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refinement of unit control normals at the vertices. For each round of subdivision, new
control normals are obtained by projections of linearly subdivided normals onto unit
circle or sphere while new vertex positions are obtained by updating linearly subdivided
vertices along the directions of the newly subdivided normals. Particularly, the new

ﬁ?lrvn?,r:; subdivision position of each linearly subdivided vertex is computed by weighted average of end
PN subdivision schemes points of circular or helical arcs that interpolate the positions and normals at the old
Preserving of geometric primitives vertices at one ends and the newly subdivided normal at the other ends. The main
€2 subdivision surfaces features of the proposed subdivision schemes are three folds: (1) The point-normal (PN)

subdivision schemes can reproduce circles, circular cylinders and spheres using control
points and control normals; (2) PN subdivision schemes generalized from convergent linear
subdivision schemes converge and can have the same smoothness orders as the linear
schemes; (3) PN C? subdivision schemes generalizing linear subdivision schemes that
generate C2 subdivision surfaces with flat extraordinary points can generate visually C2
subdivision surfaces with non-flat extraordinary points. Experimental examples have been
given to show the effectiveness of the proposed techniques for curve and surface modeling.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Subdivision curves and surfaces are recursively generated free-form curves and surfaces from coarse polygons or rough
initial meshes with arbitrary topology. Due to their flexility for shape representation and easiness to implement, subdivision
curves and surfaces have become powerful tools for geometric modeling and computer graphics (DeRose et al.,, 1998; Dyn
and Levin, 2002). This paper proposes a class of nonlinear subdivision schemes that generalize linear subdivision schemes
for curve and surface modeling.

1.1. Related work

A large number of subdivision schemes used for geometric modeling are linear schemes. The subdivision algorithms
presented by Chaikin (1974), Catmull and Clark (1978), Doo and Sabin (1978), Loop (1987), or Lane and Riesenfeld (1980),
etc. are subdivision schemes generalizing uniform B-spline curves or surfaces. The schemes presented in (Sederberg et
al,, 1998; Cashman et al,, 2009) are the generalizations of non-uniform B-spline curves and surfaces. The interpolatory
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subdivision schemes such as the 4-point scheme (Dyn et al., 1987), the butterfly scheme (Dyn et al., 1990; Zorin et al., 1996)
and the Kobbelt scheme (Kobbelt, 1996), etc. can generate smooth curves and surfaces no longer consisting of piecewise
polynomials. The linear non-stationary subdivision schemes have level dependent masks and they can be used to generate
curves and surfaces defined in mixed spaces composed of polynomials and transcendental functions (Fang et al., 2014;
Conti and Dyn, 2021). Particularly, conics and rotational surfaces defined by trigonometric functions can be modeled by
non-stationary subdivision schemes from regular control polygons or control meshes (Morin et al., 2001).

Nonlinear subdivision schemes include manifold valued subdivision and geometric subdivision. Linear subdivision
schemes can be adapted to manifold valued subdivision by using geodesic averaging rules on manifolds, exponential map or
by projection of linearly subdivided points onto surfaces (Wallner and Dyn, 2005). If the input data are scalars, the original
data can be subdivided by nonlinear averaging (Schaefer et al., 2008). Newly subdivided vertices by geometric schemes for
curve or surface modeling are computed by estimation of local geometric quantities like turning angles (Dyn and Hormann,
2012), tangent lines or tangent planes (Yang, 2005, 2006), osculating circles (Sabin and Dodgson, 2005; Chalmoviansky and
Jiittler, 2007), or fitting Clothoids (Reif and Weinmann, 2021), etc. The geometric schemes for curve modeling can preserve
circles or Clothoids and can generate tangent continuous curves as well but the geometric subdivision schemes for surface
modeling have not been able to consistently outperform linear schemes (Cashman, 2012). By replacing the linear averaging
steps of recursive subdivision schemes with circle averaging, visually smooth subdivision curves and surfaces can be gener-
ated (Cashman et al.,, 2013; Lipovetsky and Dyn, 2016, 2020). Though the recursive circle averaging schemes are promising
for fair curve and surface modeling, the convergence and smoothness analysis of the schemes are not available.

Popular subdivision schemes such as Catmull-Clark subdivision and Loop subdivision have only C! continuity at the ex-
traordinary points. This is not enough for fair shape design. Prautzsch and Umlauf (1998) first proposed to improve the
smoothness orders of Catmull-Clark subdivision at extraordinary points by tuning the eigenvalues of subdivision matrices.
The modified Catmull-Clark subdivision scheme generates C2 subdivision surfaces with forced zero curvature at the extraor-
dinary points. Levin (2006) proposed to update Catmull-Clark subdivision surfaces by blending with lower order polynomial
patches near the extraordinary points. Similarly, Zorin (2006) proposed to blend Loop subdivision surfaces with parametric
patches to achieve C2 continuity at the extraordinary points. Using order 1 jet data, jet subdivision with the same subdivi-
sion stencils as the Loop scheme can achieve flexible C? continuity at extraordinary vertices of valence 3 (Xue et al., 2006).
When a control mesh owns polar configuration, polar subdivision can be employed to generate C2 subdivision surfaces
(Myles and Peters, 2009). Even though these pioneering algorithms work well under some situations, searching for a C2
surface subdivision algorithm that is easy to implement and capable of generating perfect shape is still the “holy grail” for
geometric modeling (Reif and Sabin, 2019).

1.2. Our approach

We propose point-normal (PN) subdivision schemes for curve and surface modeling by generalizing traditional linear
subdivision schemes. In addition to control points within initial control polygons or control meshes, we assume unit control
normals are also given at all or partial control points. Unlike previous approaches that use control normals to compute
initial matrix weights for matrix weighted rational subdivision (Yang, 2016) or compute refined points and normals from
circles each fits two old point-normal pairs (Lipovetsky and Dyn, 2020), we compute refined control normals by projecting
the linearly subdivided normals onto unit circle or sphere and update the linearly subdivided vertices along the newly
subdivided normals by weighted averages of end points of circular or helical arcs that interpolate the subdivided normals
at one ends as well as the old points and normals at the other ends.

The PN subdivision schemes can reproduce circles, circular cylinders or spheres when the initial control points and
control normals are sampled from those geometric primitives, even with uneven sampling. This type of nonlinear subdivision
can reduce to traditional linear subdivision when the control normals vanish or equal the same vector. We prove that the
convergence and smoothness orders of univariate PN subdivision schemes as well as the convergence and C' smoothness of
bivariate PN subdivision schemes at the extraordinary points are the same as the corresponding linear subdivision schemes.
Therefore, the proposed nonlinear subdivision can guarantee high orders of smoothness when the linear subdivision scheme
does. We have also generalized the modified Catmull-Clark subdivision scheme that generates C2 subdivision surfaces with
flat extraordinary points to PN modified Catmull-Clark subdivision scheme. It is observed that the PN C2 subdivision surfaces
are curvature continuous too, but the curvatures at the extraordinary points can be no longer vanishing.

Briefly, the main contributions of the paper are as follows:

e We propose a class of nonlinear subdivision schemes by generalizing linear subdivision schemes. The new subdivision
schemes permit shape control using control points and control normals and they can reproduce classical geometric
primitives like circles, circular cylinders and spheres.

e The proposed nonlinear subdivision schemes have solid theoretical foundations. It is proved that the convergence and
high orders of smoothness of univariate PN subdivision schemes as well as the C! smoothness of bivariate PN subdivi-
sion at the extraordinary points are the same as the linear schemes.

e PN subdivision schemes can be simple solutions to modeling fair C2 subdivision surfaces. Particularly, the PN subdivision
schemes generalizing linear schemes that generate C2 subdivision surfaces with flat extraordinary points can generate
visually C? subdivision surfaces with non-flat extraordinary points.
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1.3. Outline

The paper is organized as follows. In Section 2 we review some basic results of binary subdivision and we present new
subdivision schemes in Section 3. Section 4 is devoted to the theoretical analysis of convergence and smoothness of the
proposed subdivision schemes. We further construct PN C? subdivision surfaces in Section 5. We present several modeling
examples by the proposed schemes in Section 6 as well as some discussions in Section 7. Section 8 concludes the paper
with a brief summary.

2. Preliminaries and notations

This section review some basic results about binary linear or nonlinear subdivision which serve as preliminaries of our
proposed new subdivision schemes. Notations are introduced simultaneously.

2.1. Univariate binary subdivision

Assume {p? :i € Z} are a sequence of points in 2D or 3D space, the binary subdivision of the polygon defined by the
given points with mask a={a; : i € Z} is as follows

pi.‘Jrl:Zai,sz{;-, ieZ. (1)
JEZ
Assume
k N S S S
P‘Z(""pj—l’pj’pjﬂ"")

be a column of points p’j‘., j € Z. Note that the symbol (pq, pp, pc) represents a row of elements p,, pp and p.. We use

(Pa, Pb, Pc) T2 := (Ppa; Pp; Pc) to denote the transpose of a matrix in terms of block elements in the following text. The
conventional transpose of a vector or matrix V is represented by V.
Let

ai-1-2(j—-1) QAi—1-2j Ai—1-2(j+1)
Sa= |- Gi2g-1  Gi-2j  Gie2(j+1)
Ai+1-2(j—1) Qi+1-2j Ai41-2(j+1)

be a bi-infinite matrix. Then Equation (1) can be reformulated in matrix form as

Pk+l — SaPk. (2)

Particularly, p‘*’

= (Sa)iP¥, where (Sg); represents the ith row of the matrix Sg. It is always assumed that the mask a
has a limited support for subdivision curve or surface modeling. This just implies that each row of matrix S, has a limited
number of non-zero elements.

The symbol of subdivision scheme S, with mask a is given by a(z) =3 ;. a;Z'. A necessary condition for the conver-
gence of the subdivision scheme S, is that the mask should satisfy Zj azj = Zj azj+1 = 1. See Theorem 1 in (Dyn, 2002).

