is easy to use and computationally efficient in shape
modeling and other applications. In programming the tool
path of CNC machinery, fewer arc segments can help to
improve the production efficiency by reducing the number
of instructions and tool motions. On the other hand,
geometric shapes are often represented and modeled by
parametric curves and surfaces in the fields of computer
aided design and computer graphics. Then, computing
smooth circular arc splines interpolating parametric curves
with as few as possible segments has great significance for
wide applications such as geometric modeling, CAD/CAM
and robot path planning.

The crux for the approximation of a parametric curve by
an arc spline lies at the fact that it is difficult to estimate the
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distance between these two types of curves analytically
[5,6]. To find the maximum distance, one has to find the
zeros of the derivative of the square of the Euclidean
distance between a parametric curve and the corresponding
arc segment. For example, we have to solve an equation
with order 2n — 1 or 4n — 1 while approximating a para-
metric polynomial curve or a rational curve with order n by
an arc spline. Solving high order equations will make the
algorithm not robust and inefficient for most applications.
In this paper we present a novel numerical algorithm for
computing the interpolation arc segments. Though it is diffi-
cult to compute the maximum deviation of an arc segment
from the parametric curve analytically, the error bound can
be estimated for an interpolation biarc curve when the
sampled step is chosen small enough [7]. Then we can
construct an interpolation biarc spline curve with high
accuracy by sampling points and tangents on the curve
with enough density. To obtain an interpolation arc spline
with as few as possible segments within a prescribed toler-
ance, we compute the optimal interpolation biarc curve
within the prescribed tolerance in Tchebycheff norm.
Then we replace the corresponding part of the arc spline
by the optimal biarc curve. Though the biarc number can
be lowest by interpolating various parts of the curve with
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different optimal biarc curves, the purpose of this paper is to
interpolate an original parametric curve with low number of
circular arcs. In fact, when we interpolate a part of the curve
with an optimal biarc curve, the second segment of the biarc
associated with some successive arcs can always be
approximated by another new biarc curve within the toler-
ance. Then, we just choose the first segment of the optimal
fitting biarc curve as the interpolation circular arc to the
original parametric curve, except at the end of the curve
where we choose both of the two segments.

To compute the optimal interpolation biarc curve of origi-
nal curve, we compute tight tolerances or active tolerances
for triarc spirals and replace the spirals by the interpolation
biarc curves within the active tolerances recursively. An
interpolation biarc curve becomes the optimal interpolation
biarc curve, until the triarc span that is consisting of this
biarc curve with a successive arc segment is not a spiral or a
spiral with no interpolation biarc curve within the permitted
tolerance.

The algorithm has the following features:

e Generality: The algorithm constructs the interpolation
circular arcs by lowering the segment number of a high
accuracy fitting biarc spline. Then the algorithm can be
used to approximate any type of smooth parametric
curves.

e Efficiency: We obtain the interpolation circular arcs along
with the data sampling and biarc curve fitting process,
and compute all the parameters for the fitting arcs expli-
citly. The time needed for the whole procedure is just
proportional to the sampling density.

e Near optimality: We lower the number of segments of an
arc spline by interpolating local triarc spans with biarcs
recursively and orderly. The result fitting arcs are mini-
max-like approximation to the original curve, and the
number of segments of final interpolation arc spline
always reaches or almost reaches the lowest.

All these benefits of the algorithm make it an efficient and
practical method for geometric modeling and processing.

The organization of the paper is as follows. In Section 2
we will give a brief review of some related work and Section
3 will be devoted to the discussion of high accuracy biarc
curve interpolation problem. We will derive the explicit
formulae and give the algorithm for circular arc interpola-
tion in Section 4. Some examples will be illustrated in
Section 5 and we will conclude the algorithm in the last
section.

