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Rational curves and surfaces are powerful tools for shape representation and geometric 
modeling. However, the real weights are generally difficult to choose except for a few 
special cases such as representing conics. This paper presents an extension of rational 
curves and surfaces by replacing the real weights with matrices. The matrix weighted 
rational curves and surfaces have the same structures as the traditional rational curves 
and surfaces but the matrix weights can be defined in geometric ways. In particular, the 
weight matrices for the extended rational Bézier, NURBS or the generalized subdivision 
curves and surfaces are computed using the normal vectors specified at the control points. 
Similar to the effects of control points, the specified normals can be used to control the 
curve or the surface’s shape efficiently. It is also shown that matrix weighted NURBS curves 
and surfaces can pass through their control points, thus curve or surface reconstruction by 
the extended NURBS model no longer needs solving any large system but just choosing 
control points and control normals from the input data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In Computer Aided Geometric Design, rational curves and surfaces like

R(ξ) =
∑

i ωi P iφi(ξ)∑
i ωiφi(ξ)

, ξ ∈ � (1)

where Pi are the control points, ωi are the scalar weights and φi(ξ) are the blending functions defined on a 1D or 2D 
domain, are powerful tools for shape representation, modeling and reconstruction. Particularly, polynomial or rational Bézier 
curves and surfaces, NURBS (non-uniform rational B-spline) curves and surfaces and the generalized subdivision surfaces are 
widely used in CAD or computer animation industry (Farin, 2001; DeRose et al., 1998; Müller et al., 2006). As its compact 
representation of freeform as well as analytical curves and surfaces, NURBS has even become de facto industry standard in 
CAD commercial software (Piegl and Tiller, 1997).

Except for representing typical curves or surfaces such as conics or rotational surfaces, the potentials of rational curves 
and surfaces have not been explored thoroughly for geometric modeling. One possible reason is due to the limitations of 
the current representation. Generally, the geometric meaning of weights of rational curves and surfaces is not as clear as 
their control points. High order rational curves and surfaces are useful for high quality shape modeling (Cashman et al., 
2009), but how to construct them is not as clear as desired. Rational curves and surfaces are also promising for shape 
reconstruction from scanned data but the determination of the weights is not a simple task (Xie et al., 2012). If some 
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differential quantities or sharp features should be considered, the reconstruction of curves and surfaces becomes nonlinear 
and optimization techniques have to be employed (Gofuku et al., 2009; Wu et al., 2013; Ma et al., 2015).

A geometric approach to construct rational curves and surfaces is the technique of dual Bézier curves and surfaces which 
treat the Bézier control points as control lines or control planes (Hoschek, 1983). Rational Bézier curves and surfaces are 
obtained as the envelopes of the dual Bézier curves or the dual Bézier surfaces. Even this is usually feasible, the denominator 
of an obtained rational Bézier curve or surface may vanish when the initial control lines or control planes have not been 
properly given. Another interesting extension of rational Bézier curves is complex rational Bézier curves (Sánchez-Reyes, 
2009). Complex rational Bézier curves replace the scalar weights of the classical rational Bézier curves by complex numbers 
and several typical plane curves can be represented by complex rational Bézier curves of lower degrees. However, complex 
rational Bézier curves only lie in 2D space. Other interesting extensions of Bézier or NURBS curves and surfaces include plus 
curves and surfaces which use parameterized control lines (Goshtasby, 2005), curves and surfaces with basis functions that 
contain shape parameters (Juhász and Róth, 2013) or spline curves and surfaces with added geometric details controlled by 
vectors (Kosinka et al., 2015).

In this paper we present extended representation models of rational curves and surfaces with the following goals: (1) The 
new models maintain the same structures as the usual ones; (2) The new models are compatible with the traditional rational 
curves and surfaces; (3) The new weights permit geometric definitions and can be used for easy shape editing; (4) Curve or 
surface reconstruction using the extended rational models is simple and direct.

A rational curve or surface in Rd can be regarded as the perspective projection of a non-rational curve or surface 
in Rd+1 (Farin, 1999). Similarly, we define rational curves and surfaces in Rd by the mapping of homogeneous curves 
or homogeneous surfaces in R(d+1)×d . Concretely, we should only replace the scalar weights in Equation (1) with d × d
matrices. If the denominator matrix function is non-singular over the whole parameter domain, a matrix weighted rational 
curve or surface will be obtained. It is clear that the extended rational curves and surfaces have the same structures as the 
traditional ones. If all the weight matrices are defined by multiplying a set of real numbers with the same non-singular 
matrix, the matrix weighted rational curve or surface will degenerate to a conventional rational curve or surface.

To achieve the third or even the fourth goal, we propose to compute the weight matrices based on normal vectors 
and real numbers specified at the control points of the curves or the surfaces. This is motivated by the observation that a 
rational curve or surface is in fact the solution to least-squares fitting to the control points with weights given by a set of 
basis functions. If we fit a curve or a surface to the points as well as to a set of lines or planes that pass through the points, 
we obtain a rational curve or a rational surface with matrix weights. These curves and surfaces can be controlled using 
control points together with control normals. Moreover, matrix weighted NURBS curves and surfaces can even pass through 
their control points, thus curve or surface reconstruction by the proposed models becomes easy because the control points 
of the reconstructed curve or surface should only be selected from the input data.

As the popular subdivision schemes proposed by Catmull and Clark (1978), Doo and Sabin (1978) or Loop (1987) are just 
the generalized B-spline surfaces with arbitrary topology control meshes, they can be extended to matrix weighted rational 
subdivision surfaces and the shapes of the extended subdivision surfaces can be controlled using control points and control 
normals. Similarly, other B-spline or NURBS compatible subdivision surfaces, for example the schemes in Sederberg et al.
(1998), Stam (2001), Schaefer and Goldman (2009), can be generalized to matrix weighted rational subdivision surfaces too.

