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a b s t r a c t

This paper proposes techniques to fit and fair sequences of points together with normals or tangents at
the points bymatrix weighted NURBS curves. Given a set of Hermite-type data, a matrix weighted NURBS
curve is constructed by choosing the input points as control points and computing the weight matrices
using the normals or tangents. Unlike traditional B-spline or NURBS curves that have only linear precision,
matrix weighted NURBS curves with point-normal or point-tangent control pairs have almost circular or
helical precision. Matrix weighted NURBS curves constructed from Hermite-type data can be fair and
fit the input points closely when the original data were regularly sampled from curves with smoothly
varying tangents and curvatures. If the original data are non-uniformly spaced or noisy, fair fitting curves
can still be obtained by repeatedly sampling points from previously constructed curves and constructing
new matrix weighted NURBS curves using the resampled data.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Fitting discrete points by smooth parametric curves have many
applications in geometric modeling [1,2], CNC machining [3], data
compression [4,5] and pattern recognition [6], etc. In this paper
we focus on fitting and fairing ordered points in 2D or 3D space
together with given or estimated derivatives at the points by
matrix weighted rational B-spline curves. Matrix weighted NURBS
(non-uniform rational B-spline) curves are natural extensions of
traditional NURBS curves but additional degrees of freedomwithin
the matrix weights permit novel ways to control the shapes of
the curves [7]. By proper definition of the matrix weights the
extended NURBS curves can be used to fit and fair Hermite-type
data efficiently.

A B-spline curve that fits a point set can usually be obtained by
solving a linear systemwith fixed parametrization of the points [2]
or by solving a nonlinear system when the parametrization is
variable [8]. If the initial points are noisy and need not to be inter-
polated exactly, a fair fitting B-spline curve can be obtained bymin-
imizing an energy functional that is defined by integrals of curve
derivatives or curvature derivatives [9]. Even though function-
als defined by curvature derivatives can give high quality fitting
curves, it usually suffers high computational costs. Besides unified
approaches for fitting and fairing, B-spline curves can also be faired
independently after fitting or construction. Typical algorithms for
B-spline curve fairing include knot removal [10,11], local or global
energy minimization [12,13] and multi-scale filtering [14,15], etc.

E-mail address: yxn@zju.edu.cn.

Comparedwith B-spline curves, NURBS curves aremore flexible
in shape representation [1,2,16]. It is promising to reconstruct
NURBS curves and surfaces from measured data for reverse engi-
neering [17]. If all control points, weights and knots are free vari-
ables during the fitting process, one has to employ numerical op-
timization techniques to find the solutions due to the nonlinearity
of the fitting functional with respect to the free variables [18,19]. It
may be more complex to optimize fairness functionals defined by
derivatives or curvatures of NURBS curves of general degrees along
with data fitting. To our knowledge, there is few report on fairing
of NURBS curves and surfaces of arbitrary degrees.

Low order NURBS curves and intrinsically defined curves have
easily computed or explicit curvature profiles. These kinds of
curves have frequently been used for data fitting or fair shape
design. A curvature continuous conic spline can be constructed
from a convexG1 continuous conic spline by adjusting the tangents
at the joint points and the curve can be faired further by repo-
sitioning the joint points [20]. Recently, a G2 quadratic B-spline
curve has been used to fit scanned data with proper choices of
knots [21]. A planar cubic B-spline curve can also be faired by using
target curvature [22]. Intrinsically defined curves such as clothoid
or Euler spirals are fair and can be employed for data fitting or
interpolation [23,24]. Low order NURBS curves have limited conti-
nuity orders and can only be used for fitting planar points. Though
intrinsically defined curves are fair themselves, how to fair given
points by this kind of curves is not clear.

Hermite-type data such as point-normal pairs or point-tangent
pairs can help to model functional or fair shapes [25]. Interpo-
lating a sequence of points together with prescribed derivatives
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or curvatures at the points by a B-spline curve has been studied
in [26,27]. Differently from B-spline curve interpolation which
needs iterations to solve large systems, matrix weighted rational
B-spline curves can be constructed from the given data directly.
Matrix weighted NURBS curves with point-normal control pairs
have almost circular precision and the curves can be used to fit uni-
formly sampled points and normals in a plane very well [7]. But for
noisy planar points or spatial data the constructedmatrixweighted
NURBS curves with point-normal control pairs may not be fair or
deviate from the control pointsmuch. In this paperwe first present
a robustmethod for computing theweightmatrices from the given
points and normals such that the obtainedmatrixweightedNURBS
curves have the same precision but are less sensitive to data noise.
To better fit points in 3D space we propose to construct matrix
weighted NURBS curves with point-tangent control pairs. When
only discrete points are available, estimating unit tangents at the
points is much easier and more robust than estimating normal
vectors in 3D space. Matrix weighted NURBS curves with point-
tangent control pairs have almost helical precision and can be used
to fit spatial data more accurately than curves with point-normal
control pairs.