2. Related work

Research on the topic of smooth circular arc interpolation
for parametric curves has been active in recent years [5—13].
According to the ways how the algorithms solve the
problem, the existing algorithms can be classified roughly

into three categories: The first kind of algorithms construct
interpolating arc splines by solving optimization problem;
the algorithms that can be classified into the second category
try to find analytic solutions for the construction of fitting
arcs, but they are designed just for a few special kinds of
parametric curves such as quadratic Bézier curves; the third
kind of algorithms construct arc spline with relatively lower
number of segments by fitting a set of sampled points or
based on multiresolution analysis of an arc spline curve.

Marciniak and Putz [2] have proved that minimax
approximation generates arc spline with lowest number of
arc segments within given accuracy for a spiral. However,
the algorithm is not efficient and the problem of how to deal
with end points constraint has not been mentioned. Qiu et al.
[5] have improved this algorithm by solving numerical
equations with end constraint, but dividing a general smooth
curve into spirals is computationally expensive. Though the
interpolation for each spiral is optimal, but it may not mean
the fitting arc spline is optimal for a curve consisting of
several spirals.

Ong et al. [8] have employed an optimization procedure
to find biarc spline fitting a B-spline curve by minimizing
the area bounded by the B-spline and the arc spline curve.
Meek and Walton [9] have studied the problem of fitting
quadratic NURBS curve by arc spline. Ahn et al. [6] and
Yong et al. [10] have given several algorithms for
approximating quadratic Bézier curves by G' arc splines.
The main drawback of these algorithms is that they cannot
be extended to approximate general types of parametric
curves.

Meek and Walton [11] have fitted a biarc spline curve to a
set of discrete point by computing biarcs adaptively. Yeung
and Walton [3] have fitted an arc spline to a set of sampled
points from the curve instead of piecewise linear curve for
NC machining. Though the arc spline can improve the
machining quality than piecewise linear curve, there still
remain big room for improving the fitting quality and
machining efficiency with efficient algorithms. Wallner
[12] has proposed a method for lowering the number of
segments of an arc spline based on multiresolution analysis,
but this method cannot control the approximating error
explicitly.

In a recent paper [13], we have presented an active
tolerance algorithm for approximating NURBS curves by
arc splines. In this paper we generalize the algorithm for
approximating arbitrary types of smooth parametric curves
by arc splines and improve the former algorithm in several
aspects. Firstly, a precise formula for circular arc interpola-
tion is presented. On the second hand, we derive exact
formulae for robust and tight active tolerance computation.
Thirdly, a unified algorithm is presented for circular arc
interpolation along with the whole curve, irrespective of
the profile with increasing or with decreasing monotone
curvature. All tests we have experimented show that the
new algorithm can generate arc spline with lowest or almost
lowest number of segments.
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Fig. 1. Biarc curve construction.

3. High accuracy biarc curve fitting

In this section, we will first briefly review the definition of
biarc curve and the estimation of error bound of biarc curve
fitting, then we will discuss how to sample points and
construct interpolation biarc curves within prescribed
accuracy based on error bound formula.

3.1. Biarc curve

A biarc curve consists of two smoothly connected arc
segments that interpolate two end points and the end
tangents [1,14]. Assume that P, and Py be two distinct
points associated with two unit tangent vectors T, and Tg
at the points. Let ¢ be the angle from the positive direction
of x-axis to vector Ty, then the vector T can be represented
as T, = (cosg, sing). In this paper, we define an angle
positive if it is counter-clockwise and negative otherwise.
We can assume that O; and O, be the centers of two arc
segments with radii r; and r,, respectively. Let Pc be the
joint point of the two arcs and U is the unit tangent vector at
the joint point. If we denote the angle between vector T, and
vector U as 6, then we have U = (cos(6 + ¢), sin(6 + ¢)).
In addition, we can represent the unit normal vector at point
P, as N| = (—sing, cosg) and the normal vector at point P¢
as V = (—sin(0 + ¢),cos(0 + ¢)) (see Fig. 1). Let  and 8
be the angle from T, to P5Pp and the angle from PPy to T,
respectively, and let [ = ||Pg — P,|, then the radii, the joint
point and the centers for the two arcs can be computed as
follows [14]:

/ Lsin((B— a+ 6)/2)
2sin((a + B)/2) sin(6/2)

ry =

B l . sin(Qa — 6)12)
27 5in((a + B)2) sin((a + B — 6)2)