The paper is structured as follows. Section 2 presents the general definition and basic properties of matrix weighted 
rational curves and surfaces. More details about matrix weighted rational Bézier curves and matrix weighted NURBS curves 
are given in Section 3 and Section 4, respectively. Section 5 is devoted to matrix weighted rational parametric surfaces and 
matrix weighted rational subdivision surfaces. In Section 6 we present several interesting examples to show the potential 
applications of the proposed models. Section 7 concludes the paper.

2. Basics of matrix weighted rational curves and surfaces

In this section we present the definition of general matrix weighted rational curves and surfaces. A method for defining 
the weight matrices using specified normals and some basic properties of the obtained curves and surfaces will also be 
given.

2.1. Definition

Assume that P0, P1, . . . , Pn are a sequence or a set of points lying in Rd and Mi ∈ R
d×d , i = 0, 1, . . . , n are a set of 

known matrices. Suppose that φi(t) ≥ 0, i = 0, 1, . . . , n are a set of blending functions defined over a 1D or 2D domain �. If 
the matrix function M(ξ) = ∑n

i=0 Miφi(ξ) is non-singular for any ξ ∈ �, a valid matrix weighted rational curve or surface is 
given by

Q (ξ) =
[

n∑
i=0

Miφi(ξ)

]−1 n∑
i=0

Mi Piφi(ξ), ξ ∈ � (2)

Particularly, if we choose Mi = ωi W , where ωi ∈R, i = 0, 1, . . . , n and W is a d ×d matrix that satisfies |W | �= 0, the matrix 
weighted rational curve or surface Q (ξ) will degenerate to a conventional rational curve or surface as given by Equation (1).
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Though there may exist many methods for defining the weight matrices for matrix weighted rational curves and surfaces, 
we present here a geometric approach to compute them. Suppose that ni , i = 0, 1, . . . , n are a set of unit normal vectors 
and ωi > 0, μi > −1, i = 0, 1, . . . , n are a set of real numbers. The weight matrices for Q (ξ) are defined as follows

Mi = ωi(I + μinin
T
i ), i = 0,1, . . . ,n (3)

where I is the d × d identity matrix. Before we derive the condition when a matrix weighted rational curve or surface is 
valid, we have the following theorem.

Theorem 2.1. Suppose that ni ∈ R
d, i = 0, 1, . . . , n are a set of unit vectors, ωi > 0, μi > −1, i = 0, 1, . . . , n are real numbers and 

Mi are the matrices defined by Equation (3). The matrix Ms = ∑n
i=0 si Mi , where the coefficients satisfy si ≥ 0 and 

∑n
i=0 si > 0, is 

non-singular.

Proof. To prove the theorem we prove that the determinant of matrix Ms is greater than zero. Let θi = ωi si , the matrix Ms

can be reformulated as Ms = ∑n
i=0 θi(I + μininT

i ). Assuming that λ is an arbitrary eigenvalue and v is the corresponding 
eigenvector of the matrix, it yields that

λv =
[

n∑
i=0

θi(I + μinin
T
i )

]
v =

n∑
i=0

θi(v + μiaini),

where ai = nT
i v, i = 0, 1, . . . , n. Dotting either side of above equation by vector v, we have

λ =
n∑

i=0

θi(1 + μia
2
i ).

As |ai | = |nT
i v| ≤ 1 and μi > −1, i = 0, 1, . . . , n, it can be concluded that λ > 0. Since the matrix Ms is symmetric and has d

eigenvalues, namely λ1, λ2, . . ., λd , we have |Ms| = ∏d
i=1 λi > 0. This proves the theorem. �

From Theorem 2.1 we know that if the blending functions φi(ξ) are non-negative and linear independent over the 
parameter domain, the matrix weighted rational curve or surface Q (ξ) given by Equation (2) is valid.

From a geometric point of view, a rational curve or a rational surface is the solution to the weighted least squares fitting 
to the control points with weights chosen as the scaled blending functions. It can be shown that a matrix weighted rational 
curve or surface with weight matrices defined by Equation (3) is the solution to the weighted least squares fitting to the 
control points and lines/planes that pass through the points. For a set of given points Pi , normal vectors ni and coefficients 
ωi > 0, μi > −1, i = 0, 1, . . . , n, let

F (Q (ξ)) =
n∑

i=0

ωiφi(ξ)[Q (ξ) − Pi]2 +
n∑

i=0

ωiμiφi(ξ)[(Q (ξ) − Pi) · ni]2. (4)

By minimizing the functional F (Q (ξ)) we have

∂ F (Q (ξ))

∂ Q (ξ)
=

n∑
i=0

ωiφi(ξ)[Q (ξ) − Pi] +
n∑

i=0

ωiμiφi(ξ)nin
T
i (Q (ξ) − Pi) = 0. (5)

Solving Equation (5) we obtain the matrix weighted rational curve or matrix weighted rational surface Q (ξ) with weight 
matrices defined by Equation (3). Clearly, if all μi vanish, the solution to Equation (5) is a conventional rational curve or a 
conventional rational surface. Similar to the effects of control points Pi , the normals ni can be used to control the curve or 
surface’s shape efficiently. We therefore refer the normals as the control normals of the curves or surfaces.