Besides direct data fitting, an algorithm for fairingHermite-type
data bymatrix weighted NURBS curves will be given. Motivated by
the facts that matrix weighted NURBS curves with point-normal
control pairs or point-tangent control pairs have almost circular
or helical precision and smooth planar or spatial curves can be
approximated by smoothly connected circular arcs or helical seg-
ments, we propose to fair ordered points in 2D or 3D space by
repeatedly constructing newmatrix weighted NURBS curves using
points sampled from previously constructed curves. The normals
or tangents at the sampled points can be evaluated from the curves
or estimated adaptively from the sampled points. This algorithm is
simple to implement and can give high quality fitting curves in the
end. Note that B-spline or NURBS curves have only linear precision
and repeatedly constructed B-spline or NURBS curves with control
points sampled from previously obtained curves will shrink to a
point or tend to be a straight line. B-spline or NURBS curves have
to be faired using more complex algorithms.

The remaining of the paper is structured as follows. In Sec-
tion 2 we review the definition of matrix weighted NURBS curves
with point-normal control pairs. A robust scheme for computing
the matrix weights against data noise will be given. Section 3
is devoted to the construction of matrix weighted NURBS curves
with point-tangent control pairs. Nice properties such as almost
helical precision will be discussed. Practical algorithms for fitting
and fairing discrete data by matrix weighted NURBS curves in
2D or 3D space will be given in Section 4. Section 5 presents
several interesting examples for fitting or fairing by the proposed
techniques and the paper is concluded with a brief summary in
Section 6.

2. Matrix weighted NURBS curves with point-normal control
pairs

This section recalls the definition of matrix weighted NURBS
curves with point-normal control pairs. A robust method for com-
puting the weight matrices for data fitting by matrix weighted
NURBS curves will be given.

Suppose that P0, P1, . . . , Pn are a sequence of points lying in Rd

and ni ∈ Rd, i = 0, 1, . . . , n, are unit normal vectors specified at
the points. Assume that t = {t0, t1, . . . , tn+k} is a non-decreasing
sequence and no k numbers are the same except for at two ends,
and Ni,k(t), i = 0, 1, . . . , n, are the B-splines of order k (degree
k − 1) defined on the knot vector t. Assume ωi > 0, µi > −1,
i = 0, 1, . . . , n, are a set of predefined parameters. Let I be the

identity matrix of order d. A matrix weighted NURBS curve with
point-normal control pairs is given by [7]

Q (t) =

[
n∑

i=0

MiNi,k(t)

]−1 n∑
i=0

MiPiNi,k(t), t ∈ [tk−1, tn+1], (1)

where

Mi = ωi(I + µininT
i ), i = 0, 1, . . . , n, (2)

are the weight matrices and the capital T means the transpose of a
column vector.

Because the matrices given by Eq. (2) and their convex combi-
nations are nonsingular, thematrix functionM(t) =

∑n
i=0MiNi,k(t)

is reversible and the curve Q (t) is valid over the whole parameter
domain.

Theorem 2.1 ([7]). Suppose that ni ∈ Rd, i = 0, 1, . . . , n, are a set
of unit vectors, ωi > 0, µi > −1, i = 0, 1, . . . , n, are real numbers
and Mi, i = 0, 1, . . . , n, are matrices given by Eq. (2). The matrix
Ms =

∑n
i=0siMi, where the coefficients satisfy si ≥ 0 and

∑n
i=0si > 0,

is nonsingular.

Besides more degrees of freedom for shape editing, one main
difference betweenmatrix weighted NURBS curves and traditional
NURBS curves is that the former ones have almost circular preci-
sion while the latter have only linear precision.