PC:PA+F1(N1_V)
Ol:PA+r]Nl

02:Pc+r2V (1)

In above equations, the angle 6 is a free variable, and
various choices of the angle will generate different biarc
curves. If slope angles o and B have the same sign, we
can then construct a C_shaped biarc curve; otherwise

construct an S_shaped biarc curve. For variable 60, we
choose 0= a for C_shaped biarc curve and 6=
(3a — B)/2 for S_shaped biarc curve. This choice can help
to keep the shape of the arc spline compatible with the
original curve well [14,15].

3.2. Estimate the fitting error

When we construct a biarc curve interpolating a pair of
sampled points and tangents on a parametric curve, we can
estimate the fitting error as follows. For two end points Py
and Py of a spiral associated with two unit tangent vectors
T, and Ty at the points, two circular arcs C, and Cy that join
points P, and Py and matches vector T, or Tp, respectively,
are two bounding circular arcs [7,9]. In Ref. [7], Meek and
Wolton have proven that a spiral segment be enclosed by
the two bounding circular arcs derived from the curve if the
length of the curve approaches zero. Even more, the
distance from the spiral to the interpolating biarc curve
approaches 1/13.5 of the distance between the two bounding
circular arcs.

For most applications, a smooth curve is always consist-
ing of a finite set of spirals of which the curvatures are
monotone. Then we can believe that most small segments
are spirals if we divide a parametric curve by sampling
points with enough density. Let « and 8 be the angles
defined as above, then the maximum distance between the
two bounding circular arcs is
a B

tan— — tan—|,
2

|Ps — Pyl

d:
B 2

and the maximum distance dy; from the spiral to the
interpolation biarc curve is approximately dp/13.5. Since
detecting whether a curve segment has been enclosed by
the corresponding bounding circular arcs or not is not a
trivial work, we choose to compute the distances from a
few sampled points on the curve to the arc segment and
choose the maximum distance dy as the deviation. Because
we have divided the parametric curve into many small
intervals, we can sample three to five points in each interval
to estimate the deviation. So, the distance between the
parametric curve and the interpolation biarc curve can be
estimated as d = max(dyr, dy)-

3.3. Sampling points

If we sample points on a smooth curve with too large step,
the fitting biarc curve may not be with the desired accuracy.
On the other hand, too much detailed sampling may be
computationally expensive even though it can increase the
fitting accuracy. To control the fitting error compactly, we
sample points on the smooth curve adaptively. For each
step, we first sample a new point with a fixed step and
check the distance from the interpolation biarc curve to
the parametric curve. If the maximum distance is within
the prescribed accuracy, we accept the interpolation biarc
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curve; otherwise, we sample another point on the curve with
a smaller parameter step.

Without loss of generality, we can assume that the
parameter curve is defined on the interval [0, 1], and we
choose the fixed step as Az = 0.02. In fact, various choices
of this fixed step do not influence the fitting results much
because of high accuracy requirement. Let P;_; be one point
on the parametric curve P(¢) with parameter ¢,_;, to choose
next point P; we can first set parameter #; = t;_; + Ar. If the
deviation is within the prescribed accuracy, we set
P, = P(t;); otherwise, we will check another sampled
point by choosing the parameter with a shorter step, i.e.
t; =ty + 0.65Az. This procedure continues until an
accepted point is reached. If the permitted error bound for
circular arc interpolation is 7, a positive real number less
than 0.01 * 7 can be set as a well working accuracy for high
accuracy biarc curve interpolation. In all the examples cited
in this paper we set the fitting accuracy as 0.002 * 7.
Because the initial fitting biarc spline curve is with so
high accuracy to the original parametric curve, we will
not distinguish these two types of curves and we mean the
high accuracy interpolation arc spline curve when we refer
to the original curve without particular declaration in the
following sections. An advantage of the high accuracy biarc
spline representation is that we can compute the distance
from an arc segment or a point to the original curve more
easily.