Since a(1) =2 and a(—1) =0, the symbol can be factorized into

a(z) =1+ 2)q(2).
Let AP¥ = {Ap} =p¥ —p! | :i e Z}. From Theorem 2 in (Dyn, 2002) we know that

1
AP = A(S,PY) = S,APK.
Let A(Sq)i = (Sa)i — (Sa)i—1. The elements within AP¥*! are computed by

AP = A(S0)iPK = (S)iAP¥, i€

1

Assume PX(t) be a piecewise linear curve that interpolates points pif at knots 27¥i for i € Z. If the sequence of curves
{P¥(t),k € Z} converge uniformly to a limit curve P(t) as k approaches infinity, the curve P(t) is continuous. Then, the
subdivision scheme S, is convergent and denoted as S, € CY. On the other hand, if APk = SqAPk tends to zero as k
approaches infinity, it means that the scheme S is contractive. It is shown (Theorem 3 in (Dyn, 2002)) that the subdivision
scheme S, converges if and only if the scheme S; is contractive. For algorithm details on checking whether or not the
scheme S; is contractive, we refer the readers to (Dyn, 2002).

3
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Besides convergence, highgr orders of smoothness of a subdivision curve can also be checked by using the symbol a(z)
of the scheme. If a(z) = GZLWZ,)b(z), the mth order differences of P¥ can be computed by
A Pk AM sapkfl A Pk71
(sz)m = (sz)m =b (zf(kfl))m ’
where A™ = A(A™ 1) is defined recursively. From the representation A™Sg = (---; A™(Sa)i—1; A™(Sa)i: A™(Sa)is1; )
we know that the two operators used to compute the differences of subdivided vertices from old ones by Equation (3)
satisfy

(3)

(Sp)i
2m
From Theorem 4 in (Dyn, 2002) we know that the subdivision scheme S, € C™ when Sj, is convergent. Particularly, the mth

order derivative of the limit curve P(t) at each dyadic point is obtained as

k
lim [ 27P =pM™(i27").
k— o0 (2"‘)’“ ,
k>1 i2k-

It is also known that a C™ continuous subdivision curve has Hélder regularity of C™*, where 0 < & < 1. How to compute
the Holder regularity has been discussed in (Rioul, 1992; Dyn and Levin, 2002; Hormann and Sabin, 2008). If the subdivision
scheme S; € C™, the differences of the subdivided points satisfy

A™. (4)

A"(Sa)i =

Ampl-c Ampk
i i—1 —ko
Skm T g—km || < €02 ()
where || - || represents the Euclidean norm of a vector and cp is a constant. We denote the norm of a point sequence or a
difference sequence within this paper as follows

A pk Ampk

(2—k)m = Sug Z—kml :

00 e

In contrast to stationary subdivision that has a fixed mask during the whole subdivision process, the mask can also be
level dependent or even position dependent when a non-stationary or non-uniform subdivision curve is generated. Assume
that a, = {ai‘< :i € Zkez., , the points refined by the non-stationary subdivision scheme are obtained as

Pk+l — Sak Pk

Dyn and Levin (1995) first proposed the asymptotically equivalent theory for analyzing the convergence and smoothness of
non-stationary subdivision schemes by comparing with the stationary ones. The subdivision scheme Syq,; is asymptotically
equivalent with S, if

> 11Sa, = Salleo < +00,

keZ
where ||Sq, — Salloo = MaXieo,1 ZjeZ |a£‘_2j —aj_jl. If Siq,) is asymptotically equivalent with S, it is denoted as Siq,) &~ Sq.
Furthermore, the subdivision scheme Sy, is termed stable if there exists a constant K, > 0 such that for all k,ne Z,

”Sak+n e Sak+1 Sak lloo < Ka.

Propeosition 2.1. (Theorem 7b in (Dyn and Levin, 1995)) If S(q,) & Sa, where Sq is a €O stationary binary subdivision scheme with a
finitely supported mask, then Syq,) is C 0 and stable.

Though asymptotical equivalence is useful for convergence analysis of non-stationary or even nonlinear subdivision,
but it is too restrictive for smoothness analysis of general non-stationary or nonlinear subdivision. Instead, the following
proposition serves as a basic tool for such purposes.

Proposition 2.2. (Proposition 3.1 in (Dyn et al., 2014)) Let Sq,) be a linear and stable (C9) subdivision scheme. Let {Ek}k€Z+ be a
sequence of sequences, ek = {8?}jEZv satisfying

00
k

E e /oo < +o00.

k=1
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Then, the perturbed subdivision scheme
fA=Sq 46k, k=1,2,...

converges to a CO limit for any initial data f° € I°(Z).

Propositions 2.1 and 2.2 together with Equation (3) and Equation (4) will be used as basic tools for the convergence and
smoothness analysis of univariate PN subdivision schemes in Section 4.1.

2.2. Subdivision surfaces with extraordinary vertices

Bivariate subdivision schemes defined on regular quad meshes or regular triangulations can have symbol a(z) = a(z1, z2).
In particular, if a(zq, z2) have factors like (1 4+ z1)™ or (1 + z3)™, etc., the convergence and smoothness of bivariate sub-
division on regular meshes can be analyzed using the same technique as that for univariate subdivision. See references
(Cavaretta et al., 1991; Dyn and Levin, 2002) for more details on this topic. On the other hand, convergence and smoothness
of subdivision surfaces at extraordinary vertices have to be analyzed in a different way.

Vertices of valence not equal to 4 within a quad mesh and vertices of valence not equal to 6 within a triangular mesh are
extraordinary vertices. While stationary subdivision surfaces with regular control meshes are actually parametric surfaces
defined by control points and refinable basis functions, the subdivision surface near an extraordinary vertex is just composed
of a sequence of surface rings (Reif, 1995). We take similar notations as used in (Peters and Reif, 2008). Assume Q =
(qo; . ..; qj) be a set of control points surrounding an isolated extraordinary vertex of valence n. Let

x0:=10,1]%\[0,1/2)%, ¥™:=27"%0 §":.= %™ x Z,, me Ny,

with Z;, the integers modulo n. Then the surface ring X, is a parametric surface defined on domain S and the whole
domain for the subdivision surface near the extraordinary vertex is

S,= | J spuio).
meNp
Let G :=(go, ..., &), where g € C"(Sg, R), [=0,...,], are a set of scalar valued generating functions (see Definition 4.9

in (Peters and Reif, 2008)) that form a partition of unity, ZLO gi(s)=1, se Sg. The surface ring Xo(s) is then represented
as

l
Xo(8) =Y 2i(s)q =G(s)Q.

1=0
Let S =(sij)o<; j<i be a subdivision matrix with all rows summing up to 1. The control points for the mth surface ring are
obtained as Qi =SQm—1=...=S5"Q and the surface ring is
Xm () =G(2"s)Qm =G(2"s)S"Q. (6)

When the surface rings {Xm}mcn, converge to a limit point, the subdivision surface converges at the extraordinary point. If
the normal vectors of the surface rings also converge to a limit vector, the subdivision surface is normal continuous at the
limit point (Doo and Sabin, 1978; Reif, 1995).

Most popular linear subdivision algorithms for surface modeling are standard algorithms of each the subdivision matrix S
has eigenvalues

M=1>A=A>A3]|>....
Assume the right eigenvectors of the matrix S are v;, i =0, 1,...,7, and the left ones are wiT, i=0,1, 7 Then the
matrix S can be decomposed as S =V JV~!, where V = (vo, v1,...,vp), V1= (wg;wi;...; WTT) and J is the Jordan
matrix in terms of the eigenvalues. Since each row of the matrix S sums up to one, the eigenvector corresponding to Ao =1
isvo=1:=(;1;...;1).

Let A=X1 =Xy, F=GV = (fo, f1, f2,...) and P =V~1Q = (po: p1; P2; ...). In particular, we have fo=Gvg=1, f;=

Gvi,i=1,2,and p; = wiTQ, i=0,1,2. Since A < 1, by reformulating x, as

Xn=GS"Q =GV J"Vv~lQ =FJ"p,

the surface ring can be asymptotically expanded as

Xm Zpo + A" (fip1 + f2p2) =po + A"V (P1; P2), (7)
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where W = (f1, f2) is the characteristic ring (Reif, 1995). From Equation (7), it is known that the surface rings converge to
a central point as

lim X, =po.
m——+4o00

By the eigen-decomposition above, one also has

lim S™Q = lim VJ™P=pgl. (8)
m—+00 m—+o0

Let *DW = Dq f1D; f, — D3 f1 D1 f, be the Jacobian determinant of the characteristic ring. The characteristic ring W is regular

when the sign of *DW¥ does not change nor vanishes.

For almost all initial control nets, the control points around an extraordinary vertex may not lie on a line or degenerate
to one point, it is then assumed that p; and p, within Equation (7) are linear independent. Based on this assumption, the
normal vector at the central point pp will be defined and the subdivision surface can be normal continuous at the central
point.

Proposition 2.3. (Theorem 5.6 in (Peters and Reif, 2008)) A standard algorithm with characteristic ring \V is normal continuous with
central normal

n¢ = sign(x D\D)M,
Ip1 x P2l
if W is regular.

Besides normal continuity, a subdivision surface can have even higher orders of smoothness at the extraordinary points
(Prautzsch, 1998). In particular, the G2 (also C? by reparameterization) continuity at the extraordinary points can be guar-
anteed when the subdivision matrix S satisfies the following condition.

Proposition 2.4. (Theorem 2.1 in (Prautzsch and Umlauf, 1998))! Let 1, A, A, i, ..., ¢ be all the (possibly complex) eigenvalues of S
where 1 > |A| > || > ... >|¢| and assume two eigenvectors ¢ and d associated with the double real eigenvalue . If the first surface
ring of the net given by [c; ...cn]" = [c d] is regular without self-intersections and

K> ul, k=1,2,

then the limiting surface is a G*-surface for almost all initial nets M.

