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This paper proposes to generalize linear subdivision schemes to nonlinear subdivision 
schemes for curve and surface modeling by refining vertex positions together with 
refinement of unit control normals at the vertices. For each round of subdivision, new 
control normals are obtained by projections of linearly subdivided normals onto unit 
circle or sphere while new vertex positions are obtained by updating linearly subdivided 
vertices along the directions of the newly subdivided normals. Particularly, the new 
position of each linearly subdivided vertex is computed by weighted average of end 
points of circular or helical arcs that interpolate the positions and normals at the old 
vertices at one ends and the newly subdivided normal at the other ends. The main 
features of the proposed subdivision schemes are three folds: (1) The point-normal (PN) 
subdivision schemes can reproduce circles, circular cylinders and spheres using control 
points and control normals; (2) PN subdivision schemes generalized from convergent linear 
subdivision schemes converge and can have the same smoothness orders as the linear 
schemes; (3) PN C2 subdivision schemes generalizing linear subdivision schemes that 
generate C2 subdivision surfaces with flat extraordinary points can generate visually C2

subdivision surfaces with non-flat extraordinary points. Experimental examples have been 
given to show the effectiveness of the proposed techniques for curve and surface modeling.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Subdivision curves and surfaces are recursively generated free-form curves and surfaces from coarse polygons or rough 
initial meshes with arbitrary topology. Due to their flexility for shape representation and easiness to implement, subdivision 
curves and surfaces have become powerful tools for geometric modeling and computer graphics (DeRose et al., 1998; Dyn 
and Levin, 2002). This paper proposes a class of nonlinear subdivision schemes that generalize linear subdivision schemes 
for curve and surface modeling.

1.1. Related work

A large number of subdivision schemes used for geometric modeling are linear schemes. The subdivision algorithms 
presented by Chaikin (1974), Catmull and Clark (1978), Doo and Sabin (1978), Loop (1987), or Lane and Riesenfeld (1980), 
etc. are subdivision schemes generalizing uniform B-spline curves or surfaces. The schemes presented in (Sederberg et 
al., 1998; Cashman et al., 2009) are the generalizations of non-uniform B-spline curves and surfaces. The interpolatory 
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subdivision schemes such as the 4-point scheme (Dyn et al., 1987), the butterfly scheme (Dyn et al., 1990; Zorin et al., 1996) 
and the Kobbelt scheme (Kobbelt, 1996), etc. can generate smooth curves and surfaces no longer consisting of piecewise 
polynomials. The linear non-stationary subdivision schemes have level dependent masks and they can be used to generate 
curves and surfaces defined in mixed spaces composed of polynomials and transcendental functions (Fang et al., 2014; 
Conti and Dyn, 2021). Particularly, conics and rotational surfaces defined by trigonometric functions can be modeled by 
non-stationary subdivision schemes from regular control polygons or control meshes (Morin et al., 2001).

Nonlinear subdivision schemes include manifold valued subdivision and geometric subdivision. Linear subdivision 
schemes can be adapted to manifold valued subdivision by using geodesic averaging rules on manifolds, exponential map or 
by projection of linearly subdivided points onto surfaces (Wallner and Dyn, 2005). If the input data are scalars, the original 
data can be subdivided by nonlinear averaging (Schaefer et al., 2008). Newly subdivided vertices by geometric schemes for 
curve or surface modeling are computed by estimation of local geometric quantities like turning angles (Dyn and Hormann, 
2012), tangent lines or tangent planes (Yang, 2005, 2006), osculating circles (Sabin and Dodgson, 2005; Chalmovianský and 
Jüttler, 2007), or fitting Clothoids (Reif and Weinmann, 2021), etc. The geometric schemes for curve modeling can preserve 
circles or Clothoids and can generate tangent continuous curves as well but the geometric subdivision schemes for surface 
modeling have not been able to consistently outperform linear schemes (Cashman, 2012). By replacing the linear averaging 
steps of recursive subdivision schemes with circle averaging, visually smooth subdivision curves and surfaces can be gener-
ated (Cashman et al., 2013; Lipovetsky and Dyn, 2016, 2020). Though the recursive circle averaging schemes are promising 
for fair curve and surface modeling, the convergence and smoothness analysis of the schemes are not available.

Popular subdivision schemes such as Catmull-Clark subdivision and Loop subdivision have only C1 continuity at the ex-
traordinary points. This is not enough for fair shape design. Prautzsch and Umlauf (1998) first proposed to improve the 
smoothness orders of Catmull-Clark subdivision at extraordinary points by tuning the eigenvalues of subdivision matrices. 
The modified Catmull-Clark subdivision scheme generates C2 subdivision surfaces with forced zero curvature at the extraor-
dinary points. Levin (2006) proposed to update Catmull-Clark subdivision surfaces by blending with lower order polynomial 
patches near the extraordinary points. Similarly, Zorin (2006) proposed to blend Loop subdivision surfaces with parametric 
patches to achieve C2 continuity at the extraordinary points. Using order 1 jet data, jet subdivision with the same subdivi-
sion stencils as the Loop scheme can achieve flexible C2 continuity at extraordinary vertices of valence 3 (Xue et al., 2006). 
When a control mesh owns polar configuration, polar subdivision can be employed to generate C2 subdivision surfaces 
(Myles and Peters, 2009). Even though these pioneering algorithms work well under some situations, searching for a C2

surface subdivision algorithm that is easy to implement and capable of generating perfect shape is still the “holy grail” for 
geometric modeling (Reif and Sabin, 2019).

1.2. Our approach

We propose point-normal (PN) subdivision schemes for curve and surface modeling by generalizing traditional linear 
subdivision schemes. In addition to control points within initial control polygons or control meshes, we assume unit control 
normals are also given at all or partial control points. Unlike previous approaches that use control normals to compute 
initial matrix weights for matrix weighted rational subdivision (Yang, 2016) or compute refined points and normals from 
circles each fits two old point-normal pairs (Lipovetsky and Dyn, 2020), we compute refined control normals by projecting 
the linearly subdivided normals onto unit circle or sphere and update the linearly subdivided vertices along the newly 
subdivided normals by weighted averages of end points of circular or helical arcs that interpolate the subdivided normals 
at one ends as well as the old points and normals at the other ends.

The PN subdivision schemes can reproduce circles, circular cylinders or spheres when the initial control points and 
control normals are sampled from those geometric primitives, even with uneven sampling. This type of nonlinear subdivision 
can reduce to traditional linear subdivision when the control normals vanish or equal the same vector. We prove that the 
convergence and smoothness orders of univariate PN subdivision schemes as well as the convergence and C1 smoothness of 
bivariate PN subdivision schemes at the extraordinary points are the same as the corresponding linear subdivision schemes. 
Therefore, the proposed nonlinear subdivision can guarantee high orders of smoothness when the linear subdivision scheme 
does. We have also generalized the modified Catmull-Clark subdivision scheme that generates C2 subdivision surfaces with 
flat extraordinary points to PN modified Catmull-Clark subdivision scheme. It is observed that the PN C2 subdivision surfaces 
are curvature continuous too, but the curvatures at the extraordinary points can be no longer vanishing.

Briefly, the main contributions of the paper are as follows:

• We propose a class of nonlinear subdivision schemes by generalizing linear subdivision schemes. The new subdivision 
schemes permit shape control using control points and control normals and they can reproduce classical geometric 
primitives like circles, circular cylinders and spheres.

• The proposed nonlinear subdivision schemes have solid theoretical foundations. It is proved that the convergence and 
high orders of smoothness of univariate PN subdivision schemes as well as the C1 smoothness of bivariate PN subdivi-
sion at the extraordinary points are the same as the linear schemes.

• PN subdivision schemes can be simple solutions to modeling fair C2 subdivision surfaces. Particularly, the PN subdivision 
schemes generalizing linear schemes that generate C2 subdivision surfaces with flat extraordinary points can generate 
visually C2 subdivision surfaces with non-flat extraordinary points.
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1.3. Outline

The paper is organized as follows. In Section 2 we review some basic results of binary subdivision and we present new 
subdivision schemes in Section 3. Section 4 is devoted to the theoretical analysis of convergence and smoothness of the 
proposed subdivision schemes. We further construct PN C2 subdivision surfaces in Section 5. We present several modeling 
examples by the proposed schemes in Section 6 as well as some discussions in Section 7. Section 8 concludes the paper 
with a brief summary.

2. Preliminaries and notations

This section review some basic results about binary linear or nonlinear subdivision which serve as preliminaries of our 
proposed new subdivision schemes. Notations are introduced simultaneously.

2.1. Univariate binary subdivision

Assume {p0
i : i ∈ Z} are a sequence of points in 2D or 3D space, the binary subdivision of the polygon defined by the 

given points with mask a = {ai : i ∈Z} is as follows

pk+1
i =

∑
j∈Z

ai−2 jp
k
j, i ∈Z. (1)

Assume

Pk = (· · · ;pk
j−1;pk

j;pk
j+1; · · · )

be a column of points pk
j , j ∈ Z. Note that the symbol (pa, pb, pc) represents a row of elements pa , pb and pc . We use 

(pa, pb, pc)
�blk := (pa; pb; pc) to denote the transpose of a matrix in terms of block elements in the following text. The 

conventional transpose of a vector or matrix V is represented by V� .
Let

Sa =

⎛
⎜⎜⎜⎝

· · · · · · · · · · · · · · ·
· · · ai−1−2( j−1) ai−1−2 j ai−1−2( j+1) · · ·
· · · ai−2( j−1) ai−2 j ai−2( j+1) · · ·
· · · ai+1−2( j−1) ai+1−2 j ai+1−2( j+1) · · ·
· · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎠

be a bi-infinite matrix. Then Equation (1) can be reformulated in matrix form as

Pk+1 = Sa Pk. (2)

Particularly, pk+1
i = (Sa)i Pk , where (Sa)i represents the ith row of the matrix Sa . It is always assumed that the mask a

has a limited support for subdivision curve or surface modeling. This just implies that each row of matrix Sa has a limited 
number of non-zero elements.

The symbol of subdivision scheme Sa with mask a is given by a(z) = ∑
i∈Z ai zi . A necessary condition for the conver-

gence of the subdivision scheme Sa is that the mask should satisfy 
∑

j a2 j = ∑
j a2 j+1 = 1. See Theorem 1 in (Dyn, 2002). 

Since a(1) = 2 and a(−1) = 0, the symbol can be factorized into

a(z) = (1 + z)q(z).

Let �Pk = {�pk
i = pk

i − pk
i−1 : i ∈Z}. From Theorem 2 in (Dyn, 2002) we know that

�Pk+1 = �(Sa Pk) = Sq�Pk.

Let �(Sa)i = (Sa)i − (Sa)i−1. The elements within �Pk+1 are computed by

�pk+1
i = �(Sa)i Pk = (Sq)i�Pk, i ∈Z.

Assume Pk(t) be a piecewise linear curve that interpolates points pk
i at knots 2−ki for i ∈ Z. If the sequence of curves 

{Pk(t), k ∈ Z+} converge uniformly to a limit curve P (t) as k approaches infinity, the curve P (t) is continuous. Then, the 
subdivision scheme Sa is convergent and denoted as Sa ∈ C0. On the other hand, if �Pk+1 = Sq�Pk tends to zero as k
approaches infinity, it means that the scheme Sq is contractive. It is shown (Theorem 3 in (Dyn, 2002)) that the subdivision 
scheme Sa converges if and only if the scheme Sq is contractive. For algorithm details on checking whether or not the 
scheme Sq is contractive, we refer the readers to (Dyn, 2002).
3
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Besides convergence, higher orders of smoothness of a subdivision curve can also be checked by using the symbol a(z)
of the scheme. If a(z) = (1+z)m

2m b(z), the mth order differences of Pk can be computed by

�m Pk

(2−k)m
= �m Sa Pk−1

(2−k)m
= Sb

�m Pk−1

(2−(k−1))m
, (3)

where �m = �(�m−1) is defined recursively. From the representation �m Sa = (· · · ; �m(Sa)i−1; �m(Sa)i; �m(Sa)i+1; · · · ), 
we know that the two operators used to compute the differences of subdivided vertices from old ones by Equation (3)
satisfy

�m(Sa)i = (Sb)i

2m
�m. (4)

From Theorem 4 in (Dyn, 2002) we know that the subdivision scheme Sa ∈ Cm when Sb is convergent. Particularly, the mth 
order derivative of the limit curve P (t) at each dyadic point is obtained as

lim
k→∞

k>l

(
�m Pk

(2−k)m

)
i2k−l

= P (m)(i2−l).