Proposition 2.2 ([7]). Assume that k > 2 is an integer and l =

⌊
k−1
2 ⌋, where ⌊⌋ represents the integer part of a number. Let λi+j =

Ni+j,k(ti+ k
2
), j = ±1, ±2, . . . ,±l, where Ni,k(t) are the uniform B-

splines of order k and ti+ k
2

=
1
2 (ti + ti+k). Suppose that L is the line

that passes through point Pi with direction ni on a plane, and points
Pi+j and normals ni+j, j = ±1, . . . ,±l symmetrically lie on two sides
of the line L on the plane. If the weightsµi+j, j = ±1, ±2, . . . ,±l, are
all chosen as

µi =

∑l
|j|=1 λi+jnT

i (Pi − Pi+j)∑l
|j|=1 λi+jnT

i ni+jnT
i+j(Pi+j − Pi)

, (3)

the matrix weighted NURBS curve given by Eq. (1)with weight matri-
ces Mi = I + µininT

i passes through point Pi at t = ti+ k
2
.

Proposition 2.2 states that amatrixweighted NURBS curvewith
local symmetric point-normal control pairs can pass through the
middle control point. If all control points and control normals
are uniformly sampled from a circular arc the obtained matrix
weightedNURBS curve can interpolate all its control points (except
for a few points near the boundaries of an open curve) when the
weight matrices are computed by Eq. (2) with all ωi = 1 and
µi given by Eq. (3). On another hand, any smooth planar curve
can be approximated by smoothly connected circular arcs within
arbitrary precision [28]. Therefore, matrix weighted NURBS curves
constructed by Eqs. (1), (2) and (3) can approximate an arbitrary
smooth planar curve verywell when the control points and control
normals are properly sampled from the original curve.

Though amatrix weighted NURBS curve constructed from sam-
pled or givendata canusually approximate the input points closely,
the naively evaluated parameter µi may vary significantly and the
obtained curve may not be fair when the original points are non-
uniformly spaced or noisy. To construct matrix weighted NURBS
curves as fair as possible, the parameter µi should be evaluated
robustly against data noise. Practically, we modify Eq. (3) and
compute µi as follows

µi =

∑l
|j|=1 λi+jdij∑l

|j|=1 λi+jnT
i ni+jdij

, (4)
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Fig. 1. Matrix weighted rational B-spline curves of degree 3 constructed from point-normal control pairs with (a) naive or (b) robust computation of the parameters µi
within the weight matrices.

where dij =
1
2 [n

T
i (Pi−Pi+j)+nT

i+j(Pi+j−Pi)]when 1
2 |(ni−ni+j)T (Pi−

Pi+j)| > η and dij = η otherwise. The parameter η can be chosen
a small value such as η = 0.001 so that µi can still be computed
robustly even when the points and normals are sampled from a
straight line. We note that µi computed by Eq. (4) is the same as
that by Eq. (3) when the original data are uniformly sampled from
a circular arc. Therefore, matrix weighted NURBS curves computed
by Eqs. (1), (2) and (4) still have the almost circular precision but
are less sensitive to data noise.

Fig. 1 illustrates two uniformmatrix weighted rational B-spline
curves of degree 3 that are constructed using the same set of
control points and control normals. The weight matrices for the
two curves are computed by Eq. (2) with µi given by Eq. (3) or (4),
respectively. The curvature plots show that robust computation of
the parameters µi within weight matrices can help to construct
even higher quality curves. In the rest of the papermatrixweighted
NURBS curves with point-normal control pairs will be constructed
in this novel way without special declaration.

3. Matrix weighted NURBS curves with point-tangent control
pairs

In addition to shape control using control points and control
normals, the shapes of curves in 3D or higher dimensional spaces
can be controlledmore accurately using control points and tangent
lines specified at the control points. In this section, we propose
matrix weighted NURBS curves with point-tangent control pairs
which are particularly useful for curvemodeling and data fitting in
3D or higher dimensional spaces.

3.1. Construction of matrix weighted NURBS curves with
point-tangent control pairs

Suppose that Pi ∈ Rd, i = 0, 1, . . . , n, are a set of given points
and ti ∈ Rd, i = 0, 1, . . . , n, are a set of unit tangent vectors
specified at the points. We construct a matrix weighted NURBS
curve as the solution to a least squares fitting to the given points
and the tangent lines that pass through the points.

Let Li be the line that passes through point Pi with tangent
direction ti. For an arbitrary point Q in space we assume Qi is the

perpendicular foot of Q onto the line Li. The vector pointing from
point Qi to Q is obtained as

Q − Qi = (I − titTi )(Q − Pi).