2.2. Basic properties of matrix weighted rational curves and surfaces with control normals

Matrix weighted rational curves and surfaces maintain several fundamental properties of traditional rational curves and 
surfaces. These properties are useful for shape modeling using the proposed models of curves and surfaces. We state the 
following two properties for the matrix weighted rational curves but similar properties hold for the matrix weighted rational 
surfaces.

Property 2.2 (Geometric invariance). The shape of a matrix weighted rational curve is invariant under the translation or uniform 
scaling of all control points. Moreover, if the weight matrices are defined by Equation (3), the shape of the curve is also invariant under 
the rotation of the coordinate system.
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Proof. We first prove the geometric invariance under the translation or uniform scaling of the control points. Suppose that 
a matrix weighted rational curve is represented by Equation (2). Since

Q 0 =
[

n∑
i=0

Miφi(ξ)

]−1 n∑
i=0

Mi Q 0φi(ξ),

we have

Q (ξ) + Q 0 =
[

n∑
i=0

Miφi(ξ)

]−1 n∑
i=0

Mi(Pi + Q 0)φi(ξ).

This proves that the shape of a matrix weighted rational curve is invariant under the translation of control points. For a 
nonzero real number s we have

sQ (ξ) =
[

n∑
i=0

Miφi(ξ)

]−1 n∑
i=0

Mi sPiφi(ξ),

which proves the geometric invariance under the uniform scaling of the control points.
We next prove the geometric invariance under the rotation of the coordinate system. Suppose that A ∈R

d×d is a rotation 
matrix. It yields that A AT = I and A−1 = AT . By multiplying A on either side of the expression of Q (ξ), we have

A Q (ξ) = A
[∑n

i=0 ωi(I + μininT
i )φi(ξ)

]−1
A−1 A

∑n
i=0 ωi(I + μininT

i )AT A Piφi(ξ)

= [
A

∑n
i=0 ωi(I + μininT

i )φi(ξ)A−1
]−1 ∑n

i=0 ωi(A AT + μi AninT
i AT )A Piφi(ξ)

= {∑n
i=0 ωi[I + μi Ani(Ani)

T ]φi(ξ)
}−1 ∑n

i=0 ωi[I + μi Ani(Ani)
T ]A Piφi(ξ).

Thus A Pi and Ani are the control points and control normals of A Q (ξ). The proposition is proven. �
Property 2.3 (Effects of weights). Suppose that Q (ξ) is a matrix weighted rational curve defined by Equation (2) and the weight 
matrices are defined by Equation (3). The curve Q (ξ) will be approximate tangent to the line or the plane that passes through point 
Pi0 with normal vector ni0 when the parameter μi0 approaches infinity. If ωi0 approaches infinity, the points on Q (ξ) will approach 
the control point Pi0 .

Proof. From the definition of the functional F (Q (ξ)) we know that if μi0 approaches infinity the term φi(ξ)[(Q (t) − Pi0 ) ·
ni0 ]2 will approach zero for any ξ ∈ support(φi(ξ)) 

⋂
� when the functional F (Q (ξ)) is minimized. As (Q (ξ) − Pi0) · ni0

approaches zero, the curve Q (ξ) will be approximate tangent to the line (d = 2) or to the plane (d ≥ 3) that passes through 
point Pi0 with normal ni0 . Similarly, if ωi0 approaches infinity, the term (Q (ξ) − Pi0)

2 with ξ ∈ support(φi(ξ)) 
⋂

� will 
approach zero too and the point on curve Q (ξ) will approach the control point Pi0 . �
3. Matrix weighted rational Bézier curves

A matrix weighted rational Bézier curve of degree n is defined by

Q (t) =
[

n∑
i=0

Mi Bi,n(t)

]−1 n∑
i=0

Mi Pi Bi,n(t), t ∈ [0,1] (6)

where Bi,n(t) = n!
i!(n−i)! t

i(1 −t)n−i are the Bernstein basis functions. Based on Theorem 2.1 we know that the matrix weighted 
rational Bézier curve is valid when the weight matrices are given by Equation (3).

Besides the basic properties stated in Section 2, matrix weighted rational Bézier curves have some other elegant proper-
ties due to the special basis functions.

Property 3.1 (End property). A matrix weighted rational Bézier curve of degree n interpolates two end control points. If the weight 
matrices satisfy M0 = M1 and Mn−1 = Mn, the derivatives of the curve at two ends are parallel to the two end control legs.

Proof. Suppose that a matrix weighted rational Bézier curve Q (t) is defined by Equation (6). Substituting t = 0 into the 
equation, we have

Q (0) =
[

n∑
i=0

Mi Bi,n(0)

]−1 n∑
i=0

Mi Pi Bi,n(0) = M−1
0 M0 P0 = P0.

Similarly, we have Q (1) = Pn .
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Fig. 1. (a) A matrix weighted rational Bézier curve generated by the control polygon and the control normals; (b) the converted rational Bézier curve and 
its control polygon.

Denoting P M(t) = ∑n
i=0 Mi Pi Bi,n(t) and M(t) = ∑n

i=0 Mi Bi,n(t), the matrix weighted rational Bézier curve becomes 
Q (t) = M−1(t)P M(t). Thus the derivative of Q (t) can be obtained as

Q ′(t) = M−1(t)[P ′
M(t) − M ′(t)Q (t)].

If M0 = M1 and Mn−1 = Mn , we have M ′(0) = M ′(1) = 0. Therefore, the derivatives of the matrix weighted rational Bézier 
curve at two ends are obtained as

Q ′(0) = M−1(0)[P ′
M(0) − M ′(0)Q (0)] = n(P1 − P0),

Q ′(1) = M−1(1)[P ′
M(1) − M ′(1)Q (1)] = n(Pn − Pn−1).