4. Smooth circular arc interpolation

Though the arc spline constructed above is with high
accuracy to the original parametric curve, but the arc
segments are always too many to be used efficiently and
should be reduced as much as possible for most applica-
tions. To obtain interpolation circular arcs within a given
tolerance, we replace local spiral spans by the correspond-
ing interpolating biarc curves within active tolerances. We
will give the circular arc interpolation formula for spirals
with decreasing curvature in the following subsections, and
the formula for spirals with increasing curvature can be
obtained similarly.

4.1. The strategy

For an arc spiral consisting of three segments or a triarc
spiral, there are a family of biarc curves interpolating the
same end points and end tangents of the spiral [14]. To find a
new biarc curve within a prescribed deviation, we construct
the two segments of the biarc curve by expanding the arc
segment with smallest radius and shrinking the arc segment
with biggest radius of the triarc spiral, with two end points
and end tangents of the spiral fixed. The magnitude of the
expansion or shrinking of one new arc segment is decided
by its deviation from the spiral and the another arc segment
can be decided based on continuity constraint. Then the
entire new biarc curve will be within the permitted tolerance

of original curve if the deviation of second arc segment is no
larger than 7, either.

For an arc span consisting of more than three segments of
which the radii are monotone increasing, we can construct
optimal fitting biarc curves by checking triarc spirals recur-
sively and orderly. We begin the procedure by choosing the
first three arcs and construct an interpolation biarc curve.
When we replace the first three arcs by the interpolation
biarc curve, we will obtain a new arc span with one segment
fewer. The first three segments of this new arc span will
again form a new triarc spiral, and we can fit this new spiral
by another new biarc curve. To guarantee that the deviation
from this new biarc curve to the original curve is not larger
than 7, we compute a new tighter tolerance for the construc-
tion of this new biarc curve. This procedure continues until
the active tolerance vanishes and the maximum deviation
from the latest biarc curve to the original curve reaches 7. At
the time, the interpolation biarc curve is the optimal approx-
imation to the original curve under the mean of minimax
approximation. From another point of view, we obtain the
optimal biarc curve by expanding the first segment and
shrinking the last segment of the corresponding arc span
within the given tolerance. Since the second segment of
the optimal biarc can be expanded with another end fixed
in following steps, we leave the first segment of the biarc as
an interpolation circular arc to the parametric curve and
check a new triarc spiral that is consisted of the second
segment of the biarc curve associated with another two
successive arcs from the original fitting arc spline.

If there exist inflection points in the triarc span or the
triarc span is not a spiral, we leave the first segment as
one interpolation arc, and check another triarc span with
a new arc segment added. One advantage of the method
is that it can keep the shape of the final interpolation arc
spline compatible with the original curve well. On the other
hand, the algorithm can be implemented more easily and
conveniently.

4.2. Fitting triarc spiral by biarc curve

Without loss of generality, we can assume that Oy, O; and
0, be three smooth connected arc segments of a triarc spiral
with increasing radii ry, r; and r,, respectively. The spiral
starts at point P and ends at P; with two joint points P; and
P,. To determine a new biarc curve interpolating points Py,
P; and the tangents at these two points within controllable
deviation, we construct these two new arcs by expanding r,
and shrinking r, with end points Py and P; and the tangents
at these two points fixed (see Fig. 2). Let

0,—P
and V,= 22
10>, — P5]l

then the centers for these two new arc segments are O, =
Oy + tVy and Oy, = O, — uV,, respectively, where ¢ and u
are the expansion or shrink magnitudes. We obtain the radii
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Fig. 2. Approximate a triarc spiral by a biarc curve.

for these two new arcs as r,=ry+¢ and r, =r, — u,
respectively.