It is also known that a Cm continuous subdivision curve has Hölder regularity of Cm+α , where 0 < α ≤ 1. How to compute 
the Hölder regularity has been discussed in (Rioul, 1992; Dyn and Levin, 2002; Hormann and Sabin, 2008). If the subdivision 
scheme Sa ∈ Cm , the differences of the subdivided points satisfy∥∥∥∥∥�mpk

i

2−km
− �mpk

i−1

2−km

∥∥∥∥∥ < c02−kα (5)

where ‖ · ‖ represents the Euclidean norm of a vector and c0 is a constant. We denote the norm of a point sequence or a 
difference sequence within this paper as follows∥∥∥∥∥ �m Pk

(2−k)m

∥∥∥∥∥∞
= sup

i∈Z

{∥∥∥∥∥�mpk
i

2−km

∥∥∥∥∥
}

.

In contrast to stationary subdivision that has a fixed mask during the whole subdivision process, the mask can also be 
level dependent or even position dependent when a non-stationary or non-uniform subdivision curve is generated. Assume 
that ak = {ak

i : i ∈Z}k∈Z+ , the points refined by the non-stationary subdivision scheme are obtained as

Pk+1 = Sak Pk.

Dyn and Levin (1995) first proposed the asymptotically equivalent theory for analyzing the convergence and smoothness of 
non-stationary subdivision schemes by comparing with the stationary ones. The subdivision scheme S{ak } is asymptotically 
equivalent with Sa , if∑

k∈Z+

‖Sak − Sa‖∞ < +∞,

where ‖Sak − Sa‖∞ = maxi∈{0,1}
∑

j∈Z |ak
i−2 j −ai−2 j |. If S{ak} is asymptotically equivalent with Sa , it is denoted as S{ak} ≈ Sa . 

Furthermore, the subdivision scheme S{ak} is termed stable if there exists a constant Ka > 0 such that for all k, n ∈Z+ ,

‖Sak+n · · · Sak+1 Sak ‖∞ < Ka.

Proposition 2.1. (Theorem 7b in (Dyn and Levin, 1995)) If S{ak} ≈ Sa, where Sa is a C0 stationary binary subdivision scheme with a 
finitely supported mask, then S{ak} is C0 and stable.

Though asymptotical equivalence is useful for convergence analysis of non-stationary or even nonlinear subdivision, 
but it is too restrictive for smoothness analysis of general non-stationary or nonlinear subdivision. Instead, the following 
proposition serves as a basic tool for such purposes.

Proposition 2.2. (Proposition 3.1 in (Dyn et al., 2014)) Let S{ak} be a linear and stable (C0) subdivision scheme. Let {εk}k∈Z+ be a 
sequence of sequences, εk = {εk

j } j∈Z , satisfying

∞∑
‖εk‖∞ < +∞.
k=1

4
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Then, the perturbed subdivision scheme

f k = Sak f k−1 + εk, k = 1,2, . . .

converges to a C0 limit for any initial data f 0 ∈ l∞(Z).

Propositions 2.1 and 2.2 together with Equation (3) and Equation (4) will be used as basic tools for the convergence and 
smoothness analysis of univariate PN subdivision schemes in Section 4.1.

2.2. Subdivision surfaces with extraordinary vertices

Bivariate subdivision schemes defined on regular quad meshes or regular triangulations can have symbol a(z) = a(z1, z2). 
In particular, if a(z1, z2) have factors like (1 + z1)

m or (1 + z2)
m , etc., the convergence and smoothness of bivariate sub-

division on regular meshes can be analyzed using the same technique as that for univariate subdivision. See references 
(Cavaretta et al., 1991; Dyn and Levin, 2002) for more details on this topic. On the other hand, convergence and smoothness 
of subdivision surfaces at extraordinary vertices have to be analyzed in a different way.

Vertices of valence not equal to 4 within a quad mesh and vertices of valence not equal to 6 within a triangular mesh are 
extraordinary vertices. While stationary subdivision surfaces with regular control meshes are actually parametric surfaces 
defined by control points and refinable basis functions, the subdivision surface near an extraordinary vertex is just composed 
of a sequence of surface rings (Reif, 1995). We take similar notations as used in (Peters and Reif, 2008). Assume Q =
(q0; . . . ; ql̄) be a set of control points surrounding an isolated extraordinary vertex of valence n. Let

�0 := [0,1]2\[0,1/2)2, �m := 2−m�0, Sm
n := �m ×Zn, m ∈N0,

with Zn the integers modulo n. Then the surface ring xm is a parametric surface defined on domain Sm
n and the whole 

domain for the subdivision surface near the extraordinary vertex is

Sn =
⋃

m∈N0

Sm
n ∪ {0}.

Let G := (g0, . . . , gl̄), where gl ∈ Ck(S0
n, R), l = 0, . . . , ̄l, are a set of scalar valued generating functions (see Definition 4.9 

in (Peters and Reif, 2008)) that form a partition of unity, 
∑l̄

l=0 gl(s) = 1, s ∈ S0
n . The surface ring x0(s) is then represented 

as

x0(s) =
l̄∑

l=0

gl(s)ql = G(s)Q .

Let S = (si j)0≤i, j≤l̄ be a subdivision matrix with all rows summing up to 1. The control points for the mth surface ring are 
obtained as Q m = S Q m−1 = . . . = Sm Q and the surface ring is

xm(s) = G(2ms)Q m = G(2ms)Sm Q . (6)

When the surface rings {xm}m∈N0 converge to a limit point, the subdivision surface converges at the extraordinary point. If 
the normal vectors of the surface rings also converge to a limit vector, the subdivision surface is normal continuous at the 
limit point (Doo and Sabin, 1978; Reif, 1995).

Most popular linear subdivision algorithms for surface modeling are standard algorithms of each the subdivision matrix S
has eigenvalues

λ0 = 1 > λ1 = λ2 > |λ3| ≥ . . . .

Assume the right eigenvectors of the matrix S are vi , i = 0, 1, . . . , ̄l, and the left ones are w�
i , i = 0, 1, . . . , ̄l. Then the 

matrix S can be decomposed as S = V J V −1, where V = (v0, v1, . . . , vl̄), V −1 = (w�
0 ; w�

1 ; . . . ; w�̄
l

) and J is the Jordan 
matrix in terms of the eigenvalues. Since each row of the matrix S sums up to one, the eigenvector corresponding to λ0 = 1
is v0 = 1 := (1; 1; . . . ; 1).

Let λ = λ1 = λ2, F = G V = ( f0, f1, f2, . . .) and P = V −1 Q = (p0; p1; p2; . . .). In particular, we have f0 = G v0 = 1, f i =
G vi , i = 1, 2, and pi = w�

i Q , i = 0, 1, 2. Since λ < 1, by reformulating xm as

xm = G Sm Q = G V Jm V −1 Q = F Jm P ,

the surface ring can be asymptotically expanded as

xm ∼= p0 + λm( f1p1 + f2p2) = p0 + λm�(p1;p2), (7)
5
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where � = ( f1, f2) is the characteristic ring (Reif, 1995). From Equation (7), it is known that the surface rings converge to 
a central point as

lim
m→+∞ xm = p0.

By the eigen-decomposition above, one also has

lim
m→+∞ Sm Q = lim

m→+∞ V Jm P = p01. (8)

Let ×D� = D1 f1 D2 f2 − D2 f1 D1 f2 be the Jacobian determinant of the characteristic ring. The characteristic ring � is regular 
when the sign of × D� does not change nor vanishes.

For almost all initial control nets, the control points around an extraordinary vertex may not lie on a line or degenerate 
to one point, it is then assumed that p1 and p2 within Equation (7) are linear independent. Based on this assumption, the 
normal vector at the central point p0 will be defined and the subdivision surface can be normal continuous at the central 
point.

Proposition 2.3. (Theorem 5.6 in (Peters and Reif, 2008)) A standard algorithm with characteristic ring � is normal continuous with 
central normal

nc = sign(×D�)
p1 × p2

‖p1 × p2‖ ,

if � is regular.

Besides normal continuity, a subdivision surface can have even higher orders of smoothness at the extraordinary points 
(Prautzsch, 1998). In particular, the G2 (also C2 by reparameterization) continuity at the extraordinary points can be guar-
anteed when the subdivision matrix S satisfies the following condition.

Proposition 2.4. (Theorem 2.1 in (Prautzsch and Umlauf, 1998))1 Let 1, λ, λ, μ, . . . , ζ be all the (possibly complex) eigenvalues of S
where 1 > |λ| > |μ| ≥ . . . ≥ |ζ | and assume two eigenvectors c and d associated with the double real eigenvalue λ. If the first surface 
ring of the net given by [c1 . . . cm]� = [c d] is regular without self-intersections and

|λ|k > |μ|, k = 1,2,

then the limiting surface is a Gk-surface for almost all initial nets M0.

As will be given in Section 4.2, we analyze the smoothness of a PN subdivision surface at an extraordinary point by com-
paring with a sequence of linear subdivision surfaces. By computing the central normal vector for every linear subdivision 
surface, the normal vector at the central point of the PN subdivision surface will be obtained and the normal continuity of 
the PN subdivision surface will be proved. Proposition 2.4 plays key roles for constructing C2 subdivision surfaces as well 
as PN C2 subdivision surfaces with arbitrary topology control meshes in Section 5.

2.3. Binary subdivision on sphere

Subdivision of points on a circle or sphere can be used to construct smooth normal fields and has been applied suc-
cessfully for rendering or animation purposes (Alexa and Boubekeur, 2008; Wallner and Pottmann, 2006). In this paper we 
study nonlinear subdivision schemes for curve and surface modeling along with construction of smooth normal fields by 
subdivision.

Though linear subdivision schemes can be adapted to data on sphere in several different ways, the projection method 
composed of linear subdivision followed by a normalization step is one simple but efficient method. Assume {n0

i : i ∈Z} are 
points lying on a unit circle or sphere, the subdivided points are computed by

nk+1
i =

∑
j∈Z ai−2 jnk

j

‖∑
j∈Z ai−2 jnk

j‖
, i ∈Z.

We assume here that the input points on the circle or sphere are locally dense enough such that the denominator does not 
vanish.

1 See also Theorem 1 in (Prautzsch and Umlauf, 2000).
6
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The convergence and C1 continuity of manifold valued subdivision can be analyzed by proximity (Wallner and Dyn, 
2005). Xie and Yu (2007) showed that the projection based univariate interpolatory subdivision on a sphere has the same 
smoothness orders as well as the same Hölder regularity as that for linear subdivision while Grohs (2009) proved the 
smoothness equivalence between the projection based univariate approximate subdivision on sphere and the linear sub-
division. Assume the linear subdivision scheme Sa ∈ Cm and has the Hölder regularity Cm+α , where 0 < α ≤ 1. Then the 
subdivision curve n(t) on sphere has maximum mth order of continuous derivatives. Similar to Equation (5), the differences 
of subdivided points on sphere satisfy∥∥∥∥∥�mnk

i

2−km
− �mnk

i−1

2−km

∥∥∥∥∥ < c12−kα, (9)

where c1 is a constant.
Besides the univariate subdivision on sphere, linear subdivision schemes for regular or irregular meshes can also be 

adapted to meshes on sphere. In particular, we have to pay much attention to convergence and smoothness of subdivision 
near extraordinary vertices. Assume N = [n0; . . . ; nl̄] be a set of points surrounding an isolated extraordinary vertex of 
valence n on sphere and S = (si j)0≤i, j≤l̄ be the subdivision matrix as in Equation (6). Then the points on sphere are refined 
recursively as follows

nk+1
i =

∑l̄
j=0 si jnk

j

‖∑l̄
j=0 si jnk

j‖
, i = 0,1, . . . , l̄. (10)

Weinmann (2010) has shown that the manifold valued subdivision adapted from a standard scheme on irregular meshes 
converges and the limit function is C1 continuous in the vicinity of an extraordinary point over Reif’s characteristic 
parametrization. We modify Proposition 2.7 in (Weinmann, 2010) for distance estimation between subdivided points near 
an extraordinary vertex on sphere, which will be used for convergence and smoothness analysis for our newly proposed 
nonlinear subdivision scheme for irregular meshes.

Proposition 2.5. Let S = (si j)0≤i, j≤l̄ be a standard subdivision matrix. Assume n0
j , j = 0, 1, . . . , ̄l, are unit normals corresponding to 

vertices in the vicinity of an extraordinary vertex on an irregular mesh, and nk
j , j = 0, 1, . . . , ̄l, k ∈N , are given by Equation (10). There 

exist constants c2 > 0, 0 < γ < 1, such that

‖nk
j − nk

l ‖ ≤ c2γ
k, j, l ∈ {0,1, . . . , l̄}.

3. Point-normal subdivision schemes

We generalize linear subdivision schemes that only refine polygon or mesh vertices to point-normal subdivision schemes 
that refine polygon or mesh vertices along with the refinement of unit control normals at the vertices. Some basic geometric 
properties of PN subdivision schemes will be given.