The proposition is proven. �
Property 3.2 (Conversion). A matrix weighted Bézier curve of degree n in Rd can be converted to a rational Bézier curve of degree dn.

Proof. Let M(t) be the matrix function of degree n as defined in Equation (6). The inverse of M(t) is computed by 
[M(t)]−1 = M	(t)/|M(t)|, where M	(t) represents the adjoint matrix of M(t) and |M(t)| is the determinant of the ma-
trix function. The matrix weighted rational Bézier curve Q (t) can be reformulated as Q (t) = M	(t) 

∑n
i=0 Mi Pi Bi,n(t)/|M(t)|. 

With simple computation, both the numerator and denominator can be formulated as Bézier functions of degree dn. There-
fore, the matrix weighted rational Bézier curve Q (t) is a rational Bézier curve of degree dn by reformulation. �

Even though matrix weighted rational Bézier curves can be reformulated as traditional rational Bézier curves, the former 
ones own the advantages of lower degrees and smaller numbers of control points. A curve with fewer control points can be 
edited more easily and the control normals can help to model straight or flat features very well. Fig. 1(a) illustrates a matrix 
weighted rational Bézier curve of degree 10 with weight matrices computed by the specified control normals. By choosing 
all ωi = μi = 1 except for μ2 = μ5 = μ8 = 20 a bottle like shape with flat bottom and straight sides is generated. When the 
curve has been transformed into a rational Bézier curve of degree 20, the shape of the control polygon differs significantly 
with that of the curve; see Fig. 1(b). From the figure we also learn that a matrix weighted rational Bézier curve may not 
lie in the convex hull of its control polygon. The convex hull of a matrix weighted rational Bézier curve can be obtained by 
converting it to a rational Bézier curve or some other methods.

A point on a matrix weighted rational Bézier curve Q (t) = M−1(t)P M(t) can be obtained by computing the matrix M(t)
and point P M(t) using the traditional de Casteljau algorithm. Alternatively, the point can also be obtained by applying 
a matrix rational de Casteljau algorithm which is similar to the rational algorithm for robust computation of points on 
rational Bézier curves (Farin, 2001). For a matrix weighted rational Bézier curve as defined by Equation (6), the matrix 
rational de Casteljau algorithm begins with the initialization M[0]

i (t) = Mi and Q [0]
i (t) = Pi for i = 0, 1, . . . , n and computes 

the intermediate matrices and points
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M[r]
i (t) = (1 − t)M[r−1]

i (t) + tM[r−1]
i+1 (t),

Q [r]
i (t) =

[
M[r]

i (t)
]−1 [

(1 − t)M[r−1]
i (t)Q [r−1]

i (t) + tM[r−1]
i+1 (t)Q [r−1]

i+1 (t)
]

for r = 1, 2, . . . , n and i = 0, 1, . . . , n − r. Finally, the point is obtained as Q (t) = Q [n]
0 (t). It is noticed that points Q [r]

i (t), 
Q [r−1]

i (t) and Q [r−1]
i+1 (t) may not lie on the same line and the point evaluation by the matrix rational de Casteljau algorithm 

may no longer be a corner cutting process.
Degree elevation of a matrix weighted rational Bézier curve is also similar to that of the conventional rational Bézier 

curves. Assume that M−1 and Mn+1 are zero matrices. Let Mi = i
n+1 Mi−1 +

(
1 − i

n+1

)
Mi and

P i =
[

i

n + 1
Mi−1 +

(
1 − i

n + 1

)
Mi

]−1 [
i

n + 1
Mi−1 Pi−1 +

(
1 − i

n + 1

)
Mi Pi

]
,

i = 0, 1, . . . , n + 1. A matrix weighted rational Bézier curve Q (t) can be represented as

Q (t) =
[

n∑
i=0

Mi Bi,n(t)

]−1 n∑
i=0

Mi Pi Bi,n(t) =
[

n+1∑
i=0

Mi Bi,n+1(t)

]−1 n+1∑
i=0

Mi P i Bi,n+1(t).

By the same reason as the matrix rational de Casteljau algorithm, degree elevation of matrix weighted rational Bézier curves 
is generally not a corner cutting process either.

4. Matrix weighted NURBS curves

Suppose that Pi ∈ R
d , i = 0, 1, . . . , n are a sequence of given points, Mi ∈ R

d×d , i = 0, 1, . . . , n are a set of given matrices. 
Let t = {t0, t1, . . . , tn+k} be a non-decreasing sequence and no k numbers are the same except for at two ends, a matrix 
weighted NURBS curve of order k (degree k − 1) is defined by

Q (t) =
[

n∑
i=0

Mi Ni,k(t)

]−1 n∑
i=0

Mi Pi Ni,k(t), t ∈ [tk−1, tn+1] (7)

where Ni,k(t), i = 0, 1, . . . , n are the B-splines defined on the knot vector t. Particularly, the matrix weighted NURBS curve 
is valid when the weight matrices are defined by Equation (3).

Let M(t) = ∑n
i=0 Mi Ni,k(t) and P M(t) = ∑n

i=0 Mi Pi Ni,k(t). Both the matrix M(t) and the point P M(t) can be computed 
by the deBoor–Cox algorithm. Then, the corresponding point on the matrix weighted NURBS curve Q (t) can be obtained 
as Q (t) = M−1(t)P M(t) and the derivative of Q (t) can be computed by Q ′(t) = M−1(t) 

[
P ′

M(t) − M ′(t)Q (t)
]
, where P ′

M(t)
and M ′(t) are the derivatives of the corresponding B-spline curve or the B-spline matrix function. Alternatively, the point 
Q (t) can also be evaluated using the matrix rational deBoor–Cox algorithm, just as the rational deBoor–Cox algorithm for a 
NURBS curve (Farin, 2001).