As will be given in Section 4.2, we analyze the smoothness of a PN subdivision surface at an extraordinary point by com-
paring with a sequence of linear subdivision surfaces. By computing the central normal vector for every linear subdivision
surface, the normal vector at the central point of the PN subdivision surface will be obtained and the normal continuity of
the PN subdivision surface will be proved. Proposition 2.4 plays key roles for constructing C2 subdivision surfaces as well
as PN (2 subdivision surfaces with arbitrary topology control meshes in Section 5.

2.3. Binary subdivision on sphere

Subdivision of points on a circle or sphere can be used to construct smooth normal fields and has been applied suc-
cessfully for rendering or animation purposes (Alexa and Boubekeur, 2008; Wallner and Pottmann, 2006). In this paper we
study nonlinear subdivision schemes for curve and surface modeling along with construction of smooth normal fields by
subdivision.

Though linear subdivision schemes can be adapted to data on sphere in several different ways, the projection method
composed of linear subdivision followed by a normalization step is one simple but efficient method. Assume {n? :ieZ} are
points lying on a unit circle or sphere, the subdivided points are computed by

.

o 2 jez Gi-2j0;
e TS
12 jez ai—2jmjll

We assume here that the input points on the circle or sphere are locally dense enough such that the denominator does not
vanish.

ieZ.

1 See also Theorem 1 in (Prautzsch and Umlauf, 2000).
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The convergence and C! continuity of manifold valued subdivision can be analyzed by proximity (Wallner and Dyn,
2005). Xie and Yu (2007) showed that the projection based univariate interpolatory subdivision on a sphere has the same
smoothness orders as well as the same Holder regularity as that for linear subdivision while Grohs (2009) proved the
smoothness equivalence between the projection based univariate approximate subdivision on sphere and the linear sub-
division. Assume the linear subdivision scheme S, € C™ and has the Hélder regularity ™%, where 0 < o < 1. Then the
subdivision curve n(t) on sphere has maximum mth order of continuous derivatives. Similar to Equation (5), the differences
of subdivided points on sphere satisfy

Ak A™nf

| <927 (9)

where c¢7 is a constant.

Besides the univariate subdivision on sphere, linear subdivision schemes for regular or irregular meshes can also be
adapted to meshes on sphere. In particular, we have to pay much attention to convergence and smoothness of subdivision
near extraordinary vertices. Assume N = [ng;...;n;] be a set of points surrounding an isolated extraordinary vertex of
valence n on sphere and S = (Sif)og.jgi be the subdivision matrix as in Equation (6). Then the points on sphere are refined
recursively as follows

Ik

e _ =0 Sl
i T o
1> 0 Sijn;-”

Weinmann (2010) has shown that the manifold valued subdivision adapted from a standard scheme on irregular meshes
converges and the limit function is C! continuous in the vicinity of an extraordinary point over Reif's characteristic
parametrization. We modify Proposition 2.7 in (Weinmann, 2010) for distance estimation between subdivided points near
an extraordinary vertex on sphere, which will be used for convergence and smoothness analysis for our newly proposed
nonlinear subdivision scheme for irregular meshes.

i=0,1,...,L (10)

Proposition 2.5. Let S = (sjj) i< be a standard subdivision matrix. Assume n?, j=0,1,...,1 are unit normals corresponding to

vertices in the vicinity of an extraordinary vertex on an irregular mesh, and n’]‘., j=0,1,...,1 k e N, are given by Equation (10). There
exist constants c; > 0,0 < y < 1, such that

Inf —nf| <cop®. jlefo.1,....1}
3. Point-normal subdivision schemes
We generalize linear subdivision schemes that only refine polygon or mesh vertices to point-normal subdivision schemes
that refine polygon or mesh vertices along with the refinement of unit control normals at the vertices. Some basic geometric
properties of PN subdivision schemes will be given.
3.1. The PN subdivision schemes
Assume a = {a; : i € Z°} is the mask for univariate (s = 1) or bivariate (s = 2) linear subdivision on regular meshes. Let

{(p?, n?) :i € Z*} be the initial control points and unit control normals on a polygon or a regular mesh. The polygon or the
mesh with initial control normals is subdivided as follows

qt! = > jezs a,'_szl}
nf+1 = @EZS#}HI{Z ez, .
jezs Gi—2jm |
i = a "+ Y jegs aiajhlnit
where
W — -+ )Tk - gt
T (@l Tl

Besides uniform binary subdivision on regular meshes, any other linear subdivision schemes on regular or irregular control
meshes can also be extended to PN subdivision. Replacing a;_»; within Equation (11) with s;j, i, j € {0, 1,...,1}, which are
originally given in Equation (6), we obtain PN subdivision schemes for irregular meshes surrounding extraordinary vertices
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Fig. 1. Geometric interpretation of the PN subdivision scheme.

or extraordinary faces. The new subdivision schemes are referred as PN-4-point, PN-Catmull-Clark, PN-Butterfly, etc. when
they are generalized from traditional linear subdivision schemes 4-point, Catmull-Clark, Butterfly, etc.
Fig. 1 illustrates how a newly subdivided point is computed by a PN subdivision scheme. When a linearly subdivided

point q’.“rl and a unit vector n‘*! are computed, a line L that passes through point q’.‘“ in the direction n**7 is obtained.

i i i i
Then a height hi‘] from qi.‘“ along the line L is derived based on the assumption that a circular or helical arc interpolates
points p¥ and gt + hf.‘jni<+1 as well as the normal vectors n% and nf!

1
circular arc when points p’]‘-. g+ and vectors n’]?, nf !

segment on a circular cylinder that passes through point p’]‘. and be perpendicular to normals n’; and n

The weighted average of the arc end points lying on the line L gives the final new point pi‘“. Actually, if the original

control points and control normals are sampled from a smooth curve or surface without inflection point or inflection line,
the newly subdivided normal may approximate the curve or surface normal very well and the mentioned circular arcs
are just the approximate osculating arcs of the curve or surface at the sampled points, which guarantees that the newly
subdivided point lies on or close to the original curve or surface. As explained later, this kind of nonlinear subdivision can
preserve circles, circular cylinders and spheres, and they even have the same convergence and smoothness orders as the
corresponding linear subdivision.

We note that selected initial control normals or a linearly subdivided normal can vanish. If a linearly subdivided normal
is a zero vector, it will not be normalized and the new vertex computed by Equation (11) is just the linearly subdivided
vertex. Even if a newly subdivided normal nf“ does not vanish, it may have opposite direction with an old control normal
n’]‘. and the updating height hfj within Equation (11) will not be defined. If this is the case, one can just perturb the

normal vector n‘*! into e.g. 2nf"! within the formula for computing the height hi;. If the subdivided control normals are

computed with no singularities in the first round of subdivision, there will be no singularities in the following subdivision.
This is because the subdivided normals will become denser and denser during the subdivision and the newly subdivided
normals will be very close to their old neighboring normals.

For convenience of convergence and smoothness analysis to be developed in next section, we reformulate the univariate
PN subdivision scheme in matrix form. Since the normal vectors are subdivided independent of mesh vertices, we rewrite
the last expression in Equation (11) as

at the two points. The interpolating curve is a

lie on the same plane; otherwise, the interpolating curve is a helix

k+1

;" at the two ends.

P =q + ) aia AN —qf ), (12)
JjeZ

where

kb1 epk o pk+13T
W ( +n;)

1 (nlj 4 lli-(Jrl )Tni'<+1

Note that when the subdivided normals converge, the denominator within A;‘j will converge to 2 as k approaches infinity.
Then, the matrices A{-‘j are usually well defined for PN subdivision. Recall that ZjeZ aj_j = 1. Substituting the expression
of qff“, Equation (12) can be further reformulated as

pi.‘Jrl =Zai,21M{-‘jp’;, ieZ (13)
JjezZ
where M, =1+ 3.7 ai_a(Af; — A%) and [ is the identity matrix. It is easily verified that 3" ;.7 ai—»;M}; = 1.

8
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Let P¥ be as defined in Equation (2) and let

Mk

k k
; Mi_y -1 Moy Miq
— k k k
Mi=1 My M Mg
k k k
M Mi+l,j M

i+1,j-1 i+1,j+1

be a bi-infinite matrix. Then Equation (13) can be reformulated as

PkJrl — (Sa ° Mk)Pk, (14)
where S, o MK = (ai_szﬁj)i’jGZ is the Hadamard product of matrices S, and M. We use {Sq o M¥} to denote the PN
subdivision scheme that is generalized from a stationary subdivision scheme S,. From Equation (14) we have

i = (Sao Mb);P
((Sa)i o M¥)P¥ (15)
= (Sai((MH) Tk o PY), ieZ

where (M); = M; is the ith row of the matrix M. In particular,

(Sa)i= (.., qi—23j—1), Ai—2j, Ai—2(j+1)s - - -)

and

k Tbll _ . k . k . k .
(Mo = (o ME i ME s ME ).

We note that (Sq); also means (...,a;_3j—1)I,ai—2jl,ai_2¢j+1)1,...) when it is used to compute subdivided vertices.
3.2. Basic geometric properties

We present several basic geometric properties of the proposed PN subdivision schemes, which are useful for curve and
surface modeling by employing the new subdivision technique.

Property 3.1. (Geometric invariance) The PN subdivision curves and surfaces are translation/scaling invariant, and the shapes of the
subdivision curves and surfaces are also invariant under the rotation of the coordinate system.

Proof. The translation/scaling invariant property is obvious based on Equation (13), we prove that the PN subdivision is
invariant under the rotation of the coordinate system. We rewrite Equation (13) as follows

P =) aig; ) aia( + Al — ADPE.
i I

We only check that Afjp’]‘. is invariant under the rotation of the coordinate system, A{.‘Ip’]‘. can be checked similarly. Assume

R is a rotation matrix that satisfies R'TR =1 and R~! = RT. We have
k+1 k k+1 K
Rnf* (RTan+RTRni+ )ij‘.

