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Abstract

This paper proposes a novel method for shape design of a Bézier surface with given boundary curves. The surface is defined as the minimizer
of an extended membrane functional or an extended thin plate functional under the guidance of a specified normal field together with an initial
prescribed surface. For given boundary curves and the guiding normal field, the free coefficients of a Bézier surface are obtained by solving a
linear system. Unlike previous PDE based surface modeling techniques which construct surfaces just from boundaries, our proposed method can
be used to generate smooth and fair surfaces that even follow a specified normal field. Several interesting examples are given to demonstrate the
applications of the proposed method in geometric modeling.
& 2015 Society of CAD/CAM Engineers. Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Functional optimization technique is a general approach to
fair surface design [1–4]. Moreton and Séquin [1] proposed a
method for the creation of smoothly connected surfaces of any
genus or topological type. Welch and Witkin [2] achieved fair
surfaces by functional optimization of the surface shape. The
users were able to control the surface shape by attaching points
and curves to the surface. Fair surface design can also be
formulated as solving partial differential equations (PDEs)
subject to geometric or physical constraints [5–12]. In litera-
ture [6], a system was proposed for global and local deforma-
tions of PDE-based surface models subject to physical
constraints. At the same time, the system also computed the
B-spline finite element approximation of the PDE surface and
allowed users to interactively manipulate the surface.

The tensor product Bézier surfaces, B-spline surfaces and
NURBS surfaces are widely used in surface shape design. By
employing the technique of control points, these surfaces can
be designed interactively. Generally, the parametric surfaces
10.1016/j.jcde.2015.03.001
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can be deformed by searching the control points and weights
subject to the geometric constraints [13–19]. Hu et al. [20]
proposed two methods for modifying the shape of NURBS
surfaces with geometric constraints, such as points, normal
vectors at selected points, and pre-constructed curves. Both
methods are dedicated to changing the control points and
weights of an initial surface. Sauvage et al. [21] addressed the
deformation of B-spline surfaces while constraining the
volume enclosed by the surface. Pusch et al. [22] proposed
an algorithm for locally deforming either a parametric surface
or a hierarchical subdivision surface to match a set of posi-
tional and energy minimizing constraints.
Among all functionals for fair surface design, Dirichlet

functional [23] and bi-harmonic functional [24] are popular for
generating smooth and fair surfaces that interpolate given
boundary curves. However, surfaces generated by these
two functionals have few degrees of freedoms for shape
adjustment, and they cannot represent even cylinder or cone
like surfaces which are widely used in CAD. The geometric
PDE method can generate typical surfaces for shape modeling
[25] and surface restoration [26]. But, these equations are hard
to have analytic solutions due to high nonlinearity. For
applications like transition surface design or hole filling, the
interpolating surfaces may have salient features which should
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be controlled by additional parameters. This motivates us
developing new functionals for fair surface design that have
enough degrees of freedoms for shape adjustment as well as
explicit solutions.

We propose to design Bézier surfaces with given borders by
minimizing an extended membrane energy or an extended thin
plate energy. Besides being as fair as possible, the resulting
surface also fits to a prescribed normal vector field and an
initial prescribed surface. Two shape parameters λ and γ are
introduced to balance the effects of normal field and the initial
surface. If λ and γ are chosen zero, the energy functional will
degenerate to the Dirichlet functional or the bi-harmonic
functional. The algorithm is easy to implement and the free
control points of the surface are obtained by solving a linear
system. For the convenience of adjusting the specified normal
vector field, we can discretize the functional on a grid of
parametric points and specify a discrete normal vector field.
We have applied the proposed method for surface editing, hole
filling and transition surface modeling.

The paper is organized as follows. In Section 2, an extended
membrane energy functional and an extended thin plate energy
functional are introduced. In Section 3, we propose explicit
formulae for variational surface design under the guidance of
normal vector field with given borders. Variational surface
design under the guidance of discrete normal field is given in
Section 4. In Section 5 we present several interesting exam-
ples. Section 6 concludes the paper.