3.1. The PN subdivision schemes

Assume a = {ai : i ∈ Zs} is the mask for univariate (s = 1) or bivariate (s = 2) linear subdivision on regular meshes. Let 
{(p0

i , n
0
i ) : i ∈Zs} be the initial control points and unit control normals on a polygon or a regular mesh. The polygon or the 

mesh with initial control normals is subdivided as follows⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qk+1
i = ∑

j∈Zs ai−2 jpk
j,

nk+1
i =

∑
j∈Zs ai−2 jnk

j

‖∑
j∈Zs ai−2 j nk

j‖
, i ∈Zs,

pk+1
i = qk+1

i + ∑
j∈Zs ai−2 jhk

i jn
k+1
i ,

(11)

where

hk
ij = (nk

j + nk+1
i )�(pk

j − qk+1
i )

(nk
j + nk+1

i )�nk+1
i

.

Besides uniform binary subdivision on regular meshes, any other linear subdivision schemes on regular or irregular control 
meshes can also be extended to PN subdivision. Replacing ai−2 j within Equation (11) with si j , i, j ∈ {0, 1, . . . , ̄l}, which are 
originally given in Equation (6), we obtain PN subdivision schemes for irregular meshes surrounding extraordinary vertices 
7
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Fig. 1. Geometric interpretation of the PN subdivision scheme.

or extraordinary faces. The new subdivision schemes are referred as PN-4-point, PN-Catmull-Clark, PN-Butterfly, etc. when 
they are generalized from traditional linear subdivision schemes 4-point, Catmull-Clark, Butterfly, etc.

Fig. 1 illustrates how a newly subdivided point is computed by a PN subdivision scheme. When a linearly subdivided 
point qk+1

i and a unit vector nk+1
i are computed, a line L that passes through point qk+1

i in the direction nk+1
i is obtained. 

Then a height hk
i j from qk+1

i along the line L is derived based on the assumption that a circular or helical arc interpolates 
points pk

j and qk+1
i + hk

i jn
k+1
i as well as the normal vectors nk

j and nk+1
i at the two points. The interpolating curve is a 

circular arc when points pk
j , qk+1

i and vectors nk
j , nk+1

i lie on the same plane; otherwise, the interpolating curve is a helix 
segment on a circular cylinder that passes through point pk

j and be perpendicular to normals nk
j and nk+1

i at the two ends. 
The weighted average of the arc end points lying on the line L gives the final new point pk+1

i . Actually, if the original 
control points and control normals are sampled from a smooth curve or surface without inflection point or inflection line, 
the newly subdivided normal may approximate the curve or surface normal very well and the mentioned circular arcs 
are just the approximate osculating arcs of the curve or surface at the sampled points, which guarantees that the newly 
subdivided point lies on or close to the original curve or surface. As explained later, this kind of nonlinear subdivision can 
preserve circles, circular cylinders and spheres, and they even have the same convergence and smoothness orders as the 
corresponding linear subdivision.

We note that selected initial control normals or a linearly subdivided normal can vanish. If a linearly subdivided normal 
is a zero vector, it will not be normalized and the new vertex computed by Equation (11) is just the linearly subdivided 
vertex. Even if a newly subdivided normal nk+1

i does not vanish, it may have opposite direction with an old control normal 
nk

j and the updating height hk
i j within Equation (11) will not be defined. If this is the case, one can just perturb the 

normal vector nk+1
i into e.g. 2nk+1

i within the formula for computing the height hk
i j . If the subdivided control normals are 

computed with no singularities in the first round of subdivision, there will be no singularities in the following subdivision. 
This is because the subdivided normals will become denser and denser during the subdivision and the newly subdivided 
normals will be very close to their old neighboring normals.

For convenience of convergence and smoothness analysis to be developed in next section, we reformulate the univariate 
PN subdivision scheme in matrix form. Since the normal vectors are subdivided independent of mesh vertices, we rewrite 
the last expression in Equation (11) as

pk+1
i = qk+1

i +
∑
j∈Z

ai−2 j Ak
i j(pk

j − qk+1
i ), (12)

where

Ak
ij = nk+1

i (nk
j + nk+1

i )�

(nk
j + nk+1

i )�nk+1
i

.

Note that when the subdivided normals converge, the denominator within Ak
ij will converge to 2 as k approaches infinity. 

Then, the matrices Ak
ij are usually well defined for PN subdivision. Recall that 

∑
j∈Z ai−2 j = 1. Substituting the expression 

of qk+1
i , Equation (12) can be further reformulated as

pk+1
i =

∑
j∈Z

ai−2 j M
k
i jp

k
j, i ∈Z (13)

where Mk = I + ∑
l∈Z ai−2l(Ak − Ak ) and I is the identity matrix. It is easily verified that 

∑
j∈Z ai−2 j Mk = I .
i j i j il i j

8
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Let Pk be as defined in Equation (2) and let

Mk =

⎛
⎜⎜⎜⎜⎜⎝

· · · · · · · · · · · · · · ·
· · · Mk

i−1, j−1 Mk
i−1, j Mk

i−1, j+1 · · ·
· · · Mk

i, j−1 Mk
i, j Mk

i, j+1 · · ·
· · · Mk

i+1, j−1 Mk
i+1, j Mk

i+1, j+1 · · ·
· · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎠

be a bi-infinite matrix. Then Equation (13) can be reformulated as

Pk+1 = (Sa ◦ Mk)Pk, (14)

where Sa ◦ Mk = (ai−2 j Mk
i, j)i, j∈Z is the Hadamard product of matrices Sa and Mk . We use {Sa ◦ Mk} to denote the PN 

subdivision scheme that is generalized from a stationary subdivision scheme Sa . From Equation (14) we have

pk+1
i = (Sa ◦ Mk)i Pk

= ((Sa)i ◦ Mk
i )Pk

= (Sa)i((Mk
i )

�blk ◦ Pk), i ∈ Z

(15)

where (M)i = Mi is the ith row of the matrix M . In particular,

(Sa)i = (. . . ,ai−2( j−1),ai−2 j,ai−2( j+1), . . .)

and

(Mk
i )

�blk = (. . . ; Mk
i, j−1; Mk

i, j; Mk
i, j+1; . . .).

We note that (Sa)i also means (. . . , ai−2( j−1) I, ai−2 j I, ai−2( j+1) I, . . .) when it is used to compute subdivided vertices.

3.2. Basic geometric properties

We present several basic geometric properties of the proposed PN subdivision schemes, which are useful for curve and 
surface modeling by employing the new subdivision technique.

Property 3.1. (Geometric invariance) The PN subdivision curves and surfaces are translation/scaling invariant, and the shapes of the 
subdivision curves and surfaces are also invariant under the rotation of the coordinate system.

Proof. The translation/scaling invariant property is obvious based on Equation (13), we prove that the PN subdivision is 
invariant under the rotation of the coordinate system. We rewrite Equation (13) as follows

pk+1
i =

∑
j

ai−2 j

∑
l

ai−2l(I + Ak
ij − Ak

il)pk
j .

We only check that Ak
ijp

k
j is invariant under the rotation of the coordinate system, Ak

ilp
k
j can be checked similarly. Assume 

R is a rotation matrix that satisfies R� R = I and R−1 = R� . We have

R(Ak
ijp

k
j) = Rnk+1

i (R� Rnk
j+R� Rnk+1

i )�pk
j

(nk
j+nk+1

i )� R� Rnk+1
i

= Rnk+1
i (Rnk

j+Rnk+1
i )� Rpk

j

(Rnk
j+Rnk+1

i )� Rnk+1
i

.

Since Rpk
j , Rnk

j and Rnk+1
i are points or vectors in the rotated coordinate system, the proposition is proven. �

Property 3.2. (Invariance to normal direction) The PN subdivision curves and surfaces are invariant when all control normals have 
been inversed.

Proof. Equation (11) holds when all vectors within the equation have been replaced with their opposite vectors. So, the 
property holds. �

Based on Property 3.2, we will not emphasize the side of a control polygon or a control mesh in which the control 
normals lie when constructing a PN subdivision curve or surface.
9
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Property 3.3. (Reduce to linear subdivision). If all initial control normals are the same vector, the PN subdivision scheme presented in 
Equation (11) reduces to a linear subdivision scheme.

Proof. Assume n0
i = n0, i ∈Zs , we have nk

i = n0 for all i ∈Zs and k ∈Z+ . Then Equation (11) can be simplified as

pk+1
i = qk+1

i + ∑
j∈Zs ai−2 j(n0)

�(pk
j − qk+1

i )n0

= qk+1
i + (n0)

�(
∑

j∈Zs ai−2 jpk
j − qk+1

i )n0

= ∑
j∈Zs ai−2 jpk

j .

This proves the property. �
Same as linear subdivision schemes, PN subdivision schemes can reproduce straight lines and planes. Moreover, PN 

subdivision schemes can also reproduce circles, circular cylinders and spheres.

Property 3.4. (Circle preserving). If the initial control data (p0
i , n

0
i ), i ∈ Z, are sampled from a circle, then all the newly subdivided 

points and normals by PN subdivision lie on the same circle.

Proof. Due to the geometric invariance property, we assume the initial control data are sampled from a unit circle centered 
at the origin. It implies that p0

i = n0
i , i ∈Z. To prove the property, we should then prove that all newly subdivided vertices 

lie on the unit circle as the initial data. Assume pk
i = nk

i , i ∈Z, are points and normals lying on the unit circle. Let

lk+1
i =

∥∥∥∥∥∥
∑
j∈Z

ai−2 jp
k
j

∥∥∥∥∥∥ =
∥∥∥∥∥∥
∑
j∈Z

ai−2 jn
k
j

∥∥∥∥∥∥ .

We have nk+1
i = 1

lk+1
i

∑
j∈Z ai−2 jnk

j and qk+1
i = ∑

j∈Z ai−2 jpk
j = lk+1

i nk+1
i . Then the heights hk

i j are computed as

hk
ij = (nk

j+nk+1
i )�(pk

j−qk+1
i )

(nk
j+nk+1

i )�nk+1
i

= (nk
j+nk+1

i )�(nk
j−lk+1

i nk+1
i )

(nk
j+nk+1

i )�nk+1
i

= 1 − lk+1
i .

Now, the newly subdivided point is obtained as

pk+1
i = qk+1

i + ∑
j∈Z ai−2 jhk

i jn
k+1
i

= lk+1
i nk+1

i + ∑
j∈Z ai−2 j(1 − lk+1

i )nk+1
i

= nk+1
i .

Since ‖pk+1
i ‖ = ‖nk+1

i ‖ = 1, the newly subdivided points and normals lie on the same circle as the initial control data. �
Fig. 2 illustrates the circle preserving property of PN subdivision schemes. With unevenly sampled points and normals 

from a circle, two PN subdivision curves are obtained by PN-6-point subdivision scheme or by PN cubic B-spline subdivision 
scheme, respectively. The curvature combs show that both of the two PN subdivision schemes reproduce the circle exactly. 
As old vertices are generally not preserved by PN cubic B-spline subdivision, it generates a subdivision curve with more 
uniform vertices than the PN-6-point subdivision curve which interpolates all vertices.

Property 3.5. (Cylinder and sphere preserving). If the initial control data (p0
i , n

0
i ), are sampled from a circular cylinder or a sphere, 

then all the newly subdivided points and normals (pk
i , n

k
i ), k ∈Z+ , by PN subdivision lie on the same cylinder or sphere.

Proof. The proof of sphere preserving is the same as that for circle preserving, we prove the property of cylinder preserving.
W.l.o.g. we assume the generatrix of a cylinder is parallel to the z-axis, and the coordinates of the kth subdivided points 

and normals are given by pk
i = (nk

ix, n
k
iy, z

k
i )

� and nk
i = (nk

ix, n
k
iy, 0)� . The perpendicular projection of the points and normals 

onto the xy-plane are p̄k
i = n̄k

i = nk
i . Based on Equation (11), the projection of the subdivided point pk+1

i onto the xy-plane 
is obtained as
10
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Fig. 2. PN subdivision curves with curvature combs: (a) PN-6-point subdivision; (b) PN cubic B-spline subdivision.