Denote by Ai = I − titTi . It is verified that AT
i = Ai and A2

i = Ai. The
squared distance fromQ to line Li is (Q−Qi)2 = (Q−Pi)TA2

i (Q−Pi).
Suppose that Ni,k(t), i = 0, 1, . . . , n, are the B-splines of order

k defined on the knot vector t = {t0, t1, . . . , tn+k}. We construct
a matrix weighted NURBS curve that fits the given points and the
tangent lines by minimizing the following functional

F (Q (t)) =

n∑
i=0

ωiNi,k(t)[Q (t) − Pi]2

+

n∑
i=0

ωiµiNi,k(t)[Q (t) − Pi]TA2
i [Q (t) − Pi].

(5)

We show that with proper choices of the parameters ωi and µi
the functional F (Q (t)) is convex and has a unique minimizer. It is
also shown that the obtainedmatrixweightedNURBS curve is valid
over the whole parameter domain.

Proposition 3.1. Suppose real numbers ωi > 0, i = 0, 1, . . . , n, and
µi > −1, i = 0, 1, . . . , n. The functional defined by Eq. (5) is convex
and the minimizer to the functional is a valid matrix weighted NURBS
curve over the parameter domain.

Proof. To prove that the functional given by Eq. (5) is convex, we
first reformulate the functional as

F (Q (t)) =

n∑
i=0

ωiNi,k(t){[Q (t) − Pi]2 + µi[Ai(Q (t) − Pi)]2}.

Notice that

[Q (t) − Pi]2 + µi[Ai(Q (t) − Pi)]2

> [Q (t) − Pi]2 − [Ai(Q (t) − Pi)]2

= [Q (t) − Pi]T (I − A2
i )[Q (t) − Pi]

= [Q (t) − Pi]T titTi [Q (t) − Pi]
= {[Q (t) − Pi]T ti}2
≥ 0.
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Therefore, the functional F (Q (t)) > 0 for any t ∈ [tk−1, tn+1],
which implies that the functional F (Q (t)) is convex and has a
unique minimizer in the domain.

To minimize the functional F (Q (t)), the curve Q (t) is deter-
mined by solving the following equation

0 =
1
2

∂F (Q (t))
∂Q (t)

=

n∑
i=0

ωiNi,k(t){[Q (t) − Pi] + µiAT
i Ai[Q (t) − Pi]}

=

n∑
i=0

ωiNi,k(t){[Q (t) − Pi] + µiAi[Q (t) − Pi]}.

(6)

The solution to Eq. (6) is

Q (t) =

[
n∑

i=0

MiNi,k(t)

]−1 n∑
i=0

MiPiNi,k(t), t ∈ [tk−1, tn+1], (7)

where

Mi = ωi (I + µiAi) , i = 0, 1, . . . , n. (8)

We now prove that the matrix function M(t) =
∑n

i=0MiNi,k(t),
t ∈ [tk−1, tn+1], is nonsingular. It follows that the obtained matrix
weighted NURBS curve given by Eq. (7) is valid. For ease of de-
scription, we should only prove that the matrix Ms =

∑n
i=0siMi

is nonsingular when si ≥ 0, i = 0, 1, . . . , n and
∑n

i=0si > 0.
Substituting Ai = I − titTi into Eq. (8), the matrix Ms can be
reformulated asMs =

∑n
i=0siωi[(1+µi)I−µititTi ]. Let s̄i = si(1+µi)

and µ̄i =
−µi
1+µi

. It yields that Ms =
∑n

i=0s̄iωi(I + µ̄ititTi ). Since
si ≥ 0 and µi > −1, it follows that s̄i ≥ 0 and µ̄i > −1. Because∑n

i=0si > 0, we have
∑n

i=0s̄i > 0. According to Theorem 2.1, the
matrixMs =

∑n
i=0siMi is nonsingular. The theorem is proven. □

In a plane, thematrix weighted NURBS curves defined by point-
tangent control pairs are just the curves defined by control points
and normal vectors specified at the control points. But in a higher
dimensional space a matrix weighted NURBS curve defined by
point-tangent control pairs can be manipulated more accurately
than a curve defined by point-normal control pairs.

Proposition 3.2. Suppose that Q (t) is a matrix weighted NURBS
curve with point-tangent control pairs as defined by Eq. (7). The curve
segment Q (t), t ∈ (ti, ti+k), lies close to the line that passes through
point Pi with tangent vector ti when the parameter µi approaches
infinity. If ωi approaches infinity, the points on Q (t) approach the
control point Pi.