In addition to the basic properties stated in Section 2, matrix weighted NURBS curves maintain a few similar properties 
as NURBS curves.

Property 4.1 (Continuity order). A matrix weighted NURBS curve of order k is infinitely differentiable on the interior of knot spans and 
k − 1 − p times differentiable at a knot of multiplicity p.

Property 4.2 (End interpolation). If the knot vector of a matrix weighted NURBS curve Q (t) satisfies t0 = t1 = . . . = tk−1 and tn+1 =
tn+2 = . . . = tn+k, we have Q (tk−1) = P0 and Q (tn+1) = Pn. Moreover, if M0 = M1 and Mn−1 = Mn, we also have Q ′(tk−1) =

k−1
tk−t1

(P1 − P0) and Q ′(tn+1) = k−1
tn+k−tn

(Pn − Pn−1).

Property 4.3 (Local approximation). The movement of control point Pi or the change of weight matrix Mi only changes the curve 
defined on interval t ∈ [ti, ti+k). If t ∈ [tl, tl+1), the expression for the matrix weighted NURBS curve is simplified as

Q (t) =
⎡
⎣ l∑

i=l−k+1

Mi Ni,k(t)

⎤
⎦

−1
l∑

i=l−k+1

Mi Pi Ni,k(t).

Similar to the conversion of matrix weighted rational Bézier curves, matrix weighted NURBS curves can be converted to 
the traditional NURBS curves.

Property 4.4 (Conversion to NURBS). A matrix weighted NURBS curve of order k in Rd can be converted to a NURBS curve of order 
d(k − 1) + 1.
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Besides matrix weighted NURBS curves of degree one that interpolate all of their control points, matrix weighted NURBS 
curves of higher degrees can interpolate selected control points when the control normals and scalar weights are properly 
given.

Property 4.5 (Almost-interpolation). Assume that k > 2 is an integer and l = � k−1
2 �, where �� represents the integer part of a number. 

Let λq+ j = Nq+ j,k(tq+ k
2
), j = ±1, ±2, . . . , ±l, where Ni,k(t) are the uniform B-splines of order k and tq+ k

2
= 1

2 (tq + tq+k). Suppose 
that L is the line that passes through point Pq with direction nq on a plane, and points Pq+ j and normals nq+ j , j = ±1, . . . , ±l
symmetrically lie on two sides of the line L on the plane. If the weights μq+ j , j = ±1, ±2, . . . , ±l are all chosen as

μ =
∑l

| j|=1 λq+ jnT
q (Pq − Pq+ j)∑l

| j|=1 λq+ jnT
q nq+ jnT

q+ j(Pq+ j − Pq)
, (8)

the matrix weighted NURBS curve with weight matrices Mi = (I + μininT
i ) passes through point Pq at t = tq+ k

2
.

Proof. Suppose that a matrix weighted NURBS curve Q (t) passes through point Pq at t = tq+ k
2

, it requires that Q (tq+ k
2
) =

Pq . Since Q (t) satisfies Equation (5), we have

n∑
i=0

Ni,k(tq+ k
2
)(Pq − Pi) +

n∑
i=0

μi Ni,k(tq+ k
2
)nin

T
i (Pq − Pi) = 0.

By deleting all the vanishing terms and letting μi = μ, we have

l∑
| j|=1

λq+ j(Pq − Pq+ j) + μ

l∑
| j|=1

λq+ jnq+ jn
T
q+ j(Pq − Pq+ j) = 0.

Dotting either side of the equation by nq we have a unique solution of μ given by Equation (8). As points Pq+ j and 
normals nq+ j , j = ±1, . . . , ±l symmetrically lie on two sides of the line L, the above steps can be reversed, which proves 
the proposition. �

We are interested in the computation of parameter μ for matrix weighted NURBS curves of order 3 or 4. If k = 3
or k = 4, we have l = � k−1

2 � = 1 and λq−1 = λq+1. Particularly, if points Pq+ j and unit normals nq+ j , j = −1, 0, 1 are 
uniformly sampled from a circular arc, it can be further verified that nT

q (Pq − Pq−1) = nT
q (Pq − Pq+1) and nT

q (Pq − Pq+ j) =
nT

q+ j(Pq+ j − Pq) for j = −1, 1. As a result, the formula for parameter μ is simplified as

μ = 2

nT
q nq−1 + nT

q nq+1
= |N1(q)|∑

j∈N1(q) nT
q n j

, (9)

where N1(q) represents the index set of 1-ring neighbor points of point Pq and |N1(q)| is the valence of point Pq . We will 
use this latter formula to compute the local parameter μ for defining the weight matrices for surface reconstruction by low 
order matrix weighted NURBS surfaces or low order matrix weighted rational subdivision surfaces.

Fig. 2 illustrates an example of curve reconstruction by matrix weighted NURBS. The input 200 points were sampled from 
a spiral spline which has four pieces of monotone curvature plots. To reconstruct a smooth curve we first chose 30 points 
from the original data and compute normal vectors for the chosen points based on the input data. By using these points and 
normals as control points or control normals and computing the weight matrices by Equation (3) and Equation (8), matrix 
weighted NURBS curves of degree 1, 3 or 10 are generated. Even though the matrix weighted NURBS curve of degree 1 is 
only C0 continuous at the joint points, it is still visually smooth; see Fig. 2(a). The matrix weighted NURBS curves of higher 
degrees can achieve higher orders of smoothness and improved fairness as well; see Figs. 2(b) and (c) for the reconstruction 
results.