(n’j‘-+nf-{+1)TRTRni.‘H

k oky
R(AkpY) =

k+1 k k+1\T pok
Rn; (an+Rni )Rpj

(Rnk4-Rnf 1) T R !

Since Rp’]‘., Rn’]‘. and Rnf*’1 are points or vectors in the rotated coordinate system, the proposition is proven. 0O

Property 3.2. (Invariance to normal direction) The PN subdivision curves and surfaces are invariant when all control normals have
been inversed.

Proof. Equation (11) holds when all vectors within the equation have been replaced with their opposite vectors. So, the
property holds. O

Based on Property 3.2, we will not emphasize the side of a control polygon or a control mesh in which the control
normals lie when constructing a PN subdivision curve or surface.
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Property 3.3. (Reduce to linear subdivision). If all initial control normals are the same vector, the PN subdivision scheme presented in
Equation (11) reduces to a linear subdivision scheme.

Proof. Assume n? =ny, i € Z*, we have nf.‘ =ng for all i € Z* and k € Z .. Then Equation (11) can be simplified as

pi<+1 k+1 + ZJQZS ai_ 2j (nO)T(p _ qk+1)n0

= qi‘“ +0) T (X jezs ai-2p% — g Hmo

= Y jezs Gi-2jP}.

This proves the property. O

Same as linear subdivision schemes, PN subdivision schemes can reproduce straight lines and planes. Moreover, PN
subdivision schemes can also reproduce circles, circular cylinders and spheres.

Property 3.4. (Circle preserving). If the initial control data (p?, n?), i € Z, are sampled from a circle, then all the newly subdivided
points and normals by PN subdivision lie on the same circle.

Proof. Due to the geometric invariance property, we assume the initial control data are sampled from a unit circle centered
at the origin. It implies that pl = n ieZ.To prove the property, we should then prove that all newly subdivided vertices
lie on the unit circle as the initial data Assume p = n , i € Z, are points and normals lying on the unit circle. Let

=1 aimh| = | aiamd

JjeZ jezZ

k+1 _

k+1 Lk k1 k1 : k
We have n; lkﬂ D jez Gie 2]n and q;" =3} jc7 ai—2jP;=1; m;" . Then the heights hj; are computed as

k+1 )T k+1 )

@+t 7 (pk—q|
(nl;+ni_<+1)‘rnz_<+l

kel k1 ket T
(n’;+niJr )T(n’;—li‘+ nth)

k
hi; =

T T k1
(@40 Tl

— k+1
1— 11,

Now, the newly subdivided point is obtained as

pz<+1 k+1 + Z]eZ ai_ Zjh,] ic+1
= lif+1n£<+1 + Y ez Gi2j(1 - li_<+1)ni_<+1
— ni;ﬁ-l'
Since ||DkJrl = IIH?H | =1, the newly subdivided points and normals lie on the same circle as the initial control data. O

Fig. 2 illustrates the circle preserving property of PN subdivision schemes. With unevenly sampled points and normals
from a circle, two PN subdivision curves are obtained by PN-6-point subdivision scheme or by PN cubic B-spline subdivision
scheme, respectively. The curvature combs show that both of the two PN subdivision schemes reproduce the circle exactly.
As old vertices are generally not preserved by PN cubic B-spline subdivision, it generates a subdivision curve with more
uniform vertices than the PN-6-point subdivision curve which interpolates all vertices.

Property 3.5. (Cylinder and sphere preserving). If the initial control data (p?, n?), are sampled from a circular cylinder or a sphere,
then all the newly subdivided points and normals (pﬁ‘, ni.‘), k € Z, by PN subdivision lie on the same cylinder or sphere.

Proof. The proof of sphere preserving is the same as that for circle preserving, we prove the property of cylinder preserving.
W.l.o.g. we assume the generatrix of a cylinder is parallel to the z-axis, and the coordinates of the kth subdivided points

and normals are given by p (nlx, 5(y ,)T and n (n,x, iy’ 0)T. The perpendicular projection of the points and normals
k+1

onto the xy-plane are 131.‘ = n,. = ni. Based on Equation (11), the projection of the subdivided point p;
is obtained as

onto the xy-plane

10
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(a) (b)

Fig. 2. PN subdivision curves with curvature combs: (a) PN-6-point subdivision; (b) PN cubic B-spline subdivision.

(@) (b)

Fig. 3. (a) Catmull-Clark subdivision and (b) PN-Catmull-Clark subdivision of a quad mesh with vertices and normals sampled from a cylinder.

Skl _ gkt k ok+1

P =a X aiajhym

(n"+n"+1)7(p qk+1) .
(llk+nk+1)Tnk+1 i

e ‘ ‘(n —k+1)T(p qi<+1) k+1
=q;" +2 ;a2 (nk+nk+1)Tnk+1 n;

~k+1
=q; + Zj ai—2j

Z] aj— 21
I1>;ai szn
point by the projected points p]. and projected normals ﬁj. Because the PN subdivision of the projected data (13?,1'1?) is
circle preserving, the PN subdivision of original data (p?, n?) is cylinder preserving. O

where (jf’L =y j@i—2 ]p and nk“ From the above expression we know that pk+] is also the subdivided

Fig. 3(a) illustrates a quad mesh with vertices sampled from a circular cylinder and a deformed cylinder-like surface
generated by traditional Catmull-Clark subdivision. If normal vectors at the vertices are also sampled, a circular cylinder
surface that passes through all control vertices is obtained by PN-Catmull-Clark subdivision; see Fig. 3(b). Fig. 4(a) illustrates
a Butterfly subdivision surface constructed from a tetrahedron. By choosing all initial vertex normals as of a sphere, the PN-
Butterfly subdivision surface reproduces the sphere exactly; see Fig. 4(b) for the obtained surface.

4. Convergence and smoothness analysis

This section presents convergence and smoothness analysis of the proposed subdivision schemes. As the convergence
and smoothness of subdivided normals by Equation (11) have already been discussed in Section 2.3, we pay our attention
to convergence and smoothness analysis of PN subdivision curves and surfaces.

11
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(2) (b)

Fig. 4. (a) Butterfly and (b) PN-Butterfly subdivision of a triangular mesh with vertices and normals sampled from a sphere.
4.1. Analysis of univariate PN subdivision schemes

We first analyze the convergence of univariate PN subdivision scheme defined by Equation (11) or given by Equation
(13).

Theorem 4.1. Assume S, be the linear subdivision scheme as defined by Equation (1) and {Sq o M¥} be the PN subdivision scheme as
given by Equation (13). If Sq € C°, then {Sq o MX} ~ S, and {Sq o M¥} converges.

Proof. We prove the convergence of the PN subdivision scheme {S; o M¥} by comparing with the linear subdivision scheme
Sq. Let

X1(X1 4+ X2) 7

AX1, X)) = ————,
1. %2) (X1+X2) T X4

X1, Xy €S2 (16)
The matrix Aﬁ‘j in Equation (12) is given by A{.‘j = A(ni.‘ﬂ,n’]‘.). Under the assumption that S; € €9, we know that the
subdivided normal vectors ni.‘ converge and the spherical subdivision curve n(t) discussed in Section 2.3 is continuous.
Assume n(t) has the Hoélder regularity of CO*®, where 0 < « < 1. It follows that the function A(Xi,n(t)) has also the
Hélder regularity of €%t with the variable X; a fixed vector.

Suppose |j —I| < B, where B is the bound of the support of the mask of S,. Applying Equation (9), we have ||n’]‘. — n;‘|| <

Bci27k and

k+1 k+1
1A}, = Afilloo = IA@MT, 0% — AT, 0 o
CAz—ka

CA)/k,

IATA

where c4 is a constant and y =2~% € (0, 1). Based on the expression M5 =I1+Y 7 ai,ZI(Aifj _Aﬁ)' we have ||Mffj —Iloo <
I1Salloccay®. It follows that

1(Sa)i o MY = (Sa)illoo = Y _ llai—2;(M¥; = Dlloo < cuy*,
J
where cy = ||Sqll2,ca. Since the constant cy is independent of the index i, we have
1Sa © M* = Salloo < cuy.
From this inequality, we have ), [|Sq o MK — Sglleo < 4+00. This implies that {Sq o M} ~ S,. Based on Proposition 2.1 we

know that the PN subdivision scheme {Sq o M¥} converges. O

We then prove the higher orders of smoothness of univariate PN subdivision schemes. In the remainder part of this sub-
section we assume that the linear subdivision scheme S; € C™ is given by the symbol a(z) = “;—,ﬁ)b(z). where S;, has the

Holder regularity of CO%, Let ag(z) = a(z), a1(z) = %b(z), e Gm1(2) = %b(z) and an, (z) = b(z). The corresponding
subdivision schemes are referred as Sq, Sq;, ..., Sa,_; and Sg,, respectively. We also introduce partial differences when a

sequence has two sub-indexes:

k _ apk k k _ apk k
AME =M —ME o AME = ME - MK

12
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For sequences with only one sub-index, the finite difference A1p is given by Aipf = Apf = pf —p¥ ,. Similarly, we have
Azp’]‘. = Ap’; = p’]f - p’;_l. Based on first order partial differences, higher order partial differences will be computed by
operators AT = A4 (AT‘1), A1Ay = Aq1(Ay), etc.

Before presenting the main theorem for the smoothness analysis, we introduce a lemma about the norm estimation of
the differences of the coefficient matrices given in Equation (13).

Lemma 4.2. Assume S, is a linear binary subdivision scheme with mask defined by the symbol a(z) = (Hz'—,ﬁ)mb(z), where S € CY.
Assume the matrices Mf.‘j are given by Equation (13). Then for any nonnegative integers my, my satisfying 1 < mq + my < m, the
following inequality holds

my A My p gk
AT ATMG | oy
2—(mi+my)k = msoe

o0

where ¢, and 0 < y < 1 are constants.