Proof. From functional (5) we know that if µi approaches infinity
the term Ni,k(t)[Ai(Q (t) − Pi)]2 will approach zero for any t ∈

(ti, ti+k) when the functional F (Q (t)) is minimized. As [Ai(Q (t) −

Pi)]2 approaches zero, the curve Q (t) lies close to the line that
passes through point Pi with tangent ti. Similarly, if ωi approaches
infinity, the term [Q (t) − Pi]2 with t ∈ (ti, ti+k) will approach zero
and the point on curve Q (t) will approach the control point Pi. □

3.2. Almost helical precision of matrix weighted NURBS curves with
point-tangent control pairs

Similar to planar matrix weighted NURBS curves that have al-
most circular precision,matrixweightedNURBS curveswith point-
tangent control pairs in 3D space have almost helical precision.
In the remaining part of this section we assume that d = 3
and show that matrix weighted rational B-spline curves can pass
through their control points when the point-tangent control pairs
are sampled from a cylinder helix in 3D space.

Proposition 3.3. Suppose that (Pi, ti), i = 0, 1, . . . , n, are points
and tangents uniformly sampled from a helix with constant curvature
and torsion. Assume that k > 2 is an integer and l = ⌊

k−1
2 ⌋,

where ⌊⌋ represents the integer part of a number. Suppose that q is
an arbitrary integer satisfying l ≤ q ≤ n− l. Let λq+j = Nq+j,k(tq+ k

2
),

j = ±1, ±2, . . . ,±l, where Ni,k(t) are the uniform B-splines of order
k and tq+ k

2
=

1
2 (tq + tq+k). Let

µq =

∑l
|j|=1 λq+jnT

q (Pq − Pq+j)∑l
|j|=1 λq+jnT

qAq+j(Pq+j − Pq)
, (9)

where Aq+j = I − tq+jtTq+j and nq is an arbitrary vector perpendicular
to tq. If the weight matricesMi are computed by Eq. (8)with allωi = 1
and µq+j = µq, j = ±1, ±2, . . . ,±l, the matrix weighted rational
B-spline curve with point-tangent control pairs (Pi, ti) passes through
point Pq at t = tq+ k

2
.

Proof. Suppose that Q (t) is a matrix weighted rational B-spline
curve with point-tangent control pairs (Pi, ti). From Eq. (6) we
know that any point on the curve Q (t) satisfies

n∑
i=0

ωiNi,k(t)[Q (t) − Pi] +

n∑
i=0

µiωiNi,k(t)Ai[Q (t) − Pi] = 0.

Suppose that the matrix weighted rational B-spline curve Q (t)
passes through point Pq at t = tq+ k

2
, it requires that Q (tq+ k

2
) =

Pq. Under the assumption that all ωi = 1 and µq+j, j =

±1, ±2, . . . ,±l, have the same value, namely µq, we have

l∑
|j|=1

λq+j(Pq − Pq+j) + µq

l∑
|j|=1

λq+jAq+j(Pq − Pq+j) = 0. (10)

Dotting either side of Eq. (10) by nq, we have the expression of µq
given by Eq. (9).

Denote by Qq+j the perpendicular foot of point Pq onto the line
that passes through point Pq+j with tangent tq+j. Based on the
definition of perpendicular feet of point Pq onto lines that pass
through neighboring points, we have Aq+j(Pq − Pq+j) = Pq − Qq+j,
j = ±1, ±2, . . . ,±l. Because λq+j = λq−j for j = 1, 2, . . . , l,
Eq. (10) can be reformulated as

l∑
j=1

λq+j(2Pq − Pq+j − Pq−j)

+µq

l∑
j=1

λq+j(2Pq − Qq+j − Qq−j) = 0.