Fig. 3. (a) Catmull-Clark subdivision and (b) PN-Catmull-Clark subdivision of a quad mesh with vertices and normals sampled from a cylinder.

p̄k+1
i = q̄k+1

i + ∑
j ai−2 jhk

i jn̄
k+1
i

= q̄k+1
i + ∑

j ai−2 j
(nk

j+nk+1
i )�(pk

j−qk+1
i )

(nk
j+nk+1

i )�nk+1
i

n̄k+1
i

= q̄k+1
i + ∑

j ai−2 j
(n̄k

j+n̄k+1
i )�(p̄k

j−q̄k+1
i )

(n̄k
j+n̄k+1

i )�n̄k+1
i

n̄k+1
i ,

where q̄k+1
i = ∑

j ai−2 j p̄k
j and n̄k+1

i =
∑

j ai−2 j n̄k
j

‖∑
j ai−2 j n̄k

j‖
. From the above expression we know that p̄k+1

i is also the subdivided 

point by the projected points p̄k
j and projected normals n̄k

j . Because the PN subdivision of the projected data (p̄0
i , n̄

0
i ) is 

circle preserving, the PN subdivision of original data (p0
i , n

0
i ) is cylinder preserving. �

Fig. 3(a) illustrates a quad mesh with vertices sampled from a circular cylinder and a deformed cylinder-like surface 
generated by traditional Catmull-Clark subdivision. If normal vectors at the vertices are also sampled, a circular cylinder 
surface that passes through all control vertices is obtained by PN-Catmull-Clark subdivision; see Fig. 3(b). Fig. 4(a) illustrates 
a Butterfly subdivision surface constructed from a tetrahedron. By choosing all initial vertex normals as of a sphere, the PN-
Butterfly subdivision surface reproduces the sphere exactly; see Fig. 4(b) for the obtained surface.

4. Convergence and smoothness analysis

This section presents convergence and smoothness analysis of the proposed subdivision schemes. As the convergence 
and smoothness of subdivided normals by Equation (11) have already been discussed in Section 2.3, we pay our attention 
to convergence and smoothness analysis of PN subdivision curves and surfaces.
11
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Fig. 4. (a) Butterfly and (b) PN-Butterfly subdivision of a triangular mesh with vertices and normals sampled from a sphere.

4.1. Analysis of univariate PN subdivision schemes

We first analyze the convergence of univariate PN subdivision scheme defined by Equation (11) or given by Equation 
(13).

Theorem 4.1. Assume Sa be the linear subdivision scheme as defined by Equation (1) and {Sa ◦ Mk} be the PN subdivision scheme as 
given by Equation (13). If Sa ∈ C0 , then {Sa ◦ Mk} ≈ Sa and {Sa ◦ Mk} converges.

Proof. We prove the convergence of the PN subdivision scheme {Sa ◦ Mk} by comparing with the linear subdivision scheme 
Sa . Let

A(X1, X2) = X1(X1 + X2)
�

(X1 + X2)� X1
, X1, X2 ∈ S2. (16)

The matrix Ak
ij in Equation (12) is given by Ak

ij = A(nk+1
i , nk

j). Under the assumption that Sa ∈ C0, we know that the 
subdivided normal vectors nk

i converge and the spherical subdivision curve n(t) discussed in Section 2.3 is continuous. 
Assume n(t) has the Hölder regularity of C0+α , where 0 < α ≤ 1. It follows that the function A(X1, n(t)) has also the 
Hölder regularity of C0+α with the variable X1 a fixed vector.

Suppose | j − l| < B , where B is the bound of the support of the mask of Sa . Applying Equation (9), we have ‖nk
j − nk

l ‖ <
Bc12−kα and

‖Ak
ij − Ak

il‖∞ = ‖A(nk+1
i ,nk

j) − A(nk+1
i ,nk

l )‖∞
≤ c A2−kα

≤ c Aγ k,

where c A is a constant and γ = 2−α ∈ (0, 1). Based on the expression Mk
ij = I +∑

l∈Z ai−2l(Ak
ij − Ak

il), we have ‖Mk
ij − I‖∞ ≤

‖Sa‖∞c Aγ k . It follows that

‖(Sa)i ◦ Mk
i − (Sa)i‖∞ =

∑
j

‖ai−2 j(Mk
ij − I)‖∞ ≤ cMγ k,

where cM = ‖Sa‖2∞c A . Since the constant cM is independent of the index i, we have

‖Sa ◦ Mk − Sa‖∞ ≤ cMγ k.

From this inequality, we have 
∑

k ‖Sa ◦ Mk − Sa‖∞ < +∞. This implies that {Sa ◦ Mk} ≈ Sa . Based on Proposition 2.1 we 
know that the PN subdivision scheme {Sa ◦ Mk} converges. �

We then prove the higher orders of smoothness of univariate PN subdivision schemes. In the remainder part of this sub-
section we assume that the linear subdivision scheme Sa ∈ Cm is given by the symbol a(z) = (1+z)m

2m b(z), where Sb has the 
Hölder regularity of C0+α . Let a0(z) = a(z), a1(z) = (1+z)m−1

2m−1 b(z), . . ., am−1(z) = 1+z
2 b(z) and am(z) = b(z). The corresponding 

subdivision schemes are referred as Sa , Sa1 , . . ., Sam−1 and Sam , respectively. We also introduce partial differences when a 
sequence has two sub-indexes:

�1Mk = Mk − Mk , �2Mk = Mk − Mk .
i j i j i−1, j i j i j i, j−1

12
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For sequences with only one sub-index, the finite difference �1pk
i is given by �1pk

i = �pk
i = pk

i − pk
i−1. Similarly, we have 

�2pk
j = �pk

j = pk
j − pk

j−1. Based on first order partial differences, higher order partial differences will be computed by 
operators �m

1 = �1(�
m−1
1 ), �1�2 = �1(�2), etc.

Before presenting the main theorem for the smoothness analysis, we introduce a lemma about the norm estimation of 
the differences of the coefficient matrices given in Equation (13).

Lemma 4.2. Assume Sa is a linear binary subdivision scheme with mask defined by the symbol a(z) = (1+z)m

2m b(z), where Sb ∈ C0 . 
Assume the matrices Mk

ij are given by Equation (13). Then for any nonnegative integers m1, m2 satisfying 1 ≤ m1 + m2 ≤ m, the 
following inequality holds∥∥∥∥∥

�
m1
1 �

m2
2 Mk

ij

2−(m1+m2)k

∥∥∥∥∥∞
≤ cmγ k,

where cm and 0 < γ < 1 are constants.

Proof. Let U k
ij = (. . . ; Ak

ij − Ak
i,l−1; Ak

ij − Ak
il; Ak

ij − Ak
i,l+1; . . .). Then the matrix Mk

ij can be rewritten as Mk
ij = I + (Sa)i U k

i j . The 
finite differences of the matrices can be computed by the Leibniz rule and Equation (4) as follows

�
m1
1 �

m2
2 Mk

ij

2−(m1+m2)k
= �

m1
1 �

m2
2 [(Sa)i Uk

i j]
2−(m1+m2)k

= 1

2−(m1+m2)k
�

m1
1 [(Sa)i�

m2
2 Uk

ij]

= 1

2−(m1+m2)k

[
�

m1
1 (Sa)i�

m2
2 Uk

ij + C1
m1

�
m1−1
1 (Sa)i�1�

m2
2 Uk

ij + · · · + Cm1
m1 (Sa)i�

m1
1 �

m2
2 Uk

ij

]

= (Sam1
)i

2m1

�
m1+m2
2 Uk

ij

2−(m1+m2)k
+ C1

m1

(Sam1−1)i

2m1−1

�1�
m1+m2−1
2 Uk

ij

2−(m1+m2)k
+ · · · + Cm1

m1 (Sa)i

�
m1
1 �

m2
2 Uk

ij

2−(m1+m2)k
,

where Cl
m1

= m1!
l!(m1−l)! . As discussed in Section 2.3, the spherical subdivision curve n(t) has the Hölder regularity of Cm+α

when the linear subdivision scheme Sa ∈ Cm . It follows that the function A(X1(t), X2(t)) also has the Hölder regularity of 
Cm+α when X1(t) ≈ X2(t) are the spherical subdivision curves. Since the support of the mask of Sa is bounded, we assume 
that | j − l| is bounded too. For any s1, s2 ∈N0, s1 + s2 = m1 + m2 ≤ m, we have∥∥∥∥�

s1
1 �

s2
2 Uk

ij

2−(s1+s2)k

∥∥∥∥∞
=

∥∥∥∥�
s1
1 �

s2
2 (Ak

i j−Ak
il)

2−(s1+s2)k

∥∥∥∥∞

=
∥∥∥∥�

s1
1 �

s2
2 (A(nk+1

i ,nk
j)−A(nk+1

i ,nk
l ))

2−(s1+s2)k

∥∥∥∥∞
≤ csγ

k,

where cs and γ ∈ (0, 1) are constants. Let

ka = max
0≤m1≤m

{ |Sam1
|∞

2m1
+ C1

m1

|Sam1−1 |∞
2m1−1 + · · · + Cm1

m1 |Sa|∞
}

.

We have∥∥∥∥∥
�

m1
1 �

m2
2 Mk

ij

2−(m1+m2)k

∥∥∥∥∥∞
≤ kacsγ

k .= cmγ k.

This completes the proof. �
We now show that the univariate PN subdivision schemes have the same orders of smoothness as linear subdivision 

schemes.

Theorem 4.3. Assume Sa is a linear binary subdivision scheme with mask defined by the symbol a(z) = (1+z)m

2m b(z), where Sb ∈ C0 . 
Let {Sa ◦ Mk} be the PN subdivision scheme originally defined by Equation (11). Then {Sa ◦ Mk} ∈ Cm.

Proof. We prove the theorem by induction. From Theorem 4.1 we know that {Sa ◦ Mk} ∈ C0. We then prove that {Sa ◦ Mk} ∈
Cm under the assumption that {Sa ◦ Mk} ∈ Cl , l = 0, 1, . . . , m − 1.
13
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From Equation (15) we have pk+1
i = (Sa)i((Mk

i )
�blk ◦ Pk). We first compute the differences of the point sequence {pk+1

i }
using the Leibniz rule and Equation (4):

�mpk+1
i = �m

1 {(Sa)i[(Mk
i )

�blk ◦ Pk]}
= �m

1 (Sa)i[(Mk
i )

�blk ◦ Pk] + C1
m�m−1

1 (Sa)i[�1(Mk
i )

�blk ◦ Pk] + · · · + Cm
m(Sa)i[�m

1 (Mk
i )

�blk ◦ Pk]
= (Sb)i

2m
�m

2 [(Mk
i )

�blk ◦ Pk] + C1
m

(Sam−1)i

2m−1 �m−1
2 [�1(Mk

i )
�blk ◦ Pk] + · · · + Cm

m(Sa)i[�m
1 (Mk

i )
�blk ◦ Pk]

= (Sb)i

2m

[
(Mk

i )
�blk ◦ �m Pk + C1

m�2(Mk
i )

�blk ◦ �m−1 Pk + · · · + Cm
m�m

2 (Mk
i )

�blk ◦ Pk]
+ C1

m
(Sam−1)i

2m−1

[
�1(Mk

i )
�blk ◦ �m−1 Pk + C1

m−1�2�1(Mk
i )

�blk ◦ �m−2 Pk + · · ·
+ Cm−1

m−1�m−1
2 �1(Mk

i )
�blk ◦ Pk]

+ · · ·
+ Cm

m(Sa)i

[
�m

1 (Mk
i )

�blk ◦ Pk
]
.

From this expression, we have

�mpk+1
i

2−m(k+1)
= ((Sb)i ◦ Mk

i )
�m Pk

2−mk

+ (Sb)i

[
C1

m
�2(Mk

i )
�blk

2−k
◦ �m−1 Pk

2−(m−1)k
+ · · · + Cm

m
�m

2 (Mk
i )

�blk

2−mk
◦ Pk

]

+ 2C1
m(Sam−1)i

[
�1(Mk

i )
�blk

2−k
◦ �m−1 Pk

2−(m−1)k
+ C1

m−1
�2�1(Mk

i )
�blk

2−2k
◦ �m−2 Pk

2−(m−2)k
+ · · ·

+ Cm−1
m−1

�m−1
2 �1(Mk

i )
�blk

2−mk
◦ Pk

]
+ · · ·

+ 2mCm
m(Sa)i

[
�m

1 (Mk
i )

�blk

2−mk
◦ Pk

]
.

Under the assumption that {Sa ◦ Mk} ∈ Cl , l = 0, 1, . . . , m − 1, we have∥∥∥∥∥�l Pk

2−lk

∥∥∥∥∥∞
< K , 0 ≤ l < m,

where K is the bound of the derivatives of the subdivision curve as well as the bound of the finite differences of the 
sequence of subdivided points. From Lemma 4.2 we know that the differences of all element matrices of (Mk

i )
�blk within 

above equation have a bound cmγ k . Then the above equation can be simplified as

�mpk+1
i

2−m(k+1)
= ((Sb)i ◦ Mk

i )
�m Pk

2−mk
+ εk

i ,

where ‖εk
i ‖ < cγ k and γ ∈ (0, 1). Since Sb ∈ C0, and by Theorem 4.1, we know {Sb ◦ Mk} converges. Based on Proposition 2.2

we know that the difference sequence {�m Pk

2−mk }k∈N converges too when k approaches infinity. This implies that {Sa ◦ Mk} ∈
Cm . �

Besides by subdividing the old normals using scheme Sa and projecting the linearly subdivided normals onto sphere, the 
normal vectors within Equation (11) can also be generated by masks of schemes other than Sa or sampled directly from a 
smooth curve on sphere. In the same way as the proof of Theorem 4.3 we obtain the smoothness orders of this kind of PN 
subdivision schemes.