Proof. Let Uf.‘j =(..; Ag.‘j - Af,_ﬁ A:.‘j — A{fl; Ai‘] — Ai.fl+1; ...). Then the matrix Mf.‘j can be rewritten as Mf‘J =1+ (Sa)iUfj. The
finite differences of the matrices can be computed by the Leibniz rule and Equation (4) as follows
my A My p gk myp A My 17k
ATTA, Mij ATTA, [(Sa)lUi‘j]

2-(mtmk — p—(mi+mk

= e A1 [(S2i83 U]

) W[ATI (SaiAT2UE 4+ Ch AT (S0 A AT2UE + - 4 C1 () AT AT2UE]
2m 2n(mmak T gmet g mmak M 9 —(mi+ma)k *

where C,’n] = l,(n'?]—t,), As discussed in Section 2.3, the spherical subdivision curve n(t) has the Hélder regularity of C™+¢
when the linear subdivision scheme S, € C™. It follows that the function A(Xi(t), X»(t)) also has the Holder regularity of
C™+® when X1(t) & X,(t) are the spherical subdivision curves. Since the support of the mask of S; is bounded, we assume
that |j — | is bounded too. For any si, s2 € Ng, s1 + s =mj +my <m, we have

A AU

S1 052 ak k
L AY Ay (Aij_Ail)
2—(s1+52) -

00

2—(51 +s2)k

o0
AT AZ (A@T ) —AmE T b))
2—(51 +s9)k
o0

SCs)/k,

where ¢ and y € (0, 1) are constants. Let

Sam oo 1Sam, 1 loo .,
_ 1
o=, | 4l e e sl
We have

my A My p gk

A1 AZ Mij k - k

St tmpk <kaCsy" =cmYy".

o0

This completes the proof. O

We now show that the univariate PN subdivision schemes have the same orders of smoothness as linear subdivision
schemes.

Theorem 4.3. Assume S, is a linear binary subdivision scheme with mask defined by the symbol a(z) = “;—ﬁmb(z), where Sy, € CO.
Let {Sq o M¥} be the PN subdivision scheme originally defined by Equation (11). Then {Sq o M¥} € C™.

Proof. We prove the theorem by induction. From Theorem 4.1 we know that {S, o M¥} € CO. We then prove that {S, 0 M¥} €
C™ under the assumption that {S;o M¥} e C!, 1=0,1,...,m—1.

13
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From Equation (15) we have pi.‘“ = (Sa)i((Mf)Tb"‘ o PX). We first compute the differences of the point sequence {pé‘“}

using the Leibniz rule and Equation (4):

AT = AT{(SLME) T o PXY)
= AT(S)il(MK) ok o PK] 4 €L AT (Sg)i[ A1 (MK) ok o PK] 4. 4 CT(Sq)i [ AT (M) Toik o PK]

Sp)i S i
- (2331 AT[(M*) Tk o PF] 4 1, %A';—1 [A1(M) Tk o P .. 4 C(Sq)i[AT (MF) ok o PH]
S .
- (zfn)’ (M) T8 0 AT P 4 Cp A (M) T 0 A TPX - CRAT (M) Tok o PY]
S .
+C} % [A1(M Tk o AM=TPK L Ap Ay (ME) ol o AM=2pPK .

+ CI T AT A (ME) ok o PK]
+ Cn(Sa) [ AT ME T o PE].

From this expression, we have

Amp?+] v A k
Fomtern — (Spie M) ——p
Ap(MK)Tow— Am=1pk AT (M) Toik
1 i m—2 i k
+ (Sp)i [Cm & o =T +---+Ch = oP

A1 (MK Tk Am—1pk Ay A (MKYTok  AM—2 pk
+2C,ln(sa 71)1' 1( ,) o 17] 2 l( l) o
m 2—k 2—(m-1k m 22k 2—(m=2)k

-1
+ Cm_l

AFTTAMP T
2—mk oP

AT (VR Toik
+2MCM(Sq)i [1;_7,;,)( o Pki| .

Under the assumption that {S, o M¥} e C!,1=0,1,...,m — 1, we have

Alpk

ﬁ <I<, 051<m,

o
where K is the bound of the derivatives of the subdivision curve as well as the bound of the finite differences of the
sequence of subdivided points. From Lemma 4.2 we know that the differences of all element matrices of (M!‘)Tb'k within
above equation have a bound c;;y¥. Then the above equation can be simplified as
mek+1 k
A™p; AP K

_ . k
Fomarn — (Spio M) o= + &5,

where ||8§<|| <cy*®and y € (0, 1). Since S, € €%, and by Theorem 4.1, we know {Sj o M¥} converges. Based on Proposition 2.2
we know that the difference sequence {%T—,fkk}keN converges too when k approaches infinity. This implies that {S, o M¥} €
cm. o

Besides by subdividing the old normals using scheme S, and projecting the linearly subdivided normals onto sphere, the
normal vectors within Equation (11) can also be generated by masks of schemes other than S, or sampled directly from a
smooth curve on sphere. In the same way as the proof of Theorem 4.3 we obtain the smoothness orders of this kind of PN

subdivision schemes.

Corollary 4.4. Assume S, € C"™ and Sy € c™ are two binary linear subdivision schemes, where m, m’ € Ny. If a PN subdivision
scheme is defined by Equation (11) with points computed using mask of Sq and with unit normals computed using mask of Sy, then
the PN subdivision scheme {Sq o M¥} € cmin{m.m’},

14
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(a) (b) (©

Fig. 5. PN B-spline subdivision curves with curvature combs: (a) PN quadratic B-spline subdivision; (b) PN cubic B-spline subdivision; (c) PN cubic B-spline
subdivision using normal field generated by spherical 4-point subdivision.

It is known that a uniform B-spline subdivision curve of degree m has continuity order of m — 1. From Theorem 4.3
we know that a PN B-spline subdivision curve of degree m has also the continuity order of m — 1. Fig. 5(a) illustrates
a PN quadratic B-spline subdivision curve. It is clear that the subdivision curve is tangent continuous but not curvature
continuous. The PN cubic B-spline subdivision curve illustrated in Fig. 5(b) is curvature continuous, just as expected as a
cubic B-spline curve. Fig. 5(c) illustrates another PN cubic B-spline subdivision curve, but using normal field generated by
spherical 4-point subdivision scheme. As 4-point subdivision has only C! continuity, the obtained PN subdivision curve is
no longer as smooth as that in Fig. 5(b).

4.2. Analysis of PN subdivision on irregular meshes

Corresponding to the theoretical analysis of linear subdivision on irregular meshes, convergence and smoothness analysis
of PN subdivision on irregular meshes also consists of two parts: analysis of PN subdivision on regular meshes and analysis
of PN subdivision on meshes surrounding an extraordinary vertex or face.

Same as univariate subdivision, bivariate linear subdivision on regular quad meshes or triangular meshes can also be
generalized to PN subdivision using Equation (11). If the symbol a(z1, z2) = Z(il,iz)eZZ iy iy z;‘ 2122 for a bivariate subdivision
scheme is factorizable, the convergence and smoothness of the obtained PN subdivision scheme can be analyzed in the
same way as univariate PN subdivision. Similar to Theorem 4.3 and Corollary 4.4, the smoothness order of any bivariate PN
subdivision on regular meshes can be derived from the smoothness order of the linear subdivision S, and the smoothness
order of the subdivided normal field. Based on the smoothness equivalence between projection based bivariate subdivision
and linear bivariate subdivision for regular control meshes (see Theorem 2.6 and Corollary 2.7 in (Weinmann, 2012)), we
know that the smoothness order of the subdivided normal field and the smoothness order of bivariate PN subdivision on
regular meshes are the same as that for the corresponding linear subdivision scheme.

We present here the convergence and normal continuity analysis of PN subdivision of irregular quad meshes surrounding
an isolated extraordinary vertex, the same result holds for subdivision of irregular quad meshes surrounding an extraordi-
nary face or irregular triangle meshes surrounding an extraordinary vertex. By taking the notations used in Section 2.2, we
assume Q = (qo;...;q;) be a set of control points surrounding an isolated extraordinary vertex and N = (no; ...;n;) be
the initial control normals at the control points. Let S = (Sijo<i, i< be the subdivision matrix and Qm = (qg’; ...;q%”) be

the control points for the mth surface ring. Assume the normal vectors n{?, 0 <i <l at the control points are refined by
Equation (10). Let

vk k
Mg M
Mk— . s (17)
- i
My Mg

15
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(a) (b)

Fig. 6. (a) The sequence of surface rings around an extraordinary vertex and their control points and control normals obtained by PN subdivision; (b) the
sequence of ring sequences by linear subdivision from the meshes computed by PN subdivision. The surface rings are shifted for clarity.

where I\N/I{‘] =1+ Z;:o s”(Aé‘j — A and Aé‘j = A, n’;) using Equation (16). Then the control points for the surface ring
Xm by PN subdivision are computed by

Qm=Sm-1---5150Q, (18)

where Sy = So My, k=0,...,m —1. We denote the subdivision scheme as {S}. It is verified that le:O s,-ﬂ\?lfj =1 for
i=0,1,...,1. Then we have

Sk I;...; 1) =S(I1) =1I1. (19)
For convenience of comparison between S;Q; and SQ, in the following text, we introduce matrix E as

||

I T gy

such that SQp; = (S 0 E)Qpy. From the control points Q, and based on Equation (6), a surface ring is obtained as X (s) =
G(2™s)Q,, where G is the vector of scalar valued generating functions. On the other hand, X,;(s) can also be generated from
the control mesh by linear subdivision directly. Similar to uniform refinement of curves (Micchelli and Prautzsch, 1989), for
any coordinates s € S, the point X, (s) can be computed recursively as follows

lim Bm+j(s)"'Bm+l (S)Bm(S)Qm =Xm ()1, (20)
J—+00
where Bpyj(s), j=0,1,..., are the matrices for binary subdivision for regular control meshes with a fixed size. Corre-

spondingly, the point on the surface ring by PN subdivision is obtained as

im By j(S) -+ Bmy1(8)Bin(8) Qm =X (9)1, (21)
Jj—>+0o0
where Bmﬂ-(s) =Bmyj(s)o 1\7Im+j(s), j=0,1,..., and the matrices I\7Im+j(s) are defined in a similar way as Equation (17)

using the refined control normals at the subdivided points. See Fig. 6 for the surface rings computed by PN subdivision from
control points and control normals or by linear subdivision from the same sequence of control meshes.