Under the assumption that point-tangent pairs (Pi, ti) are uni-
formly sampled from a cylinder helix, it is verified that all vectors
2Pq − Pq+j − Pq−j, 2Pq − Qq+j − Qq−j, j = 1, 2, . . . , l, are parallel
to the normal vector of the helix at point Pq. Therefore, Eq. (10)
holds when the parameter µq is given by Eq. (9). This implies that
the matrix weighted rational B-spline curve with point-tangent
control pairs that are sampled from a helix can interpolate its
control points. The proposition is proven. □

Similar to Eq. (4) of which the parameter is evaluated for robust
fitting of planar noisy data, Eq. (9) can also be modified for robust
fitting of spatial data that may be non-uniformly spaced or noisy.
From the proof of Proposition 3.3 we know that Aq(Pq − Pq+j) and
Aq+j(Pq+j − Pq) are the vector pointing from Pq+j to the line that
passes through Pq with tangent direction tq or the vector pointing
from Pq to the line that passes through Pq+j with tangent direction

tq+j. Let Vq =
Aq(Pq−Pq+j)

∥Aq(Pq−Pq+j)∥
and Vq+j =

Aq+j(Pq+j−Pq)
∥Aq+j(Pq+j−Pq)∥

. The parameter
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Fig. 2. Matrix weighted rational B-spline curves with control points and control tangents sampled from a helix: (a) degree 1; (b) degree 3; (c) degree 5.

µq for the computation of the weight matrix at point Pq is now
given by

µq =

∑l
|j|=1 λq+jdq,q+jηq,q+j∑l

|j|=1 λq+jdq,q+jnT
qVq+j

, (11)

where ηq,q+j =
nTq (Pq−Pq+j)

V T
q (Pq−Pq+j)

and dq,q+j =
1
2 (∥Aq(Pq − Pq+j)∥ +

∥Aq+j(Pq+j−Pq)∥). If the points and tangents are uniformly sampled
from a cylinder helix with enough density, we have Aq(Pq−Pq+j) =

Aq+j(Pq+j − Pq) > 0. At this time, both Eqs. (9) and (11) give the
same value of the parameter. In other cases, especially when the
points and tangents are non-uniformly spaced or noisy, the values
computed by Eq. (11) are less sensitive to noise than those obtained
by Eq. (9).

Fig. 2 illustrates an example of matrix weighted NURBS curves
of various degrees with point-tangent control pairs sampled from
a helix segment. Suppose that the original helix segment is given
by{x(t) = 1.5 cos(t),
y(t) = 1.5 sin(t), t ∈ [0, 4.5π ].

z(t) = 0.4t,

A sequence of points Pi and unit tangents ti are sampled from the
curve at t0 = 0, ti = ti−1 + 0.18π , i = 1, 2, . . . , 25. We construct
uniformmatrix weighted rational B-spline curves of degree 1, 3 or
5 from the sampled points and tangents. In particular, the weight
matrices are computed by Eq. (8) with µi given by Eq. (9). As a
result, the obtained matrix weighted rational B-spline curves with
various degrees all pass through their control points; see Fig. 2.
From the figure we also know that the curvature normal (normal
vector scaled by curvature) of the matrix weighted rational B-
spline curve of degree 1 is not continuous and the curvature normal
of the matrix weighted rational B-spline curve of degree 3 is con-
tinuous but not fair. The curvature normal of the matrix weighted
rational B-spline curve of degree 5 resembles that of the original
helix very well.

4. Algorithms for fitting or fairing Hermite-type data bymatrix
weighted NURBS curves

As stated in the last two sections, matrix weighted NURBS
curves with point-normal or point-tangent control pairs have nice
novel properties compared with conventional NURBS curves. This

makes them efficient and powerful tools for curve fitting and curve
fairing. In this section we propose practical algorithms for fitting
or fairing sequences of points together with normal vectors or
tangents by matrix weighted NURBS curves. The algorithms are
based on the following facts or observations.

• AmatrixweightedNURBS curve can pass through its control
points exactlywhen the point-normal control pairs or point-
tangent control pairs are uniformly sampled from a circular
arc or a helix segment.

• A smooth planar or spatial curve can be approximated with
any high accuracy by smoothly connected circular arcs [28]
or by a set of smoothly connected helix segments [29,30],
respectively.

• Matrix weighted NURBS curves with the same set of point-
tangent control pairs but with higher degrees are usually
much fairer than those with lower ones.

From the first two factswe know that a smooth planar or spatial
curve can be approximated efficiently by amatrixweightedNURBS
curve that is constructed by properly sampled points and normals
or tangents from the original curve. Usually, even higher accuracy
approximating curves can be obtained when many more points
and normals or tangents have been sampled from the original
smooth curve. The third observation comes true because both the
supports and the continuity orders of high degree B-splines are
larger than those of lower ones and a matrix weighted NURBS
curve is just the solution to a least squares fitting with coefficients
given by the B-splines. It should be pointed out that high degree
NURBS can be used to model fair curves and surfaces [31]. Besides
modeling fair shapes, high degree matrix weighted NURBS curves
can even be used to fair noisy data efficiently.