Corollary 4.4. Assume Sa ∈ Cm and Sa′ ∈ Cm′
are two binary linear subdivision schemes, where m, m′ ∈ N0 . If a PN subdivision 

scheme is defined by Equation (11) with points computed using mask of Sa and with unit normals computed using mask of Sa′ , then 
the PN subdivision scheme {Sa ◦ Mk} ∈ Cmin{m,m′} .
14
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Fig. 5. PN B-spline subdivision curves with curvature combs: (a) PN quadratic B-spline subdivision; (b) PN cubic B-spline subdivision; (c) PN cubic B-spline 
subdivision using normal field generated by spherical 4-point subdivision.

It is known that a uniform B-spline subdivision curve of degree m has continuity order of m − 1. From Theorem 4.3
we know that a PN B-spline subdivision curve of degree m has also the continuity order of m − 1. Fig. 5(a) illustrates 
a PN quadratic B-spline subdivision curve. It is clear that the subdivision curve is tangent continuous but not curvature 
continuous. The PN cubic B-spline subdivision curve illustrated in Fig. 5(b) is curvature continuous, just as expected as a 
cubic B-spline curve. Fig. 5(c) illustrates another PN cubic B-spline subdivision curve, but using normal field generated by 
spherical 4-point subdivision scheme. As 4-point subdivision has only C1 continuity, the obtained PN subdivision curve is 
no longer as smooth as that in Fig. 5(b).

4.2. Analysis of PN subdivision on irregular meshes

Corresponding to the theoretical analysis of linear subdivision on irregular meshes, convergence and smoothness analysis 
of PN subdivision on irregular meshes also consists of two parts: analysis of PN subdivision on regular meshes and analysis 
of PN subdivision on meshes surrounding an extraordinary vertex or face.

Same as univariate subdivision, bivariate linear subdivision on regular quad meshes or triangular meshes can also be 
generalized to PN subdivision using Equation (11). If the symbol a(z1, z2) = ∑

(i1,i2)∈Z2 ai1,i2 zi1
1 zi2

2 for a bivariate subdivision 
scheme is factorizable, the convergence and smoothness of the obtained PN subdivision scheme can be analyzed in the 
same way as univariate PN subdivision. Similar to Theorem 4.3 and Corollary 4.4, the smoothness order of any bivariate PN 
subdivision on regular meshes can be derived from the smoothness order of the linear subdivision Sa and the smoothness 
order of the subdivided normal field. Based on the smoothness equivalence between projection based bivariate subdivision 
and linear bivariate subdivision for regular control meshes (see Theorem 2.6 and Corollary 2.7 in (Weinmann, 2012)), we 
know that the smoothness order of the subdivided normal field and the smoothness order of bivariate PN subdivision on 
regular meshes are the same as that for the corresponding linear subdivision scheme.

We present here the convergence and normal continuity analysis of PN subdivision of irregular quad meshes surrounding 
an isolated extraordinary vertex, the same result holds for subdivision of irregular quad meshes surrounding an extraordi-
nary face or irregular triangle meshes surrounding an extraordinary vertex. By taking the notations used in Section 2.2, we 
assume Q = (q0; . . . ; ql̄) be a set of control points surrounding an isolated extraordinary vertex and N = (n0; . . . ; nl̄) be 
the initial control normals at the control points. Let S = (si j)0≤i, j≤l̄ be the subdivision matrix and Q m = (qm

0 ; . . . ; qm
l̄
) be 

the control points for the mth surface ring. Assume the normal vectors nk
i , 0 ≤ i ≤ l̄, at the control points are refined by 

Equation (10). Let

M̃k =

⎛
⎜⎜⎝

M̃k
0,0 · · · M̃k

0,l̄
...

. . .
...

M̃k¯ · · · M̃k¯ ¯

⎞
⎟⎟⎠ , (17)
l,0 l,l

15
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Fig. 6. (a) The sequence of surface rings around an extraordinary vertex and their control points and control normals obtained by PN subdivision; (b) the 
sequence of ring sequences by linear subdivision from the meshes computed by PN subdivision. The surface rings are shifted for clarity.

where M̃k
i j = I + ∑l̄

l=0 sil(Ak
ij − Ak

il) and Ak
ij = A(nk+1

i , nk
j) using Equation (16). Then the control points for the surface ring 

x̃m by PN subdivision are computed by

Q m = Sm−1 · · · S1 S0 Q , (18)

where Sk = S ◦ M̃k , k = 0, . . . , m − 1. We denote the subdivision scheme as {Sk}. It is verified that 
∑l̄

j=0 si j M̃k
i j = I for 

i = 0, 1, . . . , ̄l. Then we have

Sk(I; I; . . . ; I) = Sk(I1) = I1. (19)

For convenience of comparison between Sk Q m and S Q m in the following text, we introduce matrix E as

E =
⎛
⎜⎝

I · · · I
...

. . .
...

I · · · I

⎞
⎟⎠

(l̄+1)×(l̄+1)

such that S Q m = (S ◦ E)Q m . From the control points Q m and based on Equation (6), a surface ring is obtained as xm(s) =
G(2ms)Q m , where G is the vector of scalar valued generating functions. On the other hand, xm(s) can also be generated from 
the control mesh by linear subdivision directly. Similar to uniform refinement of curves (Micchelli and Prautzsch, 1989), for 
any coordinates s ∈ Sm

n , the point xm(s) can be computed recursively as follows

lim
j→+∞

Bm+ j(s) · · · Bm+1(s)Bm(s)Q m = xm(s)1, (20)

where Bm+ j(s), j = 0, 1, . . ., are the matrices for binary subdivision for regular control meshes with a fixed size. Corre-
spondingly, the point on the surface ring by PN subdivision is obtained as

lim
j→+∞

B̃m+ j(s) · · · B̃m+1(s)B̃m(s)Q m = x̃m(s)1, (21)

where B̃m+ j(s) = Bm+ j(s) ◦ M̃m+ j(s), j = 0, 1, . . ., and the matrices M̃m+ j(s) are defined in a similar way as Equation (17)
using the refined control normals at the subdivided points. See Fig. 6 for the surface rings computed by PN subdivision from 
control points and control normals or by linear subdivision from the same sequence of control meshes.

Let e0 = (I; 0; · · · ; 0), e1 = (0; I; · · · ; 0), . . ., el̄ = (0; 0; · · · ; I). Assume g̃m
l (s), l = 0, 1, . . . , ̄l, are the generating func-

tions computed by Equation (21) with Q m replaced by el , l = 0, 1, . . . , ̄l. By the same reason as Equation (19), we have 
B̃m+ j(s)(I1) = I1, j = 0, 1, . . .. It follows
16
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I1= lim
j→+∞ B̃m+ j(s) · · · B̃m+1(s)B̃m(s)(I1)

= lim
j→+∞

B̃m+ j(s) · · · B̃m+1(s)B̃m(s)

⎛
⎝ l̄∑

l=0

el

⎞
⎠

=
l̄∑

l=0

lim
j→+∞

B̃m+ j(s) · · · B̃m+1(s)B̃m(s)el

=
l̄∑

l=0

g̃m
l (s)1.

Therefore, the generating functions satisfy 
∑l̄

l=0 g̃m
l (s) = I . Obviously, these generating functions are no longer scalar 

valued but matrix valued. Representing the control points as Q m = ∑l̄
l=0 elqm

l , the PN subdivision ring is obtained as 

x̃m = ∑l̄
l=0 g̃m

l (s)qm
l = G̃m(s)Q m , where G̃m(s) = (g̃m

0 (s), ̃gm
1 (s), . . . , ̃gm

l̄
(s)).

Before proving that the sequence of surface rings x̃m converge to a limit point, we show that all block matrices M̃k
i j

within Equation (17) converge to I , which implies that M̃k converge to E , when the normal vectors nk
i converge.

Lemma 4.5. Assume S is a standard subdivision scheme and normal vectors nk
i are refined by Equation (10). Let M̃k

i j be the matrices 
as defined in Equation (17). Then

‖M̃k
i j − I‖∞ ≤ K Mγ k,

where K M and γ ∈ (0, 1) are constants.

Proof. Based on Proposition 2.5 we know that the subdivided normals satisfy

‖nk
j − nk

l ‖ ≤ c2γ
k, j, l ∈ {0,1, . . . , l̄}

where c2 and γ ∈ (0, 1) are constants. In the same way as the proof of Theorem 4.1 we have ‖Ak
ij − Ak

il‖∞ ≤ c Aγ k . As 

M̃k
i j = I + ∑l̄

l=0 sil(Ak
ij − Ak

il), it follows that

‖M̃k
i j − I‖∞ ≤ cS c Aγ k,

where cS = ‖S‖∞ = max0≤i≤l̄

∑l̄
l=0 |sil|. The lemma is proven by choosing K M = cS c A . �

Now, we show that the PN subdivision scheme {S j} is stable and convergent and the obtained surface is C0 continuous 
at isolated extraordinary points.

Theorem 4.6. Assume S is a standard subdivision scheme. Assume Q m are the subdivided points and S j , j = 0, 1, . . . are the subdivi-
sion matrices as defined in Equation (18). Then the PN subdivision scheme {S j} is stable and convergent.

Proof. We prove the stability and convergence of {S j} by comparing with the stationary subdivision scheme S . Based on 
Lemma 4.5, we have

‖S j − S ◦ E‖∞ = ‖S ◦ (M̃ j − E)‖∞ ≤ ‖S‖∞K Mγ j

for j ∈Z+ . It follows that∑
j∈Z+

‖S j − S ◦ E‖∞ < +∞,

which implies {S j} ≈ S . Based on Theorem 6 in (Dyn and Levin, 1995), we conclude that the PN subdivision scheme {S j} is 
convergent and stable. �
Theorem 4.7. Assume S is a standard subdivision scheme and x̃m are PN subdivision rings with control points Q m which are computed 
by Equation (18) and control normals nm, l = 0, 1, . . . , ̄l. Then x̃m converge to a point as m approaches infinity.
l
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Proof. Based on Theorem 4.6 and Equation (18) we know that the mesh sequence {Q m}+∞
m=1 converges. It follows that Q m , 

m = 1, 2, . . ., are bounded. To prove the theorem, we first prove that the mesh sequence converges to a central point, then 
we show that the PN subdivision rings x̃m also converge to the central point. Assume ω�

0 is the left eigenvector of S . Using 
Equation (8), we have

lim
k→+∞

Sk Q m = pm,01

and

lim
k→+∞

Sk Q m−1 = lim
k→+∞

Sk−1 S Q m−1 = pm−1,01,

where pm,0 = ω�
0 Q m and pm−1,0 = ω�

0 S Q m−1. By Lemma 4.5 and because the sequence {Q m}∞m=1 are bounded, we have

‖pm,0 − pm−1,0‖ = ‖ω�
0 Q m − ω�

0 S Q m−1‖
= ‖ω�

0 (Sm−1 − S)Q m−1‖
= ‖ω�

0 S ◦ (M̃m−1 − E)Q m−1‖
≤ ‖ω�

0 ‖1‖S‖∞‖Q m−1‖∞K Mγ m−1

≤ K pγ
m−1,

where K p and γ ∈ (0, 1) are constants with ‖ω�
0 ‖1 the l1 norm of the eigenvector. This implies that {pm,0}∞m=1 is a Cauchy 

sequence. Therefore, we have

lim
m→+∞ pm,0 = pc.

To prove the surface rings x̃m(s) converge to pc , we prove all points within mesh Q m converge to pc . We write

Q m+k − Sk Q m = (Sm+k−1 · · · Sm − Sk)Q m

=
k−1∑
j=0

Sm+k−1 · · · Sm+ j+1(Sm+ j − S)S j Q m

=
k−1∑
j=0

Sm+k−1 · · · Sm+ j+1(S ◦ (M̃m+ j − E))S j Q m.

By applying Lemma 4.5 and because {S j} is stable, we have

‖Q m+k − Sk Q m‖∞ ≤ Kq

k−1∑
j=0

γ m+ j ≤ Kq

1 − γ
γ m, (22)

where γ ∈ (0, 1). Based on the identity

Q m+k − pc1= (Q m+k − Sk Q m) + (Sk Q m − pm,01) + (pm,01− pc1)

as well as the definitions of pm,0 and pc , we have

lim
m→+∞
k→+∞

Q m+k = pc1.

Since limm→+∞ Q m = pc1, and because the generating functions of x̃m(s) sum up to I , it yields that

lim
m→+∞ x̃m(s) = lim

m→+∞ G̃m(s)Q m = pc .