2. Extended energy functionals for shape optimization

In this section, we propose two new energy functionals for
Bézier surface shape design. These functionals are defined on
the space of Bézier patches R : Ω-R3. Assuming Rðu; vÞ ¼Pn

i ¼ 0

Pm
j ¼ 0 B

n
i ðuÞBm

j ðvÞPij is the Bézier surface to be
designed, Nðu; vÞ ¼ Pn1

i ¼ 0

Pm1
j ¼ 0 B

n1
i ðuÞBm1

j ðvÞNij is the pre-
scribed normal function and Sðu; vÞ ¼ Pn

i ¼ 0

Pm
j ¼ 0 B

n
i ðuÞ

Bm
j ðvÞP̂ij is the given Bézier surface. We would like to find a

fair surface Rðu; vÞ that lies close to the given surface Sðu; vÞ
and fits well to the known normal field Nðu; vÞ.

First, we extend the membrane energy functional by allow-
ing the surface to follow the shape of a given normal field and
an initial surface. The extended membrane energy functional is
given by

E1 Rð Þ ¼ 1
2

Z
Ω

R2
uþR2

vþλ ðRu � NÞ2þðRv � NÞ2
� ��

þγðR�SÞ2� du dv; ð1Þ
where Ru;Rv are the partial derivatives of R, and λðZ0Þ,
γðZ0Þ are the coefficients chosen by users. If λ40, the
resulting surface fits to the prescribed normals. If γ40,
the resulting surface follows the shape of the initial given
surface also. The corresponding Euler–Lagrange equation of
the functional is

0¼ ðIþλNNtÞðRuuþRvvÞ
þλ½ðNNt

uþNuNtÞRuþðNNt
vþNvNtÞRv�

�γðR�SÞ;
where I is the identity matrix and t represents the transpose of
a column vector. If both the coefficients λ and γ vanish, the
functional reduces to the classical Dirichlet functional, and the
corresponding Euler–Lagrange equation becomes the classical
Laplacian equation.
Second, we extend the thin plate functional by using the

prescribed normal field. In addition to interpolating the given
boundary curves, the thin plate energy can be used to optimize
surfaces that interpolate given tangent planes at the boundaries.
In a similar fashion to the functional (1), the extended thin
plate functional is defined as

E2 Rð Þ ¼ 1
2

Z
Ω

R2
uuþ2R2

uvþR2
vv

�

þλ½ðRu � NÞ2þðRv � NÞ2�
þγðR�SÞ2� du dv; ð2Þ

where Ruu;Ruv;Rvv are the second derivatives of R. The
corresponding Euler–Lagrange equation for this functional is

0¼Ruuuuþ2RuuvvþRvvvv�λNNtRuu�λNNtRvv

�λ½ðNNt
uþNuNtÞRuþðNNt

vþNvNtÞRv�þγðR�SÞ:
When the coefficients λ, γ vanish, the functional degenerates to
the thin plate functional. The corresponding Euler–Lagrange
equation becomes the biharmonic equation.

3. Variational surface design with given borders

Though the minimizer of functional in Eq. (1) or in Eq. (2)
can be characterized by the Euler–Lagrange equation, practical
applications such as filling holes or designing transition sur-
faces usually need to solve fair surfaces with known bound-
aries. In the following we minimize the functional (1) or (2) by
assuming the boundary curves or the boundary control points
of a Bézier surface are already given. As the integrals in
Eq. (1) or (2) can be computed explicitly, the free control
points of the Bézier surface will be finally obtained by solving
a linear system.

3.1. Surface modeling by minimizing the extended membrane
energy

When we model a surface by minimizing the extended
membrane energy functional with the given boundary curves,
the minimization problem can be converted to solving the
following system of equations.