5. Matrix weighted rational surfaces

This section presents the extensions of Bézier surfaces and NURBS surfaces to matrix weighted rational surfaces. Several 
popular subdivision surfaces which are also the generalized B-spline surfaces with arbitrary topology control meshes will 
be extended to matrix weighted rational subdivision surfaces.

5.1. Matrix weighted rational parametric surfaces

Similar to the extensions of Bézier or NURBS curves, rectangle Bézier surfaces and NURBS surfaces can be extended to 
matrix weighted rational surfaces directly. Assuming Pij , i = 0, 1, . . . , m; j = 0, 1, . . . , n are a set of given points in Rd , Mij , 
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Fig. 2. Curve reconstruction by matrix weighted NURBS: (a) degree 1; (b) degree 3; (c) degree 10.

i = 0, 1, . . . , m; j = 0, 1, . . . , n are a set of given matrices in Rd×d , a matrix weighted rational Bézier surface is defined by

Q 1(s, t) =
⎡
⎣ m∑

i=0

n∑
j=0

Mij Bi,m(s)B j,n(t)

⎤
⎦

−1
m∑

i=0

n∑
j=0

Mij P i j Bi,m(s)B j,n(t), (s, t) ∈ [0,1]2 (10)

With the same set of control points and weight matrices, a matrix weighted NURBS surface is obtained as

Q 2(u, v) =
⎡
⎣ m∑

i=0

n∑
j=0

Mij Ni,k1(u)N j,k2(v)

⎤
⎦

−1
m∑

i=0

n∑
j=0

Mij P i j Ni,k1(u)N j,k2(v),

(u, v) ∈ [uk1−1, um+1] × [vk2−1, vn+1], (11)

where Ni,k1 (u) and N j,k2 (v) are the B-splines defined on knot vector u = {u0, u1, . . . , um+k1 } or v = {v0, v1, . . . , vn+k2 }, 
respectively.

Besides the rectangle Bézier patches, triangular Bézier patches can also be generalized to matrix weighted rational Bézier 
triangles. Suppose that Pijk , 0 ≤ i, j, k ≤ n, i + j + k = n are the given control points and Mijk are the corresponding weight 
matrices. A matrix weighted rational triangular Bézier patch of degree n is defined by

Q 3(u, v, w) =
⎡
⎣ ∑

i+ j+k=n

Mijk Bn
i, j,k(u, v, w)

⎤
⎦

−1 ∑
i+ j+k=n

Mijk P i jk Bn
i, j,k(u, v, w),

0 ≤ u, v, w ≤ 1, u + v + w = 1, (12)

where Bn
i, j,k(u, v, w) = n!

i! j!k! ui v j wk are the Bernstein basis functions defined on a triangular domain.
To control the surface shape using control points and control normals, the weight matrices Mij or Mijk for Equations 

(10), (11) or (12) can be computed by Equation (3) using normal vectors ni j or ni jk together with scalar weights ωi j , μi j or 
ωi jk , μi jk specified at the control points. As the matrix weighted rational surfaces have the same representation forms as 
the classical rational surfaces, they can be evaluated using similar algorithms for scalar weighted rational surfaces.

Fig. 3(a) illustrates an input control mesh and the traditional triangular Bézier patch generated by the control mesh. 
Under the same set of control points together with normals specified at the control points, a matrix weighted rational 
Bézier triangle is generated; see Fig. 3(b).

An original control mesh consisting of control points sampled from a twisted torus and a uniform B-spline surface of 
degree 3 in the u-direction (along the minor circle) and degree 6 in the v-direction (along the major circle) generated by 
the control mesh are illustrated in Fig. 4(a). We further model a matrix weighted NURBS surface of degree (3, 6) by the 
control mesh together with a set of control normals specified at the control points. By computing all the weight matrices 
Mij with ωi j = 1 and μi j = 10, a twisted torus shape with salient local features modeled by a matrix weighted NURBS 
surface is obtained; see Fig. 4(b).

5.2. Matrix weighted rational subdivision surfaces

Just as the extensions of NURBS surfaces to matrix weighted NURBS surfaces, subdivision surfaces which are also the 
generalized B-spline surfaces with arbitrary topology control meshes can be extended to matrix weighted rational subdi-
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Fig. 3. (a) A Bézier triangle of degree 5 and the control mesh; (b) a matrix weighted rational Bézier triangle generated by the same control mesh as in (a) 
with additional control normals (ωi jk = 1, μi jk = 1.2).

Fig. 4. Surface modeling using B-spline or matrix weighted NURBS surfaces: (a) a B-spline surface of degree (3, 6); (b) a matrix weighted NURBS surface of 
degree (3, 6) with control points and the control normals.

vision surfaces. Particularly, the weight matrices can be defined using the specified normals such that the shapes of the 
extended subdivision surfaces can be controlled by control points and control normals.

The control data for matrix weighted rational subdivision consists of an initial control mesh and a set of weight matrices 
specified at the initial control points. For each subdivision the control points and weight matrices will be refined and 
the generated points will be reconnected to form a new mesh by the same topology refinement rules of the traditional 
subdivision scheme. Suppose that mesh vertices in mesh Mk are refined by a non-rational subdivision scheme as

V k+1
i =

∑
j

si j V k
j ,

where the subdivision mask {si j} satisfies 
∑

j si j = 1 and si j ≥ 0. The new weight matrices and new vertices by a matrix 
weighted rational subdivision scheme are computed by

Mk+1
i = ∑

j si j Mk
j ,

V k+1
i = [Mk+1

i ]−1 ∑
j si j Mk

j V k
j .