This proves the theorem. �
Besides being C0 continuous, the PN subdivision surfaces can also be C1 continuous at the extraordinary points. We 

prove that the normals of the sequence of surface rings x̃m(s) by PN subdivision converge by comparing with a sequence 
of surface rings obtained by linear subdivision using the same set of control nets. We present a lemma before proving the 
theorem for C1 continuity.
18
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Lemma 4.8. Assume S is a standard subdivision scheme and the characteristic map � is regular. Assume Q m be the control points given 
by Equation (18) and G is the vector of scalar valued generating functions. Then the normals of surface rings xm = G Q m converge for 
almost all initial control nets.

Proof. We first show that a limit vector exists and then we show that the normals of surface rings xm(s) converge to the 
limit vector.

Let xm,k = G Sk Q m . See the surfaces illustrated in Fig. 6(b) for reference. Similar to Equation (7), we have

xm,k
∼= pm,0 + λk�(pm,1;pm,2),

where λ is the second large eigenvalue with multiplicity 2, � is the characteristic map and pm,i = ω�
i Q m , i = 0, 1, 2, with 

ω�
i the left eigenvector of the matrix S . Let nm,k be the normal vector of the surface xm,k . Under the assumption that the 

characteristic map � is regular, by Proposition 2.3, we have

nc
m := lim

k→+∞
nm,k = sign(×D�)

pm,1 × pm,2

‖pm,1 × pm,2‖ .

We show the central normal sequence {nc
m}∞m=1 converges to a limit vector. Similar to the asymptotic expansion of xm,k , 

by expanding xm−1,k = G Sk Q m−1 = G Sk−1 S Q m−1, we have pm−1,i = ω�
i Q m−1 = ω�

i S Q m−1, i = 1, 2. By the same reason for 
{pm,0}∞m=1 within the proof of Theorem 4.7, we know that {pm,i}∞m=1, i = 1, 2, are also Cauchy sequences. Therefore, we have

lim
m→+∞ pm,i = ti, i = 1,2.

It follows that

nc := lim
m→+∞ nc

m = sign(×D�)
t1 × t2

‖t1 × t2‖ .

Let nm be the normal vector of surface ring xm = G Q m . We prove that the normal vectors nm converge to nc . Based on 
Equation (22), we know that the surface difference

xm+k(s) − xm,k(s) = G(2m+ks)(Q m+k − Sk Q m)

as well as the differences between partial derivatives of the two surfaces xm+k and xm,k approach zero when m goes to 
infinity. By direct computation of normals for the two surfaces, we have

lim
m→+∞(nm+k − nm,k) = 0.

Based on the identity

nm+k − nc = (nm+k − nm,k) + (nm,k − nc
m) + (nc

m − nc)

as well as the definitions of nc
m and nc , we have

lim
m→+∞
k→+∞

nm+k = nc.

This completes the proof. �
Theorem 4.9. Assume S is a standard subdivision scheme and the characteristic map � is regular. If the control normals at the mesh 
vertices are refined by Equation (10), then the PN subdivision surface is normal continuous at the extraordinary point for almost all 
initial control nets.

Proof. Assume Q m are the control points computed by Equation (18) and Nm are the control normals at the control points. 
Let nm(s) and ñm(s), s ∈ Sm

n , be the unit normals of surface rings xm(s), x̃m(s) that are generated from the control points and 
control normals by linear subdivision or PN subdivision, respectively. We prove the theorem by showing that the normals 
ñm(s) and nm(s) converge to the same limit vector when m goes to infinity.

Let Bm+ j(s) and B̃m+ j(s) = Bm+ j(s) ◦ M̃m+ j(s), j = 0, 1, . . ., be the subdivision matrices given in Equation (20) and 
Equation (21). By the same technique as Lemma 4.5 and Lemma 4.2, we have

‖M̃m+ j(s) − E‖∞ ≤ c̃γ m+ j,

∥∥∥∥∥∂ M̃m+ j(s)

∂u

∥∥∥∥∥∞
≤ c̃uγ

m+ j, j = 0,1, . . .

where c̃, c̃u and γ ∈ (0, 1) are constants. It follows that
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Fig. 7. A quad mesh and its triangulation together with pre-computed unit normal vectors at the vertices.

B̃m+ j(s) = Bm+ j(s) ◦ (E + M̃m+ j(s) − E) = Bm+ j(s) ◦ E + O (γ m+ j)

and

∂ B̃m+ j(s)

∂u
= ∂ Bm+ j(s)

∂u
◦ M̃m+ j(s) + Bm+ j(s) ◦ ∂ M̃m+ j(s)

∂u

= ∂ Bm+ j(s)

∂u
◦ (E + O (γ m+ j)) + Bm+ j(s) ◦ ∂ M̃m+ j(s)

∂u

= ∂ Bm+ j(s)

∂u
◦ E + O (γ m+ j).

By substituting above two equalities, we compute the partial derivatives of x̃m(s) as follows:

∂

∂u
(B̃m+ j(s) · · · B̃m(s)Q m)

=
j∑

l=0

B̃m+ j(s) · · · ∂ B̃m+l(s)

∂u
· · · B̃m(s)Q m

=
j∑

l=0

((Bm+ j(s) · · · ∂ Bm+l(s)

∂u
· · · Bm(s)) ◦ E)Q m + O (γ m)

= ∂

∂u
(Bm+ j(s) · · · Bm(s)Q m) + O (γ m).

When j goes to infinity, we have

∂ x̃m(s)

∂u
= ∂xm(s)

∂u
+ O (γ m).

Similarly, we have

∂ x̃m(s)

∂v
= ∂xm(s)

∂v
+ O (γ m).

Since ñm(s)// ∂ x̃m(s)
∂u × ∂ x̃m(s)

∂v and nm(s)// ∂xm(s)
∂u × ∂xm(s)

∂v , we have

lim
m→+∞(ñm(s) − nm(s)) = 0.

By applying the result of Lemma 4.8, we have

lim
m→+∞ ñm(s) = lim

m→+∞(ñm(s) − nm(s)) + lim
m→+∞ nm(s) = nc .

This proves the theorem. �
Fig. 7 illustrates a quad mesh and its triangulation. The control normals at all control points are estimated from the 

input mesh. We subdivide the quad mesh by PN-Catmull-Clark, PN-Doo-Sabin or PN-Kobbelt subdivision schemes. A PN-
Loop subdivision surface has been constructed from the triangulated mesh. For comparison purposes, the initial meshes are 
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Fig. 8. Surface modeling by PN subdivision schemes or linear subdivision schemes. Gaussian curvatures of the subdivision surfaces change from (positive) 
high values through zero to (negative) low values when the colors change from red through green to blue. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

also subdivided by the corresponding linear subdivision schemes. To check the smoothness of all subdivision surfaces, the 
Gaussian curvatures of the surfaces have been computed. All surfaces illustrated in Fig. 8 are rendered by meshes after 5 
iterations of subdivision. Particularly, the curvature plots are computed discretely by employing a high accuracy algorithm 
presented in (Yang and Zheng, 2013). From the figures we see that the PN subdivision schemes and the linear subdivision 
schemes can achieve the same smoothness orders, over regular regions as well as regions near extraordinary points. Due to 
the properties of preserving circles, cylinders and spheres of the proposed subdivision schemes, the PN subdivision surfaces 
have exact circular boundaries, circular cylinder parts or approximate hemispheres on the top parts defined by the control 
points and control normals.

5. PN C 2 subdivision surfaces

In addition to generalizing linear subdivision surfaces that have C1 continuity at the extraordinary points to PN subdi-
vision surfaces, we are also interested in generalizing modified Catmull-Clark subdivision (Prautzsch and Umlauf, 1998) or 
modified Loop subdivision (Prautzsch and Umlauf, 2000) to PN subdivision schemes. These two modified schemes are simple 
to implement and can generate C2 subdivision surfaces with flat extraordinary points. It is found that the generalized PN 
C2 subdivision surfaces are curvature continuous too but the extraordinary points can be no longer flat.

Assume S is the subdivision matrix for control points surrounding an isolated extraordinary vertex within a control 
mesh using Catmull-Clark subdivision. To improve the smoothness order at the extraordinary point, Prautzsch and Umlauf 
(1998) proposed to modify the Catmull-Clark subdivision scheme by tuning the eigenvalues of the subdivision matrix. Let 
V be the matrix of which the columns represent the right eigenvectors of S , the subdivision matrix is decomposed into 
S = V �V −1, where � = diag(1, λ, λ, μ, . . . , ζ ) and 1 > λ > |μ| ≥ . . . ≥ |ζ | are the eigenvalues of the matrix. When the 
matrix � has been changed into �′ = diag(1, λ, λ, μ′, . . . , ζ ′), a modified subdivision scheme is obtained by using stencils 
given in the modified subdivision matrix S ′ = V �′V −1. According to Proposition 2.4, if the prescribed eigenvalues satisfy 
|μ′| < λ2, . . . , |ζ ′| < λ2, the modified Catmull-Clark subdivision surface is C2 continuous with vanishing principal curvatures 
at the extraordinary point. Similarly, conventional Loop subdivision can also be modified to produce C2 subdivision surfaces 
with flat extraordinary points (Prautzsch and Umlauf, 2000).

Even though the subdivision surfaces obtained by the modified Catmull-Clark subdivision or the modified Loop subdivi-
sion are curvature continuous, they may suffer the unfairness or concentric undulations due to the restricted zero curvature 
at the extraordinary points. These restrictions make the modified subdivision schemes less practical in high quality surface 
modeling.
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Fig. 9. Gaussian curvature plots of subdivision surfaces obtained by (a) Catmull-Clark subdivision; (b) modified Catmull-Clark subdivision (Prautzsch and 
Umlauf, 1998); (c) PN-Catmull-Clark subdivision; (d) PN-modified Catmull-Clark subdivision.

By utilizing control points together with control normals, we propose to construct high quality subdivision surfaces using 
PN modified C2 subdivision schemes. We just explain the steps of PN modified Catmull-Clark subdivision, PN modified Loop 
subdivision can be implemented similarly. An arbitrary topology control mesh together with given or estimated control 
normals is first subdivided by PN-Catmull-Clark subdivision. From the second round of subdivision, all faces within the 
meshes are quadrangles. The positions and control normals at the refined vertices corresponding to old irregular vertices, 
their abutting edges or their abutting faces are computed by Equation (11) using stencils for the modified Catmull-Clark 
subdivision scheme. The remaining parts of the meshes are still subdivided by PN-Catmull-Clark subdivision.

Since the modified Catmull-Clark subdivision is C2 continuous, it is also C1 continuous. Based on Theorem 4.7 and 
Theorem 4.9, we know that the PN-modified Catmull-Clark subdivision converges and the obtained subdivision surfaces are 
at least normal continuous at the extraordinary points. It is observed that the surfaces generated by PN-modified Catmull-
Clark subdivision are C2 continuous too and the curvatures at the extraordinary points can be no longer vanishing. However, 
the theoretical proof of C2 continuity of PN-modified Catmull-Clark subdivision is not available at present. We present the 
assertion as a conjecture.

Conjecture 5.1. The PN-modified Catmull-Clark subdivision can generate curvature continuous subdivision surfaces and the extraor-
dinary points of the surfaces can be no longer flat when the control normals are not a constant vector nor vanish.

Fig. 9 illustrates examples of surface modeling by Catmull-Clark type subdivision schemes or their adapted PN subdivision 
schemes. The control points and control normals for the control mesh in the top row are sampled from a hyperbolic surface 
z = 2xy while the control points and control normals for the control mesh in the middle row are sampled from a bicubic 
Bézier surface, both with one extraordinary vertex in the center. The control points and control normals for the control mesh 
in the bottom row are partially sampled from a circular cylinder with radius 15. An irregular vertex of valence 8 lies above 
the center of the upper base of the cylinder with height 10 and the control normal at the point is chosen the unit upright 
vector. Since the eigenvalues of subdivision matrices for meshes containing single irregular vertices of valence 3 already 
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Fig. 10. PN-Doo-Sabin subdivision surfaces with planar uniform control grid and edited control normals: (a) wave like shape; (b) circular bumps.

Fig. 11. Ring shape modeling by (a) Catmull-Clark subdivision; (b)&(c) PN-Catmull-Clark subdivision.

satisfy the G2 condition stated in Proposition 2.4, we only modify subdivision stencils for meshes surrounding irregular 
vertices of valences greater than 4 for the modified Catmull-Clark subdivision or PN modified Catmull-Clark subdivision. 
Figs. 9(a) and 9(b) show clearly that Catmull-Clark subdivision surfaces are not curvature continuous at the extraordinary 
points while the surfaces obtained by the modified Catmull-Clark subdivision scheme have flat extraordinary points. Though 
the PN-Catmull-Clark subdivision scheme can generate much fairer subdivision surfaces than Catmull-Clark subdivision, they 
still suffer the curvature discontinuities at the extraordinary points; see Fig. 9(c). The pictures in Fig. 9(d) show that the 
surfaces obtained by PN-modified Catmull-Clark subdivision are visually curvature continuous and the curvatures at the 
extraordinary points are not vanishing.