∂E1

∂Pij
¼ 0 i¼ 1;…; n�1; j¼ 1;…;m�1ð Þ:

Since the energy functional E1ðRÞ is a quadratic functional in
terms of the unknown control points, the mentioned equations
form a linear system.
Let

Cij
kl ¼ n2

Z
Ω
f½Bn�1

i�1 ðuÞ�Bn�1
i ðuÞ�Bm

j ðvÞBn�1
k ðuÞBm

l ðvÞ
ðIþλNNtÞg du dv; k¼ 0; 1;…; n�1; l¼ 0; 1;…;m
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and

Dij
kl ¼m2

Z
Ω
fBn

i ðuÞ½Bm�1
j�1 ðvÞ�Bm�1

j ðvÞ�Bn
kðuÞBm�1

l ðvÞ

ðIþλNNtÞg du dv; k ¼ 0; 1;…; n; l¼ 0; 1;…;m�1

for iAf1;…; n�1g and jAf1;…;m�1g, we have the follow-
ing proposition.

Proposition 1. A Bézier surface Rðu; vÞ ¼ Pn
i ¼ 0

Pm
j ¼ 0 B

n
i ðuÞ

Bm
j ðvÞPij is the extremal of the functional (1) with prescribed

border if and only if the control points of the surface satisfy the
following linear system:

0¼
Xn;m
k;l ¼ 0

ðFij
klþGij

klþWij
klÞPkl�

Xn;m
k;l ¼ 0

Wij
klP̂kl ð3Þ

for any iAf1;…; n�1g; jAf1;…;m�1g, where

Fij
kl ¼

�Cij
0l; k¼ 0;

Cij
k�1;l�Cij

kl; k¼ 1;…; n�1;

Cij
n�1;l; k¼ n;

8>><
>>:

Gij
kl ¼

�Dij
k0; l¼ 0;

Dij
k;l�1�Dij

kl; l¼ 1;…;m�1;

Dij
k;m�1; l¼m;

8>><
>>:

Wij
kl ¼

Z
Ω
γBn

i ðuÞBm
j ðvÞBn

kðuÞBm
l ðvÞ du dvI;

Proof. We compute the gradient of the functional with respect
to each control point Pij. Denote Δ10Pkl ¼ Pkþ1;l�Pkl and
Δ01Pkl ¼ Pk;lþ1�Pkl. For any iAf1;…; n�1g, and any
jAf1;…;m�1g, the gradient of functional E1 is obtained as
follows:

∂E1

∂Pij
¼
Z
Ω
fn Bn�1

i�1 uð Þ�Bn�1
i uð Þ� �

Bm
j vð ÞRu

þmBn
i ðuÞ½Bm�1

j�1 ðvÞ�Bm�1
j ðvÞ�Rv

þλn½Bn�1
i�1 ðuÞ�Bn�1

i ðuÞ�Bm
j ðvÞNðRu � NÞ

þλmBn
i ðuÞ½Bm�1

j�1 ðvÞ�Bm�1
j ðvÞ�NðRv � NÞ

þγBn
i ðuÞBm

j ðvÞðR�SÞg du dv
¼
Z
Ω
fn½Bn�1

i�1 ðuÞ�Bn�1
i ðuÞ�Bm

j ðvÞðIþλNNtÞRu

þmBn
i ðuÞ½Bm�1

j�1 ðvÞ�Bm�1
j ðvÞ�ðIþλNNtÞRv

þγBn
i ðuÞBm

j ðvÞðR�SÞg du dv

¼ n2
Xn�1;m

k;l ¼ 0

Z
Ω
f½Bn�1

i�1 ðuÞ�Bn�1
i ðuÞ�Bm

j ðvÞ

Bn�1
k ðuÞBm

l ðvÞðIþλNNtÞg du dvΔ10Pkl

þm2
Xn;m�1

k;l ¼ 0

Z
Ω
fBn

i ðuÞ½Bm�1
j�1 ðvÞ�Bm�1

j ðvÞ�

Bn
kðuÞBm�1

l ðvÞðIþλNNtÞg du dvΔ01Pkl
þ
Xn;m
k;l ¼ 0

Z
Ω
γBn

i ðuÞBm
j ðvÞBn

kðuÞBm
l ðvÞ du dvðPkl� P̂klÞ:

By denoting the coefficient matrices in above equation as
Cij

kl, D
ij
kl and Wij

kl, respectively, and further reformulating the
differences Δ10Pkl and Δ10Pkl, we obtain

∂E1

∂Pij
¼

Xn�1;m

k;l ¼ 0

Cij
klΔ

10Pklþ
Xn;m�1

k;l ¼ 0

Dij
klΔ

10Pklþ
Xn;m
k;l ¼ 0

Wij
klðPkl� P̂klÞ

¼
Xn;m
k;l ¼ 0

Fij
klPklþ

Xn;m
k;l ¼ 0

Gij
klPklþ

Xn;m
k;l ¼ 0

Wij
klðPkl� P̂klÞ

¼
Xn;m
k;l ¼ 0

ðFij
klþGij

klþWij
klÞPkl�

Xn;m
k;l ¼ 0

Wij
klP̂kl:

This leads the expression in Eq. (3). □

The linear system (3) can be written in the form of matrix
equation, which takes the X;Y ;Z coordinates of the control points
as the unknowns. When the coordinates of all unknown control
points are obtained, a fair surface that interpolates given boundary
curves and fits the guiding normal field will be generated.

3.2. Surface modeling by minimizing the extended thin plate
energy

Just like the thin plate energy functional, the extended thin
plate energy functional permits the construction of surfaces
with G1 continuity with the surrounding surfaces. To achieve
such a goal the outer two arrays of control points of a Bézier
surface can be given in advance based on the continuity
conditions while the remaining control points will be obtained
by minimizing the functional (2) under the guidance of a given
normal field. In a similar way to Section 3.1, we compute the
control points where the gradient of the functional vanishes.
From Eq. (2) we have

∂E2

∂Pij
¼
Z
Ω
fnðn�1Þ½Bn�2

i�2 ðuÞ�2Bn�2
i�1 ðuÞþBn�2

i ðuÞ�Bm
j ðvÞRuu

þ2nm½Bn�1
i�1 ðuÞ�Bn�1

i ðuÞ�½Bm�1
j�1 ðvÞ�Bm�1

j ðvÞ�Ruv

þmðm�1ÞBn
i ðuÞ½Bm�2

j�2 ðvÞ�2Bm�2
j�1 ðvÞþBm�2

j ðvÞ�Rvv

þλn½Bn�1
i�1 ðuÞ�Bn�1

i ðuÞ�Bm
j ðvÞNðRu � NÞ

þλmBn
i ðuÞ½Bm�1

j�1 ðvÞ�Bm�1
j ðvÞ�NðRv � NÞ

þγBn
i ðuÞBm

j ðvÞðR�SÞg du dv

¼ 0

for iAf2;…; n�2g and jAf2;…;m�2g.
Particularly, we let

Hij
kl ¼

Z
Ω
fn2ðn�1Þ2½Bn�2

i�2 ðuÞ�2Bn�2
i�1 ðuÞþBn�2

i ðuÞ�Bm
j ðvÞ

Bn�2
k ðuÞBm

l ðvÞg du dv;

Iijkl ¼
Z
Ω
f2n2m2½Bn�1

i�1 ðuÞ�Bn�1
i ðuÞ�½Bm�1

j�1 ðvÞ�Bm�1
j ðvÞ�

Bn�1
k ðuÞBm�1

l ðvÞg du dv;
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Jijkl ¼
Z
Ω
fm2ðm�1Þ2Bn

i ðuÞ½Bm�2
j�2 ðvÞ�2Bm�2

j�1 ðvÞþBm�2
j ðvÞ�

Bn
kðuÞBm�2

l ðvÞg du dv;