Let eg = (I;0;---;0), eg = (0;I;---;0), ..., ¢ =(0:0;--- ;). Assume g(s), | =0, 1,...,1, are the generating func-
tions computed by Equation (21) with Qg replaced by e, [ =0,1,...,I. By the same reason as Equation (19), we have
Bmsj(®)(I1) =11, j=0,1,.... It follows

16
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I1= lim Bpyyi(s)- - Bmi1(5)Bm(s)(I1)
Jj—>+o00

1
= lim By.i(s)---B $)B,.(s e
dim B () Bt (9)Bn(s) ,; |

Il
MN.

lim By j(s)--- Bmi1(5)Bm(s)e
J—>+o00

— |l
=}

gl (s)1.

=0

Therefore, the generating functions satisfy ZLO g'(s) = I. Obviously, these generating functions are no longer scalar
valued but matrix valued. Representing the control points as Q, = 25:0 eq", the PN subdivision ring is obtained as
% = Yo &G = Gin(s)Qm, Where G (s) = €' (5), E](S), ..., E"(5)).

Before proving that the sequence of surface rings X,, converge to a limit point, we show that all block matrices 1\715‘]

within Equation (17) converge to I, which implies that M converge to E, when the normal vectors ni.‘ converge.

Lemma 4.5. Assume S is a standard subdivision scheme and normal vectors ni.‘ are refined by Equation (10). Let I\N/Ii‘j be the matrices

as defined in Equation (17). Then
IME = Iloo < Kny*,

where Ky and y € (0, 1) are constants.

Proof. Based on Proposition 2.5 we know that the subdivided normals satisfy
Inf —nf| <cop®. j.le(0.1.....1)

where ¢; and y € (0,1) are constants. In the same way as the proof of Theorem 4.1 we have |A
M =1+ Y1 su(AY — A%), it follows that

k k k
i~ Ajjllc < cay®. As

1k k
MY — Tloo < cscay™,

where ¢s = [|S]loo = max,_;_; ZLO Isit|. The lemma is proven by choosing Ky =csca. O

Now, we show that the PN subdivision scheme {S;} is stable and convergent and the obtained surface is €Y continuous
at isolated extraordinary points.

Theorem 4.6. Assume S is a standard subdivision scheme. Assume Q, are the subdivided points and S, j =0, 1, ... are the subdivi-
sion matrices as defined in Equation (18). Then the PN subdivision scheme {S;} is stable and convergent.

Proof. We prove the stability and convergence of {S;} by comparing with the stationary subdivision scheme S. Based on
Lemma 4.5, we have

ISj =S 0 Elloo =1IS © (Mj — E)lloo < lISllocKmy’

for j e Z.. It follows that

Y 1Sj=SoElle < 400,
jeZy
which implies {S;} ~ S. Based on Theorem 6 in (Dyn and Levin, 1995), we conclude that the PN subdivision scheme {S;} is

convergent and stable. O

Theorem 4.7. Assume S is a standard subdivision scheme and X, are PN subdivision rings with control points Q, which are computed
by Equation (18) and control normals nj*, 1 =0, 1, ..., L. Then Xy, converge to a point as m approaches infinity.

17
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Proof. Based on Theorem 4.6 and Equation (18) we know that the mesh sequence {Qm};giﬂ converges. It follows that Qp,,

m=1,2,..., are bounded. To prove the theorem, we first prove that the mesh sequence converges to a central point, then
we show that the PN subdivision rings X, also converge to the central point. Assume a)g is the left eigenvector of S. Using
Equation (8), we have

lim sk Qm =Pm,o0l

k—+o0

and

lim $¥Qm-1= lim S*'SQmu_1 =pm_1,01.
k—+o00 k—+o00

where ppno = a)g Qm and pp—1.0= a)gSQm,l. By Lemma 4.5 and because the sequence {Qn;};y_; are bounded, we have

[Pm.0 — Pm-1.0ll = lwg Qm — @g SQm-1]
= |lwg (Sm=1—5)Qm—1ll
=|lwg S o (Mn—1 — E)Qm_1]
T m—1
< llog 11ISllsoll Qm-1llccKmy
<Kpy™ 1,

where Kj, and y € (0, 1) are constants with ||on||1 the I; norm of the eigenvector. This implies that {pm 0}, is a Cauchy
sequence. Therefore, we have

lim  pm,o=pPc.
m——+oo

To prove the surface rings Xp,(s) converge to p., we prove all points within mesh Q,, converge to p.. We write
Qm+k - Sk Qm= (Sm+l<—l <+ Sm— Sk) Qm

k—1

Smk—1- - Sm+j+1(Smtj — )7 Qm
=0

El .

-1

=Y Smik—1-*Smtj+1(S o (Mmyj — E)S! Q.
j=0

By applying Lemma 4.5 and because {S;} is stable, we have

k-1
; K
1Qmsk — S*Qlloo < Kq Y y™H < —Ty™, (22)

o 7Y
where y € (0, 1). Based on the identity
Qumtk — Pel = (Qmk — $Qm) + (5 Qi — Pm.o1) + (Pmo1 — Pcl)

as well as the definitions of p;,, o and p¢c, we have

lim =pc1.
mom Qm+k =Pc
k—~400

Since limpy— 100 Qm = pc1, and because the generating functions of Xy, (s) sum up to I, it yields that
lim Xp(s)= lim Gpm(s)Qm = pe.
m—400 m—400
This proves the theorem. 0O

Besides being C° continuous, the PN subdivision surfaces can also be C! continuous at the extraordinary points. We
prove that the normals of the sequence of surface rings X;;(s) by PN subdivision converge by comparing with a sequence
of surface rings obtained by linear subdivision using the same set of control nets. We present a lemma before proving the
theorem for C! continuity.
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Lemma 4.8. Assume S is a standard subdivision scheme and the characteristic map WV is regular. Assume Q , be the control points given
by Equation (18) and G is the vector of scalar valued generating functions. Then the normals of surface rings X, = GQ, converge for
almost all initial control nets.

Proof. We first show that a limit vector exists and then we show that the normals of surface rings X;;(s) converge to the
limit vector.

Let Xp x = GSKQ .. See the surfaces illustrated in Fig. 6(b) for reference. Similar to Equation (7), we have

Xm,k = Pm,0 + Ak\lj(l’m,] i Pm,2),

where A is the second large eigenvalue with multiplicity 2, W is the characteristic map and pp,; = wiT Qm, 1=0,1,2, with
a)lT the left eigenvector of the matrix S. Let ny, i be the normal vector of the surface X, x. Under the assumption that the
characteristic map W is regular, by Proposition 2.3, we have

. . X
n,, = lim ng;= szgn(XD\P)M.
k—+o00 Pm,1 X Pm,2l
We show the central normal sequence {nf,}> ; converges to a limit vector. Similar to the asymptotic expansion of X, r,
by expanding Xm_1k = GSKQm_1 = GS*1SQm_1, we have pm_1,i = ®, Qm_1 =® SQm_1, i =1, 2. By the same reason for
{Pm,0}m; within the proof of Theorem 4.7, we know that {pp i}, i =1, 2, are also Cauchy sequences. Therefore, we have
lim ppi=t, i=12.

m——+o0
It follows that
t1 Xty

n::= lim n¢ =sign(*D¥)——=—.
N N T

m
Let ny, be the normal vector of surface ring X, = GQ,. We prove that the normal vectors n, converge to n.. Based on
Equation (22), we know that the surface difference

Xm+k(S) — Xim k() = G™ ) (Quk — S¥Qum)

as well as the differences between partial derivatives of the two surfaces Xy, and X ; approach zero when m goes to
infinity. By direct computation of normals for the two surfaces, we have

lim (n -n =0.
m»+oo( m+k m,k)

Based on the identity

Ny — N = (M — N ) + (M — N + (n§1 —nc)

as well as the definitions of n%, and n¢, we have

lim n =nc.
m—+00 m-+k ¢
k—+o00

This completes the proof. O

Theorem 4.9. Assume S is a standard subdivision scheme and the characteristic map W is regular. If the control normals at the mesh
vertices are refined by Equation (10), then the PN subdivision surface is normal continuous at the extraordinary point for almost all
initial control nets.

Proof. Assume Q, are the control points computed by Equation (18) and Ny, are the control normals at the control points.
Let ny,(s) and Ny, (s), s € S), be the unit normals of surface rings Xm (), X () that are generated from the control points and
control normals by linear subdivision or PN subdivision, respectively. We prove the theorem by showing that the normals
Ny, (s) and ny,(s) converge to the same limit vector when m goes to infinity.

Let Bj4j(s) and B,,H_j(s) = Bpyj(s) o 1\~/1m+]‘(s), j=0,1,..., be the subdivision matrices given in Equation (20) and
Equation (21). By the same technique as Lemma 4.5 and Lemma 4.2, we have

M- (5)

Moyt i(S) — Ellog < &y™H,
Wi 5(5) — Elloo <y i

<&y™i, j=o0,1,...

o0

where ¢, ¢, and y € (0, 1) are constants. It follows that
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(@ (b)

Fig. 7. A quad mesh and its triangulation together with pre-computed unit normal vectors at the vertices.