(13)

Clearly, the matrix weighted rational subdivision will degenerate to the traditional subdivision when all the initial weight 
matrices are non-singular and are equal with each other.

As an example, we briefly present the algorithm steps and smoothness analysis for matrix weighted rational Catmull–
Clark subdivision. Other popular subdivision schemes like Doo–Sabin subdivision and Loop subdivision can be extended 
similarly.

The first step to refine a mesh Mk is to compute new weight matrices. For a face F that consists of vertices V k
i and 

weight matrices Mk
i , i = 0, 1, . . . , L − 1 in mesh Mk , the face matrix corresponding to the face is computed by

Mk+1
F = 1

L

L−1∑
Mk

i .
i=0



X. Yang / Computer Aided Geometric Design 42 (2016) 40–53 49
When all face matrices have been obtained, the edge matrix for each edge is computed by

Mk+1
E = 1

4
(Mk

0 + Mk
1 + Mk+1

F0
+ Mk+1

F1
),

where Mk
0 and Mk

1 are the weight matrices at two ends of the edge and Mk+1
F0

and Mk+1
F1

are the face matrices computed 
for the two neighboring faces of the edge. After that, we refine the weight matrices corresponding to all vertices of Mk . If 
a vertex V k

V is of valence n, the new weight matrix for the vertex is obtained as

Mk+1
V = 1

n2

n−1∑
i=0

Mk+1
Fi

+ 1

n2

n−1∑
i=0

Mk
Ei

+ n − 2

n
Mk

V ,

where Mk+1
Fi

are the face matrices of the neighboring faces and Mk
Ei

are the end weight matrices of neighboring edges other 
than Mk

V .
The second step is to compute new mesh vertices based on the control data of Mk and the newly obtained weight 

matrices as follows

V k+1
F =

[
Mk+1

F

]−1
1
L

∑L−1
i=0 Mk

i V k
i ,

V k+1
E =

[
Mk+1

E

]−1
1
4 (Mk

0 V k
0 + Mk

1 V k
1 + Mk+1

F0
V k+1

F0
+ Mk+1

F1
V k+1

F1
),

V k+1
V =

[
Mk+1

V

]−1
( 1

n2

∑n−1
i=0 Mk+1

Fi
V k+1

Fi
+ 1

n2

∑n−1
i=0 Mk

Ei
V k

Ei
+ n−2

n Mk
V V k

V ).

Lastly, connect all the refined vertices into a new mesh, just by the topology refinement rules of Catmull–Clark subdivi-
sion.

As for the smoothness of the subdivision surface we have the following result.

Theorem 5.1. Suppose that M0 is an arbitrary topology control mesh and ni are the unit normal vectors specified at the control points 
V 0

i of the mesh. If the weight matrices for the points are defined by M0
i = ωi(I + μininT

i ), where ωi > 0 and μi > −1, the mesh 
sequences generated by the matrix weighted rational Catmull–Clark subdivision converge and the limit surface is C2 except for at the 
extraordinary points where the smoothness is C1.

Proof. By employing the homogeneous coordinates representation, the control data for the initial control mesh are (
M0

i V 0
i , M0

i

)
. Thus, the presented matrix weighted rational Catmull–Clark subdivision becomes non-rational subdivision in 

the homogeneous space R(d+1)×d . Based on the smoothness analysis of Catmull–Clark subdivision (Doo and Sabin, 1978;
Ball and Storry, 1988; Reif, 1995), the homogeneous meshes consisting of data 

(
Mk

i V k
i , Mk

i

)
converge to a C2 surface except 

for at extraordinary points where the smoothness becomes C1 in R(d+1)×d . On the other hand, from Equation (13) and 
Theorem 2.1 we know that each matrix Mk

i is non-singular. From Halstead et al. (1993) we know that the limit matrix of 
Mk

i is just a convex combination of the initial weight matrices even at an extraordinary vertex. By Theorem 2.1 once again, 
we conclude that the matrix component of the limit surface in the homogeneous space is nonsingular. Thus, the matrix 
weighted rational Catmull–Clark subdivision surface in Euclidean space is valid and has the same smoothness as the limit 
surface in the homogeneous space, i.e., the limit surface is C2 except for at the extraordinary points where the smoothness 
is C1. �

Fig. 5(a) illustrates a surface generated by Catmull–Clark subdivision from an initial control mesh. By using the same 
control mesh and computing the weight matrices based on the specified unit normal vectors, a matrix weighted rational 
Catmull–Clark subdivision surface is generated; see Fig. 5(b). Note that the control normals for vertices on each middle 
boundary control polygon are parallel, thus the four middle boundary curves are the same as those of the Catmull–Clark 
surface. Under the control of the specified normals, the surface becomes straight and flat in the vertical direction. Fig. 5(c) 
shows that if we choose some negative weights μ, the surface may shrink in the opposite directions of the control normals.

6. Examples

In this section we present a few more examples to demonstrate how to use the proposed models for shape modeling 
or surface reconstruction. For each example, the weight matrices are defined with normal vectors specified at the initial 
control points together with the default choice of ωi = 1 or ωi j = 1. If a matrix weighted NURBS surface is generated, the 
basis functions are defined on uniform knot vectors except for the multiple knots at the boundaries.

First, we present an example of surface design using Bézier or matrix weighted rational Bézier surfaces. Fig. 6(a) illus-
trates a control mesh that consists of 9 ×11 control points and a Bézier surface of degree (8, 10) generated from the control 
mesh. To generate a matrix weighted rational Bézier surface from the control mesh we first assign a set of unit normals at 
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Fig. 5. (a) Catmull–Clark subdivision surface; (b) matrix weighted rational Catmull–Clark surface with ωi = 1 and μi = 10; (c) matrix weighted rational 
Catmull–Clark surface with ωi = 1 and μi = −0.8.