Lij
kl ¼

Z
Ω
λn2½Bn�1

i�1 ðuÞ�Bn�1
i ðuÞ�Bm

j ðvÞBn�1
k ðuÞBm

l ðvÞNNt du dv;

Mij
kl ¼

Z
Ω
λm2Bn

i ðuÞ½Bm�1
j�1 ðvÞ�Bm�1

j ðvÞ�Bn
kðuÞBm�1

l ðvÞNNt du dv;

Wij
kl ¼

Z
Ω
γBn

i ðuÞBm
j ðvÞBn

kðuÞBm
l ðvÞ du dvI:

The equation ∂E2=∂Pij ¼ 0 becomes

∂E2

∂Pij
¼

Xn�2;m

k;l ¼ 0

Hij
klΔ

20Pklþ
Xn�1;m�1

k;l ¼ 0

IijklΔ
11Pkl

þ
Xn;m�2

k;l ¼ 0

JijklΔ
02Pklþ

Xn�1;m

k;l ¼ 0

Lij
klΔ

10Pkl

þ
Xn;m�1

k;l ¼ 0

Mij
klΔ

01Pklþ
Xn;m
k;l ¼ 0

Wij
klðPkl� P̂klÞ

¼
Xn;m
k;l ¼ 0

H
ij
klPklþ

Xn;m
k;l ¼ 0

I
ij
klPklþ

Xn;m
k;l ¼ 0

J
ij
klPkl

þ
Xn;m
k;l ¼ 0

L
ij
klPklþ

Xn;m
k;l ¼ 0

M
ij
klPklþ

Xn;m
k;l ¼ 0

Wij
klðPkl� P̂klÞ

¼
Xn;m
k;l ¼ 0

ðHij
klIþ I

ij
klIþJ

ij
klIþL

ij
klþM

ij
klþWij

klÞPkl

�
Xn;m
k;l ¼ 0

Wij
klP̂kl ¼ 0; ð4Þ

where

H
ij
kl ¼

Hij
0l; k ¼ 0;

Hij
1l�2Hij

0l; k ¼ 1;

Hij
kl�2Hij

k�1;lþHij
k�2;l; k ¼ 2;…; n�2;

�2Hij
n�2;lþHij

n�3;l; k ¼ n�1;

Hij
n�2;l; k ¼ n;

8>>>>>>>><
>>>>>>>>:

I
ij
kl ¼

Iijk0� Iijk�1;0; k ¼ 1;…; n�1; l¼ 0;

Iijk�1;m�1� Iijk;m�1; k ¼ 1;…; n�1; l¼m;

Iij0l� Iij0;l�1; k ¼ 0; l¼ 1;…;m�1;

Iijn�1;l�1� Iijn�1;l; k ¼ n; l¼ 1;…;m�1;

Iijkl� Iijk�1;l� Iijk;l�1þ Iijk�1;l�1; k ¼ 1;…; n�1;

l¼ 1;…;m�1;

Iij00; k ¼ 0; l¼ 0;

� Iij0;m�1; k ¼ 0; l¼m;

� Iijn�1;0; k ¼ n; l¼ 0;

Iijn�1;m�1; k ¼ n; l¼m;

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:
J
ij
kl ¼

Jijk0; l¼ 0;

Jijk1�2Jijk0; l¼ 1;

Jijkl�2Jijk;l�1þJijk;l�2; l¼ 2;…;m�2;

�2Jijk;m�2þJijk;m�3; l¼m�1;

Jijk;m�2; l¼m;

8>>>>>>>><
>>>>>>>>:

L
ij
kl ¼

�Lij
0l; k¼ 0;

Lij
k�1;l�Lij

kl; k¼ 1;…; n�1;

Lij
n�1;l; k¼ n;

8>><
>>:

M
ij
kl ¼

�Mij
k0; l¼ 0;

Mij
k;l�1�Mij

kl; l¼ 1;…;m�1;

Mij
k;m�1; l¼m:

8>><
>>:

From Eq. (4) we know that the X; Y ; Z coordinates of the
unknown control points Pij ði¼ 2; 3;…; n�2; j¼ 2; 3;…;m�2)
satisfy a system of linear equations. From the definition of the
extended thin plate functional we know that the generated surface
can interpolate the given boundary curves and the given tangent
planes at the boundaries.