To guarantee that arc segments O, and O,, are G' contin-
uous at the joint point, the radii for the two arcs should
satisfy the following equation:

ra+||0a_0b||:rb 2

By expressing O,, O, r, and r,, as the functions of ¢ and u,
we have:

10, = 0g —uVy = tVp|| =ry —rg —u—1t 3)

Let D= 0, — Oqy and t, = r, — 1y, then Eq. (3) can be
transformed into

Xo + Xyt
=202 4)

Yo+ Yt
where X, = 13 — D*, X, = 2(DV,, — t), Yo = 2(ty — DV>)
and Y; = 2(V,V, — 1). Once parameter ¢ or u has been
decided, the two new arcs can then be obtained. Let

Oa_Ob

Vzi
"0, - 0y

>

then the point jointing arc O, and Oy, is P, = O, + r,V,,.
Since we construct arc O, by expanding arc O, the
maximum deviation of arc O, from the triarc spiral is the
maximum distance between arc O, and arc Oy, i.e. d,, =
r, + /|0y — O,]| — r; (see Fig. 3). To make sure that arc O,
is within the permitted tolerance of the original curve, we
assume that d,, is no larger than the active tolerance ¢; at

Fig. 3. Tolerance constraint for arc expansion.

Fig. 4. Expand arc O, within circle O,.

point Py, and then we have
dmzra+||01—0a||—r156i (5)

By substituting the equations r, = ry + ¢t and O, = Oy +
1V, into Eq. (5), we have
(r, = 1o + &) = (0 = Op)’

=t = 6
* 20—+ € + (0, — Op)Vpl ©

To be sure that the joint point of the biarc curve lies in the
sector region of the triarc spiral, we expand arc O inside
circle O, (see Fig. 4), then we have

10, = 0| +1a =1, (7
From Eq. (7) we have

2 2
= 2 —D

=" 20— DVy) ®)

The maximum value for ¢ can now be chosen as t=
min(t, f.). It can be easily verified that both #, and ¢, are
larger than or equal to zero, then we conclude that ¢ is non-
negative. It is clear that r, = r,, based on Eq. (2), and r, =
r, since arc Oy, is inside circle O,. Then the new arc spline is
still an arc spiral when a triarc span of the original spiral has
been replaced by the corresponding biarc curve.

The distance from arc O, to the original curve is within
the permitted bound by the control of active tolerances, then
we should compute the distance from arc O,, to the original
curve to confirm whether the biarc curve can be accepted or
not. Because the fitting error is very small compared with
arc radii and the original high accuracy fitting arc spline is
dense with arc segments, we choose to compute the
distances from those joint points that lie in the sector region
of arc Oy to the new biarc curve for the estimation of the
distance between the original curve and arc Oy, If the maxi-
mum deviation d,, is less than 7, we will replace the triarc
spiral by the biarc curve; otherwise, set arc O as an inter-
polation segment and choose arcs O, O, and another new
arc segment for further approximation.

4.3. Computing the active tolerance

The tolerance along the original curve is the prescribed
constant 7, but tolerance will vary along the new arc spline
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Original
curve

Fig. 5. Compute the active tolerance.

when we replace some arc spans with interpolating biarc
curves. To control the deviation of first arc segment of
new interpolation biarc curve, we use the active tolerance
at the first joint point P, of the triarc span for this purpose.
When we compute arc O, by expanding the radius of arc Oy,
a conservative estimation is that the maximum deviation
between arc O, and the triarc span is no more than the active
tolerance at P;. When the arc interpolation procedure starts,
the first arc can be expanded or shrunk with maximum
deviation 7, and we set the active tolerance €, = T; other-
wise, the active tolerances should be recomputed according
to the geometry of the fitting biarc curve.

If we enlarge the radius of arc O, with magnitude 7 along
Vo with point P, fixed so that point P; has been moved ¢;
away from its current position, then the radius and center for
this expanded arc are 7, =ry+7 and O, = O, + iV,
respectively. Let

Py — 0y

V= L0
* P =0l

then the point on arc O, that is ¢; distant away from point
Py can be represented as P = Oy + (ry + €,)V,, (see Fig. 5).
Thus the vector from O, to point P can be represented as
P—0,=—1Vy+ (ry + €)V,. Since the length of vector
P — 0, is ry + T, then we have

(ro + D> =[~1Vo + (rp + &)V I’ )
From Eq. (9), we have

_ 2r0€ + €
P= TS T & (10)
2[ry + (ro + €)Vo Vil

If ry has been enlarged by the magnitude 7, then arc O,
will be expanded to its maximum permitted extent at the
position of point P;. Accordingly, the expansion magnitude
of arc O, at point P, should be no more than t, = rq + 7 —
IP, — (O + #V,)|| during successive approximation steps.