In the following we present algorithms for curve fitting and
fairing based onpoint-tangent pairs. Fitting or fairing point-normal
pairs can be implemented in the same way. Suppose that Pi, i =

0, 1, . . . , n, are the sampled points and ti, i = 0, 1, . . . , n, are the
sampled or the estimated tangents at the points. A closed matrix
weighted NURBS curve will be constructed when P0 = Pn and
t0 = tn; otherwise, an open matrix weighted NURBS curve will
be obtained. Particularly, by choosing monotone increasing knots
ti, i = 0, 1, . . . , n+ 2k− 2, that satisfy tn − t0 = tn+1 − t1 = · · · =

tn+2k−2 − t2k−2, a closed matrix weighted NURBS curve of order k
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is obtained as

P(t) =

[
n+k−2∑
i=0

Mi%nNi,k(t)

]−1 n+k−2∑
i=0

Mi%nPi%nNi,k(t),

t ∈ [tk−1, tn+k−1],

whereMi are theweightmatrices computed by Eq. (8) with default
choices of ωi = 1 and µi given by Eq. (11). To construct fair curves,
uniform B-splines Ni,k(t) are used as the basis functions.

An open matrix weighted NURBS curve does not interpolate its
boundary control points except for k = 2 or multiple knots are
used at the ends. To construct a uniform matrix weighted NURBS
curve of order k (k > 2) that interpolates points P0, Pn and tangents
t0, tn at the points,we propose to add local symmetric points before
point P0 or after point Pn as extended control points of the fitting
curve. Let l = ⌊(k − 1)/2⌋. We add control points before P0 by
reflecting points Pj, j = 1, . . . , l, with respect to the plane that
passes through point P0 with normal vector t0. The added points
are P−j = Pj − 2ajt0, where aj = (Pj − P0) · t0, j = 1, . . . , l. For
a space curve, the added points can be P−j = Pj − 2ajt0 − 2bjb0,
where bj = (Pj − P0) · b0, j = 1, . . . , l, when the binormal vector
b0 at point P0 is available. In the same way, we add points Pn+j,
j = 1, . . . , l, after point Pn by reflecting points Pn−j with respect
to the planes that pass through point Pn with normal vectors tn or
bn. The tangents at the added points can be obtained by reflecting
the original corresponding tangents or by estimating from the
extended control polygon. Finally, a matrix weighted NURBS curve
with point-tangent control pairs (Pi, ti), i = −l, −l + 1, . . . , n + l,
is obtained as

P(t) =

[
n+l∑
i=−l

MiNi,k(t)

]−1 n+l∑
i=−l

MiPiNi,k(t). (12)

From Proposition 3.3 we know that a uniform matrix weighted
rational B-spline curve P(t) given by Eq. (12) interpolates points P0
and Pn at the boundaries.

For convenience of implementation, the point-tangent control
pairs of a fitting curve P(t) are renumbered as (P ′

i , t
′

i), i = 0, . . . , n′,
where n′

= n+ k− 2 when P(t) is closed or n′
= n+ 2l otherwise.

The algorithm steps for fitting points and tangents by a matrix
weighted NURBS curve are given as follows.

Algorithm 1. Fitting point-tangent pairs by a matrix weighted NURBS
curve

input: point-tangents (Pi, ti), i = 0, 1, . . . , n and order k
output: a matrix weighted NURBS curve P(t) of order k

1. Compute and set the point-tangent control pairs (P ′

i , t
′

i),
i = 0, 1, . . . , n′;

2. Choose the knot vector {t0, t1, . . . , tn′+k};
3. Compute parameter µi and matrix weightMi , i = 0, 1, . . . , n′;
4. Construct a matrix weighted NURBS curve with control points P ′

i and
weightsMi , i = 0, 1, . . . , n′;

5. Output curve P(t), t ∈ [tk−1, tn′+1].

Just like data fitting by B-spline curves, a matrix weighted
NURBS curve that fits a sequence of points and tangents may
not be fair when the points and tangents contain noise or the
point-tangent pairs are sampled with highly irregular steps. To
obtain a fair curve fitting the original data, the initially obtained
curve should be refined. Particularly, we propose to sample points
together with or without tangents from the previously obtained
curves and construct newmatrixweightedNURBS curves using the
sampled data. Since matrix weighted NURBS curves have almost
circular or helical precision, not only the repeatedly constructed
curves from the resampled data become more fair but also the
obtained curves still lie close to the original data after considerable
number of iterations.