Bt j(S) = Bmsj(S) 0 (E + Mo j(S) — E) = By j(S) 0 E + O (™)

and
By By N Mo
9 ni;:l] ®) = 9 n:}—:[] ©) 0 Mim1j(S) + By j(S) o 78 'gzj ®)
9B+ (S) : M. (5)
=— o+ O(y™ ) + By j(s) o o

By substituting above two equalities, we compute the partial derivatives of X;(s) as follows:

0 =~ ~
5y (Bm+i(®) -+ Bm(S)Qm)

. Bui(S) -
=Y Bnyj(s)--- —— - Bu(s)Qm
= au
J 3B
=Y ((Bmyj(s) - 8—;’(”--~Bm(s)) 0 E)Qm+0(y™
l=0

= @(Berj(s) < Bm(8)Qm) + 0(y™.
When j goes to infinity, we have

OXm(S) _ 9Xm(S)

O m
ou ou O
Similarly, we have
0Xm (s 0Xm (S
m(S) _ 9Xm(s) oM.

av av

Since My (s)// 2 3"'"(5) 3"'"(5) and np (s)// e 3"'"(5) 3"51(5) we have
lim (R (s) — np(s)) =0.
m—+00
By applying the result of Lemma 4.8, we have
m—400

Ml%@=#@$%®—M®HME%M®=m

This proves the theorem. 0O

Fig. 7 illustrates a quad mesh and its triangulation. The control normals at all control points are estimated from the
input mesh. We subdivide the quad mesh by PN-Catmull-Clark, PN-Doo-Sabin or PN-Kobbelt subdivision schemes. A PN-
Loop subdivision surface has been constructed from the triangulated mesh. For comparison purposes, the initial meshes are
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33 2a

(a) PN-Catmull-Clark subdivision vs. Catmull-Clark subdivision (b) PN-Doo-Sabin subdivision vs. Doo-Sabin subdivision
(c) PN-Kobbelt subdivision vs. Kobbelt subdivision (d) PN-Loop subdivision vs. Loop subdivision

Fig. 8. Surface modeling by PN subdivision schemes or linear subdivision schemes. Gaussian curvatures of the subdivision surfaces change from (positive)
high values through zero to (negative) low values when the colors change from red through green to blue. (For interpretation of the colors in the figure(s),
the reader is referred to the web version of this article.)

also subdivided by the corresponding linear subdivision schemes. To check the smoothness of all subdivision surfaces, the
Gaussian curvatures of the surfaces have been computed. All surfaces illustrated in Fig. 8 are rendered by meshes after 5
iterations of subdivision. Particularly, the curvature plots are computed discretely by employing a high accuracy algorithm
presented in (Yang and Zheng, 2013). From the figures we see that the PN subdivision schemes and the linear subdivision
schemes can achieve the same smoothness orders, over regular regions as well as regions near extraordinary points. Due to
the properties of preserving circles, cylinders and spheres of the proposed subdivision schemes, the PN subdivision surfaces
have exact circular boundaries, circular cylinder parts or approximate hemispheres on the top parts defined by the control
points and control normals.

5. PN C2 subdivision surfaces

In addition to generalizing linear subdivision surfaces that have C' continuity at the extraordinary points to PN subdi-
vision surfaces, we are also interested in generalizing modified Catmull-Clark subdivision (Prautzsch and Umlauf, 1998) or
modified Loop subdivision (Prautzsch and Umlauf, 2000) to PN subdivision schemes. These two modified schemes are simple
to implement and can generate C2 subdivision surfaces with flat extraordinary points. It is found that the generalized PN
C? subdivision surfaces are curvature continuous too but the extraordinary points can be no longer flat.

Assume S is the subdivision matrix for control points surrounding an isolated extraordinary vertex within a control
mesh using Catmull-Clark subdivision. To improve the smoothness order at the extraordinary point, Prautzsch and Umlauf
(1998) proposed to modify the Catmull-Clark subdivision scheme by tuning the eigenvalues of the subdivision matrix. Let
V be the matrix of which the columns represent the right eigenvectors of S, the subdivision matrix is decomposed into
S=VAV~! where A =diag(1,A, A, i,...,¢) and 1> A > || > ... > || are the eigenvalues of the matrix. When the
matrix A has been changed into A’ = diag(1, A, A, i/, ..., ¢’), a modified subdivision scheme is obtained by using stencils
given in the modified subdivision matrix S’ =V A’V ~!. According to Proposition 2.4, if the prescribed eigenvalues satisfy
|| < a2, ..., |¢'| < A2, the modified Catmull-Clark subdivision surface is C2 continuous with vanishing principal curvatures
at the extraordinary point. Similarly, conventional Loop subdivision can also be modified to produce C? subdivision surfaces
with flat extraordinary points (Prautzsch and Umlauf, 2000).

Even though the subdivision surfaces obtained by the modified Catmull-Clark subdivision or the modified Loop subdivi-
sion are curvature continuous, they may suffer the unfairness or concentric undulations due to the restricted zero curvature
at the extraordinary points. These restrictions make the modified subdivision schemes less practical in high quality surface
modeling.
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(a) ®) (©) ()

Fig. 9. Gaussian curvature plots of subdivision surfaces obtained by (a) Catmull-Clark subdivision; (b) modified Catmull-Clark subdivision (Prautzsch and
Umlauf, 1998); (c) PN-Catmull-Clark subdivision; (d) PN-modified Catmull-Clark subdivision.

By utilizing control points together with control normals, we propose to construct high quality subdivision surfaces using
PN modified C? subdivision schemes. We just explain the steps of PN modified Catmull-Clark subdivision, PN modified Loop
subdivision can be implemented similarly. An arbitrary topology control mesh together with given or estimated control
normals is first subdivided by PN-Catmull-Clark subdivision. From the second round of subdivision, all faces within the
meshes are quadrangles. The positions and control normals at the refined vertices corresponding to old irregular vertices,
their abutting edges or their abutting faces are computed by Equation (11) using stencils for the modified Catmull-Clark
subdivision scheme. The remaining parts of the meshes are still subdivided by PN-Catmull-Clark subdivision.

Since the modified Catmull-Clark subdivision is C2 continuous, it is also C! continuous. Based on Theorem 4.7 and
Theorem 4.9, we know that the PN-modified Catmull-Clark subdivision converges and the obtained subdivision surfaces are
at least normal continuous at the extraordinary points. It is observed that the surfaces generated by PN-modified Catmull-
Clark subdivision are C2 continuous too and the curvatures at the extraordinary points can be no longer vanishing. However,
the theoretical proof of C? continuity of PN-modified Catmull-Clark subdivision is not available at present. We present the
assertion as a conjecture.

Conjecture 5.1. The PN-modified Catmull-Clark subdivision can generate curvature continuous subdivision surfaces and the extraor-
dinary points of the surfaces can be no longer flat when the control normals are not a constant vector nor vanish.

Fig. 9 illustrates examples of surface modeling by Catmull-Clark type subdivision schemes or their adapted PN subdivision
schemes. The control points and control normals for the control mesh in the top row are sampled from a hyperbolic surface
z = 2xy while the control points and control normals for the control mesh in the middle row are sampled from a bicubic
Bézier surface, both with one extraordinary vertex in the center. The control points and control normals for the control mesh
in the bottom row are partially sampled from a circular cylinder with radius 15. An irregular vertex of valence 8 lies above
the center of the upper base of the cylinder with height 10 and the control normal at the point is chosen the unit upright
vector. Since the eigenvalues of subdivision matrices for meshes containing single irregular vertices of valence 3 already
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(@) (b)

() (b) ©

Fig. 11. Ring shape modeling by (a) Catmull-Clark subdivision; (b)&(c) PN-Catmull-Clark subdivision.

satisfy the G2 condition stated in Proposition 2.4, we only modify subdivision stencils for meshes surrounding irregular
vertices of valences greater than 4 for the modified Catmull-Clark subdivision or PN modified Catmull-Clark subdivision.
Figs. 9(a) and 9(b) show clearly that Catmull-Clark subdivision surfaces are not curvature continuous at the extraordinary
points while the surfaces obtained by the modified Catmull-Clark subdivision scheme have flat extraordinary points. Though
the PN-Catmull-Clark subdivision scheme can generate much fairer subdivision surfaces than Catmull-Clark subdivision, they
still suffer the curvature discontinuities at the extraordinary points; see Fig. 9(c). The pictures in Fig. 9(d) show that the
surfaces obtained by PN-modified Catmull-Clark subdivision are visually curvature continuous and the curvatures at the
extraordinary points are not vanishing.

6. Experimental examples

In this section we present several interesting examples to show the modeling effects of PN subdivision schemes, com-
parisons with some linear subdivision schemes are also given.

Fig. 10 illustrates two examples of surface detail modeling by PN subdivision. Given a planar uniform control grid, obvi-
ously, any linear subdivision scheme can only yield a planar patch. We edit surface details by editing control normals at the
vertices. Firstly, the control normals at the vertices are chosen from two given vectors alternately in the horizontal direction
and every two control normals are parallel with each other in the vertical direction. A wave-like shape following the control
normals is obtained by PN-Doo-Sabin subdivision; see Fig. 10(a). Besides wave-like shape, we can also model bumps on the
subdivision surface by editing control normals. Assume four unit vectors are uniformly chosen from a hemisphere. We line
up the vertices of the uniform control grid row by row and set control normals for the vertices from the four vectors repeat-
edly. As a result, a surface with regular distributed circular bumps is obtained by PN-Doo-Sabin subdivision; see Fig. 10(b)
for the subdivision surface.

Fig. 11(a) illustrates a ring shape surface by Catmull-Clark subdivision. The control mesh for the surface is constructed by
rotating a closed regular polygon along an axis that does not lie on the same plane with the polygon. Since the Catmull-Clark
subdivision surface with regular control mesh is actually a bicubic B-spline surface, it is not exactly a rotating surface. By
choosing all control normals pointing outwards and being parallel to the bottom plane, an exact rotating surface is obtained
by PN-Catmull-Clark subdivision; see Fig. 11(b). If the control normals at the vertices of the control mesh are edited further,
a ring shape surface with complex details is obtained by PN-Catmull-Clark subdivision; see Fig. 11(c).