On the other hand, the expansion of arc O, should satisfy
the condition that the distance from new position of point P,

arc segment O,

------- original curve

--------- the offset of original curve

Fig. 6. Active tolerance for arc Oy,

to the original curve should be less than or equal to 7. For an
arc span without inflection, an outer offset of the curve is
another arc spline of which the radius of each arc segment
has been increased by a constant value. If a point lies on one
outer offset curve we mean that the point lies at the convex
side of the original curve; similarly, we can define inner
offset curve and concave side for an arc span if the curve
or the point lies on another side of the original curve. We
denote the signed distance from point P, to the original
curve as f,, t, is positive when the point P, lies at the
convex side of the curve and t#, is negative otherwise.
Then the distance from point P, to the outer offset of
original curve is #; = 7 — t,,, (see Fig. 5). To be sure that
arc O, can be further expanded within the permitted toler-
ance of original curve, we choose t; = 7 when P, lies at the
concave side of the original curve. We will explain this
assertion in next paragraph. Then the permitted tolerance
at point P, is €., = min(t,,t, 7). If some €;,; becomes
negative, we set €,; =0 to keep the first arc from
expanding any more, and construct the fitting biarc curve
by shrinking the radius of last arc only.

The active tolerance €;1; at point P, satisfies the
inequality 0 = €;4; = 7. If point P, lies at the convex side
of arc Oy, then we have €,,; < 7. Any point that lies at the
convex side of arc Oy, and is within €, distance to the arc is
also within the permitted tolerance to the original curve (see
Fig. 6). If point P, lies at the concave side of original curve,
then the whole segment of arc O, lies at the concave side of
original curve. At this time, we have €., = 7, an outer
offset arc segment which is 7 distance away to arc Oy is
also within the permitted tolerance region of original curve.
For these reasons the expansion magnitude can be well
controlled by the active tolerances during the successive
approximation steps.

For a curve with monotone increasing curvature radius,
we construct interpolating biarc curves for selected triarc
spirals recursively. The radius of an original arc O, will
be expanded until the active tolerance vanishes, and the
procedure continues until the maximum deviation of arc
O, from the original curve has reached its maximum
value within tolerance 7. Then we obtain an optimal fitting
biarc curve. When we set arc O, as an interpolation circular
arc to the original curve, we approximate arc Oy, associated
with successive arcs by expanding the radius of arc O.
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Because arc Oy, is first obtained by shrinking the radius of an
original arc segment with final end fixed, then, if we expand
this shrunk arc with another end unchanged, the permitted
expansion tolerance at the movable end point is 7 (such as
point P53 in Fig. 6). If that is the case, we set the new active
tolerance as 7. If an interpolation circular arc is obtained by
shrinking the radius with one end fixed and expanding the
radius with another end fixed, it deviates the original curve
at both sides. Though the former maximum deviation on one
side may decrease a little when the arc is expanded toward
the maximum deviation on the other side, the interpolation
circular arc is still minimax-like approximation to the
original curve and it is a sub-optimal approximation to the
curve.

If the radius of an arc segment is local minimal in a spline,
the arc segment will first be expanded with final end fixed in
a triarc spiral with increasing curvature and then will be
expanded further with another end fixed in a triarc spiral
with decreasing curvature. Since the second expansion may
increase the initial deviation, in a similar way as Eq. (10),
we compute the maximum bound that can keep the
increased deviation within permitted tolerance. Then we
set the initial active tolerance for second expansion as the
minor one between the obtained bound and 7. Similar result
holds for arcs with local maximum curvature radius. If there
exist inflection points on a triarc span, the first segment will
be used as the interpolation circular arc, and we set 7 as the
active tolerance for next triarc span. This algorithm will
make the circular arc interpolation procedure more natural
without the need to divide the parametric curve into spirals
and lower the number of final fitting arcs much more than
approximating each spiral separately.