4. Variational surface design under discrete normal field
guidance

An expected way to define the guiding normal field for the
extended membrane energy functional or the extended thin plate
energy functional is by using unit normals. However, the
continuous unit normal field is generally represented by irrational
functions which makes the integrals hard to compute. To balance
the computational efficiency and unit normal requirement the
functional (1) or (2) can be defined discretely. Instead of defining
a continuous normal field we assume that unit normal vectors are
given at a dense set of sampled grid points.
We now explain the main idea by computing the discrete

integral for the extended membrane energy functional, the
discrete integral for the extended thin plate functional can be
computed in the same way. Assuming fNðuip ; vjp Þgnp;mp

ip;jp¼0
are a

set of unit normals corresponding to a set of points Sðuip ; vjpÞ,
uip Af0; 1=np; 2=np;…; 1g, vjp Af0; 1=mp; 2=mp;…; 1g on the
Bézier surface Sðu; vÞ. The functional (1) can be computed
discretely as follows:

Ê1 Rð Þ ¼ 1
2

Xnp;mp

ip;jp ¼ 0

R2
u uip ; vjp

� �
þR2

v uip ; vjp

� �n

þλip;jpððRuðuip ; vjp Þ � Nðuip ; vjpÞÞ2
þλip;jpððRvðuip ; vjp Þ � Nðuip ; vjp ÞÞ2

þγip;jpðRðuip ; vjpÞ�Sðuip ; vjp ÞÞ2
o
: ð5Þ

The weights λip;jp and γip;jp are non-negative numbers corre-

sponding to the sampled normals Nðuip ; vjp Þ or sampled points
Sðuip ; vjp Þ. These weights can be chosen as a same value or
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different values for different normals or different points
depending on various application purposes. Particularly, one
can highlight surface features in some region by defining
proper normal vectors Nðuip ; vjp Þ and choosing large values for
the weights λip;jp . An example of preserving surface features
based on normal constraint was given in [27].

With given boundary curves together with their control
points, the objective functional Ê1ðRÞ is just the function of the
inner control points of the Bézier surface. It follows that the
free control points can be obtained by solving the following
system:

∂Ê1

∂Pij
¼ 0 i¼ 1;…; n�1; j¼ 1;…;m�1ð Þ: ð6Þ

Let

Ĉ
ij

kl ¼ n2
Xnp;mp

ip;jp ¼ 0

½Bn�1
i�1 ðuip Þ�Bn�1

i ðuipÞ�Bm
j ðvjpÞBn�1

k ðuipÞBm
l ðvjp Þ

� ðIþλNðuip ; vjp ÞNtðuip ; vjp ÞÞ;

D̂
ij
kl ¼m2

Xnp;mp

ip;jp ¼ 0

Bn
i ðuip Þ½Bm�1

j�1 ðvjpÞ�Bm�1
j ðvjpÞ�Bn

kðuipÞBm�1
l ðvjpÞ

� ðIþλNðuip ; vjp ÞNtðuip ; vjp ÞÞ:
Based on Eq. (6), the coordinates of the unknown control

points Pij (i¼ 1;…; n�1; j¼ 1;…;m�1) satisfy the follow-
ing linear system:

Xn;m
k;l ¼ 0

ðF̂ij
klþĜ

ij

klþŴ
ij
klÞPkl�

Xn;m
k;l ¼ 0

Ŵ
ij
klP̂kl ¼ 0 ð7Þ

for any iAf1;…; n�1g; jAf1;…;m�1g, where

F̂
ij
kl ¼

�Ĉ
ij

0l; k ¼ 0;