6. Experimental examples

In this section we present several interesting examples to show the modeling effects of PN subdivision schemes, com-
parisons with some linear subdivision schemes are also given.

Fig. 10 illustrates two examples of surface detail modeling by PN subdivision. Given a planar uniform control grid, obvi-
ously, any linear subdivision scheme can only yield a planar patch. We edit surface details by editing control normals at the 
vertices. Firstly, the control normals at the vertices are chosen from two given vectors alternately in the horizontal direction 
and every two control normals are parallel with each other in the vertical direction. A wave-like shape following the control 
normals is obtained by PN-Doo-Sabin subdivision; see Fig. 10(a). Besides wave-like shape, we can also model bumps on the 
subdivision surface by editing control normals. Assume four unit vectors are uniformly chosen from a hemisphere. We line 
up the vertices of the uniform control grid row by row and set control normals for the vertices from the four vectors repeat-
edly. As a result, a surface with regular distributed circular bumps is obtained by PN-Doo-Sabin subdivision; see Fig. 10(b) 
for the subdivision surface.

Fig. 11(a) illustrates a ring shape surface by Catmull-Clark subdivision. The control mesh for the surface is constructed by 
rotating a closed regular polygon along an axis that does not lie on the same plane with the polygon. Since the Catmull-Clark 
subdivision surface with regular control mesh is actually a bicubic B-spline surface, it is not exactly a rotating surface. By 
choosing all control normals pointing outwards and being parallel to the bottom plane, an exact rotating surface is obtained 
by PN-Catmull-Clark subdivision; see Fig. 11(b). If the control normals at the vertices of the control mesh are edited further, 
a ring shape surface with complex details is obtained by PN-Catmull-Clark subdivision; see Fig. 11(c).

Fig. 12 illustrates examples of wheel shape modeling by Catmull-Clark subdivision or PN-Catmull-Clark subdivision. Given 
a control mesh as in Fig. 12(a), a wheel like shape is obtained by Catmull-Clark subdivision. Though the outer part and the 
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Fig. 12. Wheel shape modeling by (a) Catmull-Clark subdivision; (b)&(c) PN-Catmull-Clark subdivision.

Fig. 13. PN subdivision surface modeling: (a) PN-Catmull-Clark subdivision; (b) PN-Doo-Sabin subdivision; (c) PN-Kobbelt subdivision.

inner part of the control mesh are regular, neither the outer contour profile nor the inner one is exactly circular because 
the subdivision surfaces under regular control meshes are just bicubic B-spline surfaces. Assume the center of the control 
mesh lies at the origin of a Cartesian coordinates system and the plane on which the control mesh lies on is parallel to 
the xy-plane. We first choose control normal at each control point pi = (xi, yi, zi)

� as ni = normalize(xi, yi, 0)� . A wheel 
like shape that has exact circular contour profiles is obtained by PN-Catmull-Clark subdivision; see Fig. 12(b). Since the 
control normals are all parallel to the xy-plane, the subdivision surface in Fig. 12(b) and the subdivision surface in Fig. 12(a) 
have the same z-coordinates. If the control normals have been changed as in Fig. 12(c), the two ring parts within the 
PN-Catmull-Clark subdivision surface resemble two toruses very well.

Fig. 13 presents examples of modeling surfaces with complex topology or salient geometric features by PN subdivision 
schemes. Fig. 13(a) illustrates a PN-Catmull-Clark subdivision surface using control points and control normals. Except for 
the top vertex that has no control normal, the control normals at all other control points are parallel to the bottom plane and 
pointing outwards. As a result, the contour profile of the PN subdivision surface from the top view is circular. In Fig. 13(b) all 
vertices of the control mesh are sampled from a cuboid with square bottom while all assigned control normals are parallel 
to the bottom plane of the cuboid. Particularly, the control normals at the inner control points are pointing outwards and 
the control normals at points on outside edges are perpendicular to the edges while no control normals are assigned at the 
corner vertices. A square shaped surface with a circular hole is obtained by PN-Doo-Sabin subdivision. Fig. 13(c) illustrates 
an interpolatory PN subdivision surface. A 6 × 6 quad mesh is constructed by points and normals sampled from a Dupin 
cyclide. Due to the property of circle preserving, the outer silhouette circle, the inner silhouette circle and the six sampled 
circles across these two silhouette circles are preserved very well by PN-Kobbelt subdivision.

Fig. 14(a) illustrates a quad mesh and the Catmull-Clark subdivision surface computed from the control mesh. The ex-
traordinary points on the surface are evidently noticed based on the Gaussian curvature plot. Fig. 14(b) illustrates the C2

subdivision surface with flat extraordinary points by the modified Catmull-Clark subdivision scheme proposed by (Prautzsch 
and Umlauf, 1998). Figs. 14(c) and 14(d) are the subdivision surfaces with or without Gaussian curvature plot by our pro-
posed PN-modified Catmull-Clark subdivision scheme. The control normals at all control vertices for this and the next 
example are computed as weighted sums of normal vectors of abutting faces with weights proportional to vertex angles of 
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Fig. 14. Subdivision surfaces with Gaussian curvature plots or with control points and control normals by (a) Catmull-Clark subdivision; (b) modified 
Catmull-Clark subdivision (Prautzsch and Umlauf, 1998); (c)&(d) PN-modified Catmull-Clark subdivision.

Fig. 15. Subdivision surfaces with Gaussian curvature plots or with control points and control normals by (a) Loop subdivision; (b) modified Loop subdivision 
(Prautzsch and Umlauf, 2000); (c)&(d) PN-modified Loop subdivision.

the faces. It is clearly seen that the curvature of the PN-modified Catmull-Clark subdivision surface is visually continuous 
and the extraordinary points are hardly to be distinguished due to the smoothness and fairness of the subdivision surface.

Fig. 15(a) illustrates a triangular control mesh and the obtained Loop subdivision surface with Gaussian curvature plot 
while Fig. 15(b) is the modified Loop subdivision surface by the technique proposed in (Prautzsch and Umlauf, 2000). We 
note that the subdivision rules for extraordinary vertices of valence 4 or 5 are not changed for the modified scheme due to 
the reason that the original stencils can already generate subdivision surfaces with bounded curvatures there. The curvature 
plot shows that the modified Loop subdivision surface still suffers concentric undulations around the extraordinary points 
of which the curvatures are forced zero. Figs. 15(c) and 15(d) are the PN-modified Loop subdivision surfaces with Gaussian 
curvature plot or with control points and control normals. From the figure we see that the PN-modified Loop subdivision 
surface is smooth and fair with visually continuous curvature even at the extraordinary points.

7. Discussions

From the theories and experimental results of PN subdivision we learn that control normals together with control poly-
gons or control meshes can achieve exact circular shapes, visually C2 subdivision surfaces with non-flat extraordinary points 
and flexible detail editing on curves or surfaces. As control normals are subdivided independent of control points, the sub-
divided normals are generally not the normals of subdivision curves or surfaces except that the control points and control 
normals lie on circles, circular cylinders or spheres. Even though, the effects of control normals on the shapes of PN sub-
division curves and surfaces can be predicted well at least in the following two cases: (1) the end points and end normals 
of each edge match a local convex curve or lie on a circular arc; (2) the control normals at the two ends of an edge are 
equal. In the first case the subdivided normals can approximate the normals of final subdivision curves or surfaces well. In 
the second case, the PN subdivision reduces to linear subdivision with no or less influence of control normals. To achieve 
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Fig. 16. Curve modeling by PN-10-point subdivision using control points and edited control normals.

Fig. 17. Torus shape modeling by PN-Kobbelt subdivision: (a) the subdivision surface with 4 × 4 control points and control normals; (b) the Gaussian 
curvature plot of the surface in (a); (c) the subdivision surface with 8 × 8 control points and control normals.

even more modeling effects, these two kinds of control normals can be applied together for curve and surface modeling by 
PN subdivision.

Fig. 16 illustrates examples when the shape of a PN-2n-point subdivision curve can or cannot be predicted well from 
control normals. Similar results hold for other PN subdivision curves or surfaces. The control points and control normals 
within a closed polygon are first sampled from a circle and then every two initial normals are rotated by 40◦ , 90◦ or 150◦
but the remaining ones are kept unchanged. By adapting the recursive linear 2n-point subdivision scheme given in (Deng 
and Ma, 2013) to PN subdivision, three PN-10-point subdivision curves are obtained from the control points and control 
normals. From the figure we see that the PN interpolatory subdivision curves can interpolate all control points but not 
necessarily the control normals. It is also noticed that the subdivision curves follow the shape of control polygon and the 
control normals as well when there exist local convex curves matching the end points and end normals for each edge; 
see Figs. 16(a) and 16(b). Since every two neighboring normals in Fig. 16(c) have almost opposite directions, the normals 
obtained by interpolatory subdivision also change rapidly and the subdivision curve even has unpredicted self-intersections. 
To avoid defects like self-intersections or creases, initial control normals should change smoothly or slowly along the control 
polygon or control mesh, or additional control points and control normals have to be added to help model curves or surfaces 
with more complex details.

Unlike their linear counterparts, curves and surfaces constructed by approximate PN subdivision schemes such as PN-
B-spline subdivision, PN-Catmull-Clark subdivision, etc. may not lie in the convex hulls of their control points. The convex 
hulls of PN subdivision curves and surfaces have to be computed by taking consideration of control points and control 
normals together. In contrast to stationary linear subdivision schemes by which the limit points or even the limit normals 
can be evaluated explicitly, the limit points of PN subdivision curves and surfaces may not be evaluated directly. They have 
to be evaluated iteratively at present.

Though PN subdivision curves and surfaces can preserve typical shapes like circles, circular cylinders or spheres exactly, 
PN subdivision surfaces that generalize simple linear schemes do not preserve toruses or cyclides which are composed 
of families of circles. Fig. 17(a) illustrates a PN-Kobbelt subdivision surface with a total of 16 control points and control 
normals sampled from a torus. Similar to the Dupin cyclide in Fig. 13(c), several geodesic circles on the torus are preserved 
because the sampled points and normals on the surface are also the points and normals on the circles. As a result, the 
PN subdivision surface resembles a torus shape very well. Even so, the Gaussian curvature plot in Fig. 17(b) illustrates 
that the subdivision surface is not exactly a torus. If the subdivision surface is constructed with more control points and 
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control normals sampled from the torus, it resembles the original surface more accurately; see Fig. 17(c). The approximate 
PN subdivision surfaces may not pass through the control points, they do not preserve toruses or cyclides either.

8. Conclusions and future work

In this paper we have presented novel nonlinear subdivision schemes for constructing curves and surfaces with con-
trol points and control normals. Our proposed PN subdivision schemes generalize traditional linear subdivision schemes in 
a simple and efficient way and the nonlinear subdivision schemes can be implemented almost in the same way as the 
traditional linear ones. PN subdivision schemes can have same convergence and smoothness orders as linear subdivision 
schemes, and they can reproduce circles, circular cylinders and spheres. The nice properties of the proposed subdivision 
schemes make them powerful tools for geometric modeling. Besides modeling curves and surfaces with local details, PN 
subdivision schemes are also capable of modeling fair curves and surfaces using simply chosen control normals. Particularly, 
PN subdivision schemes can be simple solutions to modeling fair C2 subdivision surfaces with arbitrary topology control 
meshes by adapting linear C2 subdivision schemes that only generate subdivision surfaces with flat extraordinary points.

As future work, a few interesting topics deserve further study: (a) curvature continuity analysis of PN C2 subdivision 
surfaces with arbitrary topology control meshes; (b) computation of convex hulls or limit points of PN subdivision curves 
and surfaces; (c) construction of PN subdivision curves and surfaces that have prescribed normals or curvatures at selected 
points or curves; (d) exploring surface subdivision schemes that preserve other geometric primitives such as toruses or 
cyclides.

CRediT authorship contribution statement

The work presented in the paper was proposed and implemented by the author.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant No. 12171429.

References

Alexa, M., Boubekeur, T., 2008. Subdivision shading. ACM Trans. Graph. 27 (5), 142.
Cashman, T.J., 2012. Beyond Catmull-Clark? A survey of advances in subdivision surface methods. Comput. Graph. Forum 31 (1), 42–61.
Cashman, T.J., Augsdörfer, U.H., Dodgson, N.A., Sabin, M.A., 2009. NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes. 