4.4. The algorithm

Given a smooth parametric curve, we construct high
accuracy interpolation biarc curves by sampling points
and tangents on the curve adaptively. Along with this
process we lower the number of arcs by checking every
three consecutive arc segments on the spline orderly within
active tolerances.

If some triarc span forms a spiral with increasing or
decreasing curvature, we will construct an interpolation
biarc curve. We delete one segment and replace the other
two segments of the span by the biarc curve when the biarc
curve is within the permitted tolerance, and then we
continue the procedure with next approximation step by
adding a consecutive arc segment. If there is no biarc
curve that can replace the current triarc span or the span is
not a spiral, the first segment of the span will be kept as an
interpolation arc segment and we continue the procedure by
checking a new triarc span with a new arc segment added.

We stop the procedure until there is no sampled point on
the parametric curve and the last segment of fitting arcs
becomes the interpolation arc. Then, the final arc spline is
the fitting arc spline to the original parametric curve. The

sketch of the algorithm for smooth circular arc interpolation
is given as follows:

Algorithm: Smooth Circular Arc Interpolation
input: a smooth parametric curve P(¢) and tolerance 7
output: a smooth circular arc spline within 7
construct a biarc curve interpolating sampled points P(),
P(#;) and tangents T'(ty), T(t));
choose first two arcs from the spline as arcl and arc2;
set active tolerance €y = T;
while ((r < 1) or (next arc! = NULL))
{
if (next arc == NULL)
{select t = #;;; and construct biarc interpolating
P(#;) and P(f;+) }
arcQ = arcl;
arcl = arc2;
arc2 = next arc;
if (the three arcs form a triarc spiral)
{
Compute arcs arc_a and arc_b based on €;;
Compute the deviation dj, of arc_b to the original
curve;
if (dy < 17)
{ delete arcO;
arcl = arc_a;
arc2 = arc_b;
compute the active tolerance €;, ;
} else €4 =
} else compute and reset €, ;

}

output the final arc spline.

5. Examples

The algorithm is implemented on a SGI octane
workstation with MIPS R10000 and 128 MB memory. We
have applied our algorithm on a number of parametric
curves and obtain satisfying approximating results. For all
the examples we have experimented, we obtain interpola-
tion arc splines in real time. We present a few examples here
to show the efficiency of the new method.

The parametric curve in example 1 is a quadratic Bézier
curve with control points (1.0, 1.0), (2.0, 1.0), (4.5, 2.75).
This is a segment of spiral and we obtain an interpolating arc
spline with 19 circular arcs within tolerance 10> by
sub-optimal interpolation algorithm (see Fig. 7(a)). We
have also obtained an arc spline with 26 arcs within the
same tolerance by interpolating the curve with a set of
smooth connected optimal biarc curves (see Fig. 7(b)). For
this and the following examples, the thick curves indicate
the fitting arc splines while the thin curves stand for the error
plots which have been enlarged along the normal of the
parametric curve. In the second example, we approximate
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(b)

Fig. 7. Approximating a quadratic Bézier curve by arc splines 7= 1073
(a) Sub-optimal circular arc interpolation; (b) Optimal biarc curve
interpolation.

a segment of sine curve defined on interval [0, 277] by arc
splines within different tolerances (see Fig. 8). Notice that
there exist inflection point and curvature extremes on the
curve. However, we have computed the interpolation circu-
lar arcs without dividing the curve into spirals. We have
designed a cam profile by a rational Bézier curve of degree
six (see Fig. 9). The control points and the weights for this
Bézier curve are (1, 1), (1, 2.3), (3.4, 1.9), (4, 1), (3.4, 0.1),

Fig. 8. Approximating sine curve segment by arc splines. (a) 7= 10">; (b)
T=10""

1.8

1.6

1.4

1.2

0.8

0.6

0.4

Fig. 9. Smooth circular arc interpolation for a cam profile. 7= 0.5 X 1074,

(1, =0.3), (1, 1) and 1, 1.2, 0.8, 1, 0.8, 1.2, 1 respectively.
Based on the control of active tolerances, the deviation of
the interpolation arcs is well distributed.