Ĉ
ij

k�1;l�Ĉ
ij

kl; k ¼ 1;…; n�1;

Ĉ
ij

n�1;l; k ¼ n;

8>>><
>>>:

Ĝ
ij

kl ¼
�D̂

ij
k0; l¼ 0;

D̂
ij
k;l�1�D̂

ij
kl; l¼ 1;…;m�1;

D̂
ij
k;m�1; l¼m;

8>>><
>>>:
Fig. 1. Surface design by optimizing the extended membrane functional. Both to
normals. Top row (from left to right): initial Bézier surface and the prescribed norm
ðλ¼ 50; γ ¼ 0Þ, or ðλ¼ 10; γ ¼ 200Þ. Bottom row (from left to right): initial surfac
parameters ðλ¼ 10; γ ¼ 0Þ, ðλ¼ 50; γ ¼ 0Þ or ðλ¼ 10; γ ¼ 100Þ.
Ŵ
ij
kl ¼

Xnp;mp

ip;jp ¼ 0

γBn
i ðuip ÞBm

j ðvjp ÞBn
kðuip ÞBm

l ðvjp ÞI:

The system can be solved in the same way as in the previous
section and a final surface that interpolates the given boundary
curves will be generated.
5. Examples

In this section, we present a few examples to demonstrate the
effects of surface shape design under normal field guidance.
For each example we first construct an initial surface interpolating
the given boundary curves, and then we design a guiding normal
field for the surface. The final surface is obtained by solving
the optimization problem. Besides the guiding normal field, the
final surface can also be adjusted by changing the parameters
λ and γ.
Fig. 1 illustrates an example of surface modeling by

optimizing the extended membrane functional (1). An initial
Bézier surface of order 5� 5 is given with two different
guiding normal fields; see Fig. 1(a) and (e) for the initial
surface and the normal fields. By fixing the boundary curves
and minimizing the energy functional with various choices of
parameters λ and γ, we obtain several surface shapes shown as
the remaining sub-figures of Fig. 1. From the figure we can see
that the final surface follows the guiding normal field or the
initial surface well when the parameter λ or γ has been
increased, respectively.
In the following two figures we present examples of surface

modeling under the guidance of discrete normal fields. Particu-
larly, the parameter γ is chosen zero for these two figures.
Fig. 2(a) illustrates an initial Bézier surface of order 8� 8.

The prescribed normal field is drawn in red, as shown in
Fig. 2(b). This is a hat shape with wave edge. Based on the
initial Bézier surface and the prescribed normal field, we can
edit the surface shape by choosing different values for the
parameter λ when the extended membrane energy functional is
minimized. Fig. 2(d)–(f) illustrates the surfaces obtained by
choosing different values for the parameter λ but choosing zero
for the parameter γ. Obviously, the top of the new hat is flat.
As a comparison, the Bézier surface which minimizes the
Dirichlet functional is given in Fig. 2(c).
p and bottom examples have the same initial surface but different prescribed
al function of order 8� 8, optimized surfaces with parameters ðλ¼ 10; γ ¼ 0Þ,
e and the prescribed normal function of order 5� 5, optimized surfaces with



Fig. 2. Surface design by optimizing the discrete extended membrane energy functional. (a) The initial Bézier surface. (b) The initial surface with prescribed
normals. (c) The extremal surface of the Dirichlet functional. (d) The optimized surface with parameters λ¼ 1 and γ ¼ 0. (e) The optimized surface with parameters
λ¼ 10 and γ¼ 0. (f) The optimized surface with parameters λ¼ 50 and γ ¼ 0.