ACM Trans. Graph. 28 (3).
Cashman, T.J., Hormann, K., Reif, U., 2013. Generalized Lane-Riesenfeld algorithms. Comput. Aided Geom. Des. 30 (4), 398–409.
Catmull, E., Clark, J., 1978. Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10 (6), 350–355.
Cavaretta, A.S., Dahmen, W., Micchlli, C.A., 1991. Stationary subdivision. Mem. Am. Math. Soc. 93 (453), 1–186.
Chaikin, G., 1974. An algorithm for high speed curve generation. Comput. Graph. Image Process. 3, 346–349.
Chalmovianský, P., Jüttler, B., 2007. A non-linear circle-preserving subdivision scheme. Adv. Comput. Math. 27 (4), 375–400.
Conti, C., Dyn, N., 2021. Non-stationary subdivision schemes: state of the art and perspectives. In: Fasshauer, G.E., Neamtu, M., Schumaker, L.L. (Eds.), 

Approximation Theory XVI. Springer, pp. 39–71.
Deng, C., Ma, W., 2013. A unified interpolatory subdivision scheme for quadrilateral meshes. ACM Trans. Graph. 32 (3), 23.
DeRose, T., Kass, M., Truong, T., 1998. Subdivision surfaces in character animation. In: Proceedings of SIGGRAPH ’98, pp. 85–94.
Doo, D., Sabin, M., 1978. Behaviour of recursive division surfaces near extraordinary points. Comput. Aided Des. 10 (6), 356–360.
Dyn, N., 2002. Analysis of convergence and smoothness by the formalism of Laurent polynomials. In: Iske, A., Quak, E., Floater, M.S. (Eds.), Tutorials on 

Multiresolution in Geometric Modelling, Summer School Lecture Notes. Springer, pp. 51–68.
Dyn, N., Hormann, K., 2012. Geometric conditions for tangent continuity of interpolatory planar subdivision curves. Comput. Aided Geom. Des. 29 (6), 

332–347.
Dyn, N., Levin, D., 1995. Analysis of asymptotically equivalent binary subdivision schemes. J. Math. Anal. Appl. 193 (2), 594–621.
Dyn, N., Levin, D., 2002. Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144.
Dyn, N., Levin, D., Gregory, J.A., 1987. A 4-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Des. 4 (4), 257–268.
Dyn, N., Levin, D., Gregory, J.A., 1990. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9 (2), 160–169.
Dyn, N., Levin, D., Yoon, J., 2014. A new method for the analysis of univariate nonuniform subdivision schemes. Constr. Approx. 40, 173–188.
Fang, M., Ma, W., Wang, G., 2014. A generalized surface subdivision scheme of arbitrary order with a tension parameter. Comput. Aided Des. 49 (1), 8–17.
Grohs, P., 2009. Smoothness equivalence properties of univariate subdivision schemes and their projection analogues. Numer. Math. 113, 163–180.
Hormann, K., Sabin, M.A., 2008. A family of subdivision schemes with cubic precision. Comput. Aided Geom. Des. 25 (1), 41–52.
Kobbelt, L., 1996. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Comput. Graph. Forum 15 (3), 409–420.
27

http://refhub.elsevier.com/S0167-8396(23)00039-0/bib78F543AD715A820D731D09CEBF0DB9C8s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib3F272F56EB3C145B68F8186DE84265F7s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib082F09E0065FDE24B8844CCE1133B909s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib082F09E0065FDE24B8844CCE1133B909s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibC0B7FFA12CC7CC34C0C6AB3E2C8F8746s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibA574E30798BF8E73C0A40FC55628F352s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib9D4D455B9C1FFFEBBC3368500ABDD981s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib185F6006E9F4DC505BFC04DDEB607A3Bs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib1C2F67F4F75795FED51028D0606ACAB3s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibCB0723E763EB35FB6D23EF1F53C95936s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibCB0723E763EB35FB6D23EF1F53C95936s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibE6B94655C60FBC869EF993C7A05A8C68s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibE669439DD3085E1A82B4A25A5C0F29E6s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib82602832EC14EDA22D9BFD3C57469ED5s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib86FA360C0CE17D017955D13749DB4990s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib86FA360C0CE17D017955D13749DB4990s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibE187B5B566CDFCA1B791C6FD0F936319s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibE187B5B566CDFCA1B791C6FD0F936319s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib5C333AC83EB6DF038BEDBF395D495399s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib9D9C2874904DBF8022F372BE6546C4B0s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib5F4F5A97E0DF69B390490209A7E984E8s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib3C9996D62378CF1C83AD918BEEE569AFs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib2C375845F8EB38F49BCEC13E25B9AFF9s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib76ECFE5C8F931F0C0E064459EEB73C3Fs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibF0EDFB951C27BD8EA96FD6154D71469Ds1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib00AE3B50F1A8039CF2DA6B5A54DE662Ds1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib17CFD1994C1E998F06C5DB09635BFBDFs1


X. Yang Computer Aided Geometric Design 104 (2023) 102207
Lane, J.M., Riesenfeld, R.F., 1980. A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Trans. Pattern 
Anal. Mach. Intell. 2 (1), 35–46.

Levin, A., 2006. Modified subdivision surfaces with continuous curvature. In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers. ACM Press, New York, NY, USA, 
pp. 1035–1040.

Lipovetsky, E., Dyn, N., 2016. A weighted binary average of point-normal pairs with application to subdivision schemes. Comput. Aided Geom. Des. 48, 
36–48.

Lipovetsky, E., Dyn, N., 2020. Extending editing capabilities of subdivision schemes by refinement of point-normal pairs. Comput. Aided Des. 126, 102865.
Loop, C., 1987. Smooth subdivision surfaces based on triangles. Master’s Thesis. University of Utah, Salt Lake City.
Micchelli, C.A., Prautzsch, H., 1989. Uniform refinement of curves. Linear Algebra Appl. 114/115, 841–870.
Morin, G., Warren, J.D., Weimer, H., 2001. A subdivision scheme for surfaces of revolution. Comput. Aided Geom. Des. 18 (5), 483–502.
Myles, A., Peters, J., 2009. Bi-3 C2 polar subdivision. ACM Trans. Graph. 28 (3), 48.
Peters, J., Reif, U., 2008. Subdivision Surfaces. Springer.
Prautzsch, H., 1998. Smoothness of subdivision surfaces at extraordinary points. Adv. Comput. Math. 9, 377–389.
Prautzsch, H., Umlauf, G., 1998. A G2-subdivision algorithm. In: Farin, G., Bieri, H., Brunnett, G., Rose, T. (Eds.), Geometric Modelling. Springer, Vienna, 

pp. 217–224.
Prautzsch, H., Umlauf, G., 2000. A G1 and G2 subdivision scheme for triangular nets. Int. J. Shape Model. 6 (1), 21–35.
Reif, U., 1995. A unified approach to subdivision algorithms near extraordinary vertices. Comput. Aided Geom. Des. 12 (2), 153–174.
Reif, U., Sabin, M.A., 2019. Old problems and new challenges in subdivision. J. Comput. Appl. Math. 349, 523–531.
Reif, U., Weinmann, A., 2021. Clothoid fitting and geometric Hermite subdivision. Adv. Comput. Math. 47, 50.
Rioul, O., 1992. Simple regularity criteria for subdivision schemes. SIAM J. Math. Anal. 23 (6), 1544–1576.
Sabin, M.A., Dodgson, N.A., 2005. A circle-preserving variant of the four-point subdivision scheme. In: Dæhlen, M., Mørken, K., Schumaker, L. (Eds.), Mathe-

matical Methods for Curves and Surfaces: Tromsø 2004. Nashboro Press, Brentwood, TN, pp. 275–286.
Schaefer, S., Vouga, E., Goldman, R., 2008. Nonlinear subdivision through nonlinear averaging. Comput. Aided Geom. Des. 25 (3), 162–180.
Sederberg, T.W., Zheng, J., Sewell, D., Sabin, M., 1998. Non-uniform recursive subdivision surfaces. In: Proceedings of SIGGRAPH ’98, pp. 387–394.
Wallner, J., Dyn, N., 2005. Convergence and C1 analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des. 22 (7), 593–622.
Wallner, J., Pottmann, H., 2006. Intrinsic subdivision with smooth limits for graphics and animation. ACM Trans. Graph. 25 (2), 356–374.
Weinmann, A., 2010. Nonlinear subdivision schemes on irregular meshes. Constr. Approx. 31, 395–415.
Weinmann, A., 2012. Subdivision schemes with general dilation in the geometric and nonlinear setting. J. Approx. Theory 164, 105–137.
Xie, G., Yu, T.P.-Y., 2007. Smoothness equivalence properties of manifold-valued data subdivision schemes based on the projection approach. SIAM J. Numer. 

Anal. 45 (3), 1200–1225.
Xue, Y., Yu, T. P.-Y., Duchamp, T., 2006. Jet subdivision schemes on the k-regular complex. Comput. Aided Geom. Des. 23, 361–396.
Yang, X., 2005. Surface interpolation of meshes by geometric subdivision. Comput. Aided Des. 37, 497–508.
Yang, X., 2006. Normal based subdivision scheme for curve design. Comput. Aided Geom. Des. 23 (3), 243–260.
Yang, X., 2016. Matrix weighted rational curves and surfaces. Comput. Aided Geom. Des. 42, 40–53.
Yang, X., Zheng, J., 2013. Curvature tensor computation by piecewise surface interpolation. Comput. Aided Des. 45 (12), 1639–1650.
Zorin, D., 2006. Constructing curvature-continuous surfaces by blending. In: SGP’06: Proceedings of the Fourth Eurographics Symposium on Geometry 

Processing, pp. 31–43.
Zorin, D., Schröder, P., Sweldens, W., 1996. Interpolation subdivision for meshes with arbitrary topology. In: Proceedings of SIGGRAPH ’96, pp. 189–192.
28

http://refhub.elsevier.com/S0167-8396(23)00039-0/bib175D467AC1C6E1C35DABF5D0C1ED0ECFs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib175D467AC1C6E1C35DABF5D0C1ED0ECFs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib7BAED3565054E3EE942E12514A096A04s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib7BAED3565054E3EE942E12514A096A04s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibF9B23CA85295D9B85A95C2FBF3E01D05s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibF9B23CA85295D9B85A95C2FBF3E01D05s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib02E842D0B2F49B1D37D2CC0732F98F96s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibC3FC0FF90406AE52600DCDCF736BAB8Fs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibBB9FE3267AE819129093AE23B22BD886s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib90812AC86CEAEAAC866B3643EF4A00B0s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib5E4D6DB860CCBED5A40C3459C4849C78s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibE1320BCEEB29B189B35DF39B436757ADs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib70ED024B71A51BE77317FE48FBB042E1s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib9644C0D4745E12DE237B8B1951A1C775s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib9644C0D4745E12DE237B8B1951A1C775s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib3A595DC992058DE9BA68AB14C3EC6F26s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibB50FBDDEE2AB25E17563D194FA007708s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibA87ADCF0C8B887A00585C4AE79D197CDs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib11732D2B84DAA6652ECB33A14C3CA7D8s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib8737889F1F0D49450F00B8762B812CDCs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibC1016D54A6218A1A5B98A1CEFEC43055s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibC1016D54A6218A1A5B98A1CEFEC43055s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib4181B03F0F947F8F051841F99EF2361Cs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib3E2CAE1697ECC7F4B9C95D2187F81B20s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib64DD6948386E6E921BB13F7AA0F9866Fs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib7DC93A036A528D384B32AFA39D8C4776s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib81F47D8A90BCA72BDC0302ED847752A4s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib4CDA916C53CCA32A1FD67F53D66E1F4Fs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibC2366C9BE13730E8C2161B7BE00E816Cs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibC2366C9BE13730E8C2161B7BE00E816Cs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib92DD02DC33CA8210ADE4F3C753A28CA2s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibFA3CA20C162EB396D6F256E3901D7560s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib5E6566C008C496629DF66A18733881F5s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib154D46BFF0C4CEAA1192BFC9EC62BE62s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib19ACA7518838A94BDA666B60238280F8s1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib85B736F9036F67E4771BFDDE12BB9B1Cs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bib85B736F9036F67E4771BFDDE12BB9B1Cs1
http://refhub.elsevier.com/S0167-8396(23)00039-0/bibFA88F674C585305BEAF2063386BE8CAEs1

	Point-normal subdivision curves and surfaces
	1 Introduction
	1.1 Related work
	1.2 Our approach
	1.3 Outline

	2 Preliminaries and notations
	2.1 Univariate binary subdivision
	2.2 Subdivision surfaces with extraordinary vertices
	2.3 Binary subdivision on sphere

	3 Point-normal subdivision schemes
	3.1 The PN subdivision schemes
	3.2 Basic geometric properties

	4 Convergence and smoothness analysis
	4.1 Analysis of univariate PN subdivision schemes
	4.2 Analysis of PN subdivision on irregular meshes

	5 PN C2 subdivision surfaces
	6 Experimental examples
	7 Discussions
	8 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