In the last two examples, we have approximated two
cubic B-spline curves by arc splines. The points in Tables
1 and 2 are the control points for these two B-spline curves.
The knots for each curve are uniform except that the end
knots are with multiple 4 so that the B-spline curve can
interpolate the ends of the control polygon. In Fig. 10, we
have designed the B-spline curve as a face profile. Though
the curve is with many inflections and curvature extremes,
we obtain the fitting circular arcs in real time. In the last
example, we try to approximate the knot shape symbol for
Olympic game 2008 by a cubic B-spline curve (see Fig. 11).
When we interpolate the curve by circular arcs, we compute
two offsets of the arc spline with distance as the magnified
tolerance. This example also shows that the deviation of
final fitting arcs can be well controlled. The tolerances,
the error magnification factors, the segments numbers and
the computation time for every example are illustrated in
Table 3.

6. Conclusions

In this paper we have presented a simple general
algorithm for approximating smooth parametric curves by
G' arc splines. While most traditional methods have
formulated the problem as solving nonlinear optimization

Table 1
Control points of the uniform cubic B-spline curve for face profile

No.  Control points No.  Control points No.  Control points

0 1.10, 5.42 4 2.53,2.30 8 3.42,0.92
1 2.86, 4.98 5 3.37,1.20 9 2.77,0.34
2 1.34, 3.85 6 2.88,1.33 10 1.23, 1.05
3 5.30, 2.00 7 2.56, 1.20
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05 . , Tt . ,
1 1.5 2 25 3 3.5 4 45

Fig. 10. Approximating a B-spline curve by arc spline. 7= 0.5 X 1073

45

3.5

0 0.5 1 15 2 25 3 3.5

Fig. 11. Approximating a B-spline curve by arc spline and computing two
offsets of the arc spline with the magnified tolerance. 7= 0.3 X 10>,

Table 3
The tolerance and the arc numbers for all the examples

Table 2
Control points of the uniform cubic B-spline curve for the knot shape

No.  Control points No.  Control points No.  Control points

0 3.48,4.41 7 0.59, 3.60 14 2.73,3.75
1 3.07, 4.00 8 1.34,4.52 15 242,299
2 2.55,4.15 9 2.17,4.43 16 1.64,2.93
3 1.91, 4.88 10 0.97, 2.68 17 2.17,3.90
4 245,542 11 —0.20, 2.42 18 2.78, 4.31
5 2.717,5.01 12 043, 3.31 19 3.35,4.35
6 2.08, 4.08 13 1.69, 3.61

equations, in this paper we have computed the fitting
circular arcs explicitly and efficiently. Based on the control
of active tolerances, we obtain sub-optimal fitting circular
arcs by expanding or shrinking some former interpolation
arcs. Not only can we compute circular arcs interpolating
spirals in the form of minimax-like approximation, but also
we can fit arcs to curves with curvature extremes in a natural
and efficient way. Then, the method is practical and useful
for many applications such as geometric modeling, CNC
machining, etc.

Besides the approximation of a smooth parametric curve
by arc spline, the method presented in this paper can also be
used to lower the segment number of arc splines obtained by
some other methods [16,17]. The algorithm in this paper has
only been designed for the problem of planar circular arc
interpolation now, it will be a meaningful thing to extend the
active tolerance method for spatial circular arc interpolation
and some other piecewise linear or circular approximation
problems which are traditionally solved by optimization
method in the future.
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Curves Tolerances (1) Magnification factors Arc number Time (s)
quadratic Bézier curve 0.1x107* 5000 19 0.066
0.1x107* 5000 26 0.065
Sine curve 0.1x107? 200 14 0.029
0.1x1073 1000 30 0.068
Cam profile 05%x107* 1000 35 0.24
Face profile 05x1073 100 50 0.19
Knot shape 03x107° 200 72 0.36
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