Fig. 3. Surface design by optimizing the discrete extended membrane energy functional. (a) The initial Bézier surface and the prescribed normal field. (b) The
optimized surface with parameters ðλ¼ 10; γ ¼ 0Þ. (c) The optimized surface with parameters ðλ¼ 10; γ ¼ 0Þ. (d) The optimized surface with parameters
ðλ¼ 50; γ ¼ 0Þ.
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The initial surface illustrated in Fig. 3(a) is the same as
the surface given in Fig. 2(a) but the prescribed normal field
has been changed. The surfaces shown in Fig. 3(b)–(d) are
generated by optimizing the discrete extended membrane
energy functional with different choices of values for the
parameter λ. For each figure the parameter λ is chosen the same
value for all the sampled points. Clearly, the greater the value
of λ is, the more obvious the feature of the resulting surface is.

Fig. 4 illustrates an example of hole filling by optimizing the
thin plate functional or the extended thin plate functional. A
hole with a set of surrounding patches is shown in Fig. 4(a)
and we will fill the hole by a Bézier patch of degrees 7� 7. To
guarantee the G1 continuity at the borders, the outer two arrays
of control points are given in advance based on the border
curves and the tangent planes at the borders. When we
compute the remaining control points for the Bézier surface
by minimizing the thin plate energy, a smooth interpolating
surface is obtained; see Fig. 4(b) for the filling surface and
Fig. 4(e) for the control mesh of the surface. If we set a guiding
normal field for filling the hole, a Bézier surface that
interpolates the given boundary data but minimizing the
extended thin plate energy is obtained. Fig. 4(c) and (f)
illustrates the filling surface and the control mesh of the
surface, respectively. Comparing with the ground truth surface
(Fig. 4(d)), the guiding normal field can help to restore salient
features well.
Finally, we present two examples of blending surface

modeling by optimizing the extended thin plate energy
functional (2). For each example a bi-quintic Bézier surface
is used as the transition surface between two given surfaces;
see Fig. 5(a) and d for the initial surfaces. To guarantee the G1

continuity between the transition surface and the surrounding
surfaces, two arrays of boundary control points of the Bézier
surface are given in advance. The surfaces generated by
minimizing the thin plate energy are given in Fig. 5(b) and
(e), respectively. From the figures we can see that the surfaces



Fig. 5. Transition surface design by optimizing the extended thin plate functional. (a) and (d) Initial transition surfaces (in magenta) satisfying the boundary
constraints. (b) and (e) The transition surfaces generated by optimizing the thin plate functional. The guiding normal vectors are also shown. (c) The transition
surface generated by optimizing the extended thin plate functional with parameters λ¼ 5 and γ ¼ 0. (f) The transition surface generated by optimizing the extended
thin plate functional with parameters λ¼ 500 and γ ¼ 0.

Fig. 4. Hole filling by optimizing the extended thin plate functional. (a) The hole with given boundary surfaces. (b) The filling surface (magenta) generated by
optimizing the thin plate functional. (c) The filling surface by optimizing the extended thin plate functional ðλ¼ 500; γ ¼ 0Þ. (d) The ground truth surface. (e) The
close-up view of the filling surface in (b) together with the control mesh. (f) The close-up view of the filling surface in (c) together with the control mesh.
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do not preserve the features well. When we add a guiding
normal field for each surface and refine the surface to a new
one by optimizing the extended thin plate energy, we obtain
two surfaces following the surface features very well; see
Fig. 5(c) and (f) for the obtained two transition surfaces.

6. Conclusion

In this paper, we have proposed two extended energy
optimization models for surface shape design. Particularly,
a surface can be designed or deformed by the extended
membrane energy functional or the extended thin plate
functional under the guidance of specified normal fields. The
proposed method allows us to adjust the surface shape, while
the discrete normal fields could be used for the local shape
control with the increment of corresponding weights. When the
surfaces and the guiding normal fields are represented by
Bézier patches, the free control points of the Bézier surface can
be obtained by solving a linear system. Besides the surface
modeling purpose, the proposed method can be used for
surface editing, hole filling and transition surface design, etc.
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