Fig. 6. (a) The input control mesh and the Bézier surface generated by the control mesh; (b) matrix weighted rational Bézier surface generated by the 
control mesh and the specified normals.

the control points. By choosing all parameters μi j = 1.35 except for μ4, j = 1000, 0 ≤ j ≤ 10, a sliding board like surface 
that has a flat bottom is generated; see Fig. 6(b).

Second, we present an example of surface reconstruction by a matrix weighted NURBS surface. Fig. 7(a) illustrates 
a screwdriver model from which 25 × 50 points, where 25 is the total row number, were sampled. A set of unit 
normal vectors at the sampled points have also been estimated from the surface. To reconstruct a bi-cubic matrix 
weighted NURBS surface with sharp features from the points and normals, we compute μi j = 1

dmin+η , where dmin =
min{ni jni+1, j, ni jni−1, j, ni jni, j+1, ni jni, j−1} and η = 0.15. In case i ± 1 or j ± 1 is outside the range, the term ni jni±1, j
or ni jni, j±1 is chosen as 1 directly. Fig. 7(b) illustrates the matrix weighted NURBS surface and the control mesh together 
with the control normals scaled with weights μi j . Fig. 7(c) illustrates the final matrix weighted NURBS surface with clear 
sharp features. As a comparison, a bi-cubic B-spline surface can be used to fit the sampled points closely, but the original 
features have been blurred; see Fig. 7(d).

Third, we present two examples of surface modeling by matrix weighted rational subdivision schemes. Fig. 8(a) illustrates 
an initial control mesh and the Catmull–Clark subdivision surface generated by the control mesh. To model features like flat 
stairs on the surface a set of control normals are also assigned. Then a subdivision surface with salient features is obtained 
by applying the matrix weighted rational Catmull–Clark subdivision; see Fig. 8(b) for the control normals and the subdivision 
surface. Similarly, Figs. 8(c) and (d) are the surfaces generated by the Doo–Sabin subdivision or matrix weighted rational 
Doo–Sabin subdivision, respectively. The weight matrices for the latter one are computed using the specified normals and 
a fixed parameter μ = √

2 for all control points. As the boundary control points together with the control normals at these 
points lie in the same plane and the parameter μ satisfies Equation (9), the boundary curve by the matrix weighted rational 
subdivision interpolates exactly the control points.

Lastly, we present an example of surface generation using matrix weighted rational Loop subdivision. The comparison 
with the traditional Loop subdivision is also given. Fig. 9(a) illustrates the control mesh and the Loop subdivision surface. 
By choosing the control normals as the averages of normals of neighboring faces for all vertices of the control mesh and 
computing the scalar weight μi by Equation (9), a matrix weighted rational Loop subdivision surface that does not suffer 
shrinkage from the control mesh is generated; see Fig. 9(c). By employing the technique in Yang and Zheng (2013) we 
compute the curvatures of an intermediate subdivision mesh to check the smoothness of the subdivision surfaces. From 
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Fig. 7. Surface reconstruction from the sampled data: (a) points sampled from an input surface; (b) a bi-cubic matrix weighted NURBS surface with the 
control mesh and the scaled control normals; (c) the matrix weighted NURBS surface; (d) a bi-cubic B-spline surface fitting to the sampled points.

Fig. 8. Subdivision surfaces with or without control normals: (a) Catmull–Clark subdivision surface; (b) matrix weighted rational Catmull–Clark subdivision 
surface; (c) Doo–Sabin subdivision surface; (d) matrix weighted rational Doo–Sabin subdivision surface.

Figs. 9(b) and (d) we can see that the curvature artifacts near the extraordinary vertices within the Loop subdivision surface 
almost disappear in the matrix weighted rational subdivision surface.

7. Conclusion

We have generalized conventional rational curves and surfaces to matrix weighted rational curves and surfaces. The new 
models of rational curves and surfaces maintain the same structures and many similar properties as the traditional ones but 
the matrix weights permit clear shape parameters for geometric modeling. In addition to control points, control normals 
have been used to control the shapes of extended rational Bézier or extended NURBS curves and surfaces as well as several 
extended rational subdivision surfaces efficiently. Due to their nice properties such as almost-interpolation of control points, 
matrix weighted NURBS curves and surfaces are also suitable for curve or surface reconstruction from sampled points even 
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Fig. 9. Loop type subdivision surfaces: (a) the Loop subdivision surface; (b) the Gaussian curvature plot for the Loop subdivision surface; (c) the matrix 
weighted rational Loop subdivision surface; (d) the Gaussian curvature plot for the matrix weighted rational Loop subdivision surface. In (b) and (d) the 
color changes from red to blue when the curvature changes from high to low values. Readers can zoom in the figures to see the curvature artifacts. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

with no need of solving large systems. As matrix weighted rational Bézier or NURBS curves and surfaces can be transformed 
from and to the traditional rational representations of curves and surfaces, it is convenient to plug the proposed models 
into Bézier or NURBS based modeling systems.

Several techniques need to be developed further in the future which can make the matrix weighted rational models even 
more useful for geometric modeling or surface reconstruction: (1) Define the weight matrices in some other geometric ways 
such that the obtained curves or surfaces can have other desired features; (2) Reconstruct curves and surfaces by adaptively 
choosing the control points and control normals from the input data; (3) Improve the smoothness of matrix weighted 
rational subdivision surfaces by applying geometric driven or non-stationary subdivision rules on the weight matrices.
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