Fig. 12 illustrates examples of wheel shape modeling by Catmull-Clark subdivision or PN-Catmull-Clark subdivision. Given
a control mesh as in Fig. 12(a), a wheel like shape is obtained by Catmull-Clark subdivision. Though the outer part and the
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(a) (b) (©

Fig. 12. Wheel shape modeling by (a) Catmull-Clark subdivision; (b)&(c) PN-Catmull-Clark subdivision.

0

(@ (b) ©

Fig. 13. PN subdivision surface modeling: (a) PN-Catmull-Clark subdivision; (b) PN-Doo-Sabin subdivision; (c) PN-Kobbelt subdivision.

inner part of the control mesh are regular, neither the outer contour profile nor the inner one is exactly circular because
the subdivision surfaces under regular control meshes are just bicubic B-spline surfaces. Assume the center of the control
mesh lies at the origin of a Cartesian coordinates system and the plane on which the control mesh lies on is parallel to
the xy-plane. We first choose control normal at each control point p; = (x;, ¥i,z)| as n; = normalize(x;, y;, 0)". A wheel
like shape that has exact circular contour profiles is obtained by PN-Catmull-Clark subdivision; see Fig. 12(b). Since the
control normals are all parallel to the xy-plane, the subdivision surface in Fig. 12(b) and the subdivision surface in Fig. 12(a)
have the same z-coordinates. If the control normals have been changed as in Fig. 12(c), the two ring parts within the
PN-Catmull-Clark subdivision surface resemble two toruses very well.

Fig. 13 presents examples of modeling surfaces with complex topology or salient geometric features by PN subdivision
schemes. Fig. 13(a) illustrates a PN-Catmull-Clark subdivision surface using control points and control normals. Except for
the top vertex that has no control normal, the control normals at all other control points are parallel to the bottom plane and
pointing outwards. As a result, the contour profile of the PN subdivision surface from the top view is circular. In Fig. 13(b) all
vertices of the control mesh are sampled from a cuboid with square bottom while all assigned control normals are parallel
to the bottom plane of the cuboid. Particularly, the control normals at the inner control points are pointing outwards and
the control normals at points on outside edges are perpendicular to the edges while no control normals are assigned at the
corner vertices. A square shaped surface with a circular hole is obtained by PN-Doo-Sabin subdivision. Fig. 13(c) illustrates
an interpolatory PN subdivision surface. A 6 x 6 quad mesh is constructed by points and normals sampled from a Dupin
cyclide. Due to the property of circle preserving, the outer silhouette circle, the inner silhouette circle and the six sampled
circles across these two silhouette circles are preserved very well by PN-Kobbelt subdivision.

Fig. 14(a) illustrates a quad mesh and the Catmull-Clark subdivision surface computed from the control mesh. The ex-
traordinary points on the surface are evidently noticed based on the Gaussian curvature plot. Fig. 14(b) illustrates the C2
subdivision surface with flat extraordinary points by the modified Catmull-Clark subdivision scheme proposed by (Prautzsch
and Umlauf, 1998). Figs. 14(c) and 14(d) are the subdivision surfaces with or without Gaussian curvature plot by our pro-
posed PN-modified Catmull-Clark subdivision scheme. The control normals at all control vertices for this and the next
example are computed as weighted sums of normal vectors of abutting faces with weights proportional to vertex angles of
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(a) (b) (© (d)

Fig. 14. Subdivision surfaces with Gaussian curvature plots or with control points and control normals by (a) Catmull-Clark subdivision; (b) modified
Catmull-Clark subdivision (Prautzsch and Umlauf, 1998); (c)&(d) PN-modified Catmull-Clark subdivision.

e

(c) ()]

(a)

Fig. 15. Subdivision surfaces with Gaussian curvature plots or with control points and control normals by (a) Loop subdivision; (b) modified Loop subdivision
(Prautzsch and Umlauf, 2000); (c)&(d) PN-modified Loop subdivision.

the faces. It is clearly seen that the curvature of the PN-modified Catmull-Clark subdivision surface is visually continuous
and the extraordinary points are hardly to be distinguished due to the smoothness and fairness of the subdivision surface.

Fig. 15(a) illustrates a triangular control mesh and the obtained Loop subdivision surface with Gaussian curvature plot
while Fig. 15(b) is the modified Loop subdivision surface by the technique proposed in (Prautzsch and Umlauf, 2000). We
note that the subdivision rules for extraordinary vertices of valence 4 or 5 are not changed for the modified scheme due to
the reason that the original stencils can already generate subdivision surfaces with bounded curvatures there. The curvature
plot shows that the modified Loop subdivision surface still suffers concentric undulations around the extraordinary points
of which the curvatures are forced zero. Figs. 15(c) and 15(d) are the PN-modified Loop subdivision surfaces with Gaussian
curvature plot or with control points and control normals. From the figure we see that the PN-modified Loop subdivision
surface is smooth and fair with visually continuous curvature even at the extraordinary points.

7. Discussions

From the theories and experimental results of PN subdivision we learn that control normals together with control poly-
gons or control meshes can achieve exact circular shapes, visually C2 subdivision surfaces with non-flat extraordinary points
and flexible detail editing on curves or surfaces. As control normals are subdivided independent of control points, the sub-
divided normals are generally not the normals of subdivision curves or surfaces except that the control points and control
normals lie on circles, circular cylinders or spheres. Even though, the effects of control normals on the shapes of PN sub-
division curves and surfaces can be predicted well at least in the following two cases: (1) the end points and end normals
of each edge match a local convex curve or lie on a circular arc; (2) the control normals at the two ends of an edge are
equal. In the first case the subdivided normals can approximate the normals of final subdivision curves or surfaces well. In
the second case, the PN subdivision reduces to linear subdivision with no or less influence of control normals. To achieve
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()

Fig. 16. Curve modeling by PN-10-point subdivision using control points and edited control normals.

(a) (b) ()

Fig. 17. Torus shape modeling by PN-Kobbelt subdivision: (a) the subdivision surface with 4 x 4 control points and control normals; (b) the Gaussian
curvature plot of the surface in (a); (c) the subdivision surface with 8 x 8 control points and control normals.

even more modeling effects, these two kinds of control normals can be applied together for curve and surface modeling by
PN subdivision.

Fig. 16 illustrates examples when the shape of a PN-2n-point subdivision curve can or cannot be predicted well from
control normals. Similar results hold for other PN subdivision curves or surfaces. The control points and control normals
within a closed polygon are first sampled from a circle and then every two initial normals are rotated by 40°, 90° or 150°
but the remaining ones are kept unchanged. By adapting the recursive linear 2n-point subdivision scheme given in (Deng
and Ma, 2013) to PN subdivision, three PN-10-point subdivision curves are obtained from the control points and control
normals. From the figure we see that the PN interpolatory subdivision curves can interpolate all control points but not
necessarily the control normals. It is also noticed that the subdivision curves follow the shape of control polygon and the
control normals as well when there exist local convex curves matching the end points and end normals for each edge;
see Figs. 16(a) and 16(b). Since every two neighboring normals in Fig. 16(c) have almost opposite directions, the normals
obtained by interpolatory subdivision also change rapidly and the subdivision curve even has unpredicted self-intersections.
To avoid defects like self-intersections or creases, initial control normals should change smoothly or slowly along the control
polygon or control mesh, or additional control points and control normals have to be added to help model curves or surfaces
with more complex details.

Unlike their linear counterparts, curves and surfaces constructed by approximate PN subdivision schemes such as PN-
B-spline subdivision, PN-Catmull-Clark subdivision, etc. may not lie in the convex hulls of their control points. The convex
hulls of PN subdivision curves and surfaces have to be computed by taking consideration of control points and control
normals together. In contrast to stationary linear subdivision schemes by which the limit points or even the limit normals
can be evaluated explicitly, the limit points of PN subdivision curves and surfaces may not be evaluated directly. They have
to be evaluated iteratively at present.

Though PN subdivision curves and surfaces can preserve typical shapes like circles, circular cylinders or spheres exactly,
PN subdivision surfaces that generalize simple linear schemes do not preserve toruses or cyclides which are composed
of families of circles. Fig. 17(a) illustrates a PN-Kobbelt subdivision surface with a total of 16 control points and control
normals sampled from a torus. Similar to the Dupin cyclide in Fig. 13(c), several geodesic circles on the torus are preserved
because the sampled points and normals on the surface are also the points and normals on the circles. As a result, the
PN subdivision surface resembles a torus shape very well. Even so, the Gaussian curvature plot in Fig. 17(b) illustrates
that the subdivision surface is not exactly a torus. If the subdivision surface is constructed with more control points and
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control normals sampled from the torus, it resembles the original surface more accurately; see Fig. 17(c). The approximate
PN subdivision surfaces may not pass through the control points, they do not preserve toruses or cyclides either.

8. Conclusions and future work

In this paper we have presented novel nonlinear subdivision schemes for constructing curves and surfaces with con-
trol points and control normals. Our proposed PN subdivision schemes generalize traditional linear subdivision schemes in
a simple and efficient way and the nonlinear subdivision schemes can be implemented almost in the same way as the
traditional linear ones. PN subdivision schemes can have same convergence and smoothness orders as linear subdivision
schemes, and they can reproduce circles, circular cylinders and spheres. The nice properties of the proposed subdivision
schemes make them powerful tools for geometric modeling. Besides modeling curves and surfaces with local details, PN
subdivision schemes are also capable of modeling fair curves and surfaces using simply chosen control normals. Particularly,
PN subdivision schemes can be simple solutions to modeling fair C2 subdivision surfaces with arbitrary topology control
meshes by adapting linear C2 subdivision schemes that only generate subdivision surfaces with flat extraordinary points.

As future work, a few interesting topics deserve further study: (a) curvature continuity analysis of PN C2 subdivision
surfaces with arbitrary topology control meshes; (b) computation of convex hulls or limit points of PN subdivision curves
and surfaces; (c¢) construction of PN subdivision curves and surfaces that have prescribed normals or curvatures at selected
points or curves; (d) exploring surface subdivision schemes that preserve other geometric primitives such as toruses or
cyclides.
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