Fig. 3. Fitting and fairing noisy points by matrix weighted rational B-spline curves:
(a) a quintic matrix weighted rational B-spline curve constructed from the given
points and the estimated normals; (b) the fair fitting curve after 10 times of point
resampling and curve refitting. The crosses ‘ ’ denote the input points and the
circles ‘ ’ denote the control points of the fitting curves.

Suppose that an initial matrix weighted NURBS curve is

P(t) =

[
m∑
i=0

MiNi,k(t)

]−1 m∑
i=0

MiPiNi,k(t)

with knot vector t = {t0, t1, . . . , tm+k}. We sample points from
the curve at knots tk−1, tk, . . . , tm+1. If P(t) is an open curve, the
tangents and binormals at boundary points P(tk−1) or P(tm+1) are
also computed and the sampled points are extended on both sides
by adding l reflected points with respect to each boundary point.
Except for points with fixed tangents, the tangents at all sampled
or added points should be estimated adaptively. We compute the
tangent at each intermediate point as the bisector of the turning
angle at the point. The tangent at a boundary point of an open
polygon is computed by the osculating arc that interpolates two
ends of the boundary leg and the known tangent at another end of
the leg. The tangents computed in this way are robust against data
noise and can always be used for constructing fair fitting curves
efficiently. The main algorithm steps for fairing Hermite-type data
are as follows.
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Fig. 4. Fitting a sequence of planar points by B-spline ormatrixweighted NURBS curves: (a) an interpolating cubic B-spline curve; (b)matrixweighted rational B-spline curve
of degree 3; (c) matrix weighted rational B-spline curve of degree 7. The crosses ‘ ’ denote the input points and the circles ‘ ’ denote the control points of the interpolating
B-spline or the fitting matrix weighted NURBS curves.

Algorithm 2. Fairing point-tangent pairs by repeated fitting of matrix
weighted NURBS curves

input: points Pi , i = 0, 1, . . . , n, initial fitting curve P(t), and the
maximum iteration number K
output: a fair matrix weighted NURBS curve Q (t)

1. Sample points from curve P(t) at the selected knots;
2. Add local symmetric points at the boundaries;
3. Compute tangent vectors at all sampled or added points;
4. Construct a matrix weighted NURBS curve Q (t) with the same degree

of P(t) from the points and tangents;
5. Replace P(t) by Q (t) and repeat steps 1–4 until the iteration number

reaches K ;
6. Output curve Q (t).

Fig. 3(a) illustrates a uniformmatrixweighted rational B-spline
curve of degree 5 that is constructed from a set of noisy points
and unit normals estimated at the points. After 10 times of point
resampling and curve refitting by the proposed algorithm, a fair
curve that lies close to the original points is obtained; see Fig. 3(b).
It is also clearly illustrated that the original irregularly spaced
points have become more uniform after fairing.

We note that specific requirements such as interpolation of se-
lected non-boundary points or having specified tangent directions
near selected points can be achieved by minor modification of the
proposed fitting or fairing algorithms. If an intermediate point Pq
is to be interpolated by the fitting curve, one can refine points Pq±j,
j = 1, 2, . . . , l, such that these points are symmetrically lying on
two sides of the plane that passes through Pq with normal vector tq.
The obtainedmatrixweightedNURBS curvewill have approximate
tangent direction tq near point Pq just by increasing the value of
parameter µq.

5. Experimental examples

In this section we present several interesting examples to show
how to fit and fair Hermite-type data by matrix weighted NURBS
curves in 2D or 3D space. Comparisons with B-spline curve fitting
will also be given and discussed.

First, we fit points sampled from an airfoil profile by spline
curves. Fig. 4(a) illustrates a non-uniform cubic B-spline curve
that interpolates 33 sampled points at knots with chord-length
parametrization of the points [2]. The curve is visually smooth
and has continuous curvature. However, the curve is not fair since
there are several unnecessary curvature undulations or extremes.
By estimating normal vectors for all initial points and adding two
symmetric points near the boundaries, a matrix weighted uniform
rational B-spline curve of degree 3 is obtained from the given and
the added points directly; see Fig. 4(b). From the figure we can see
that the obtained curve fits the original points very well, but the
curvature plot shows that the matrix weighted rational B-spline
curve of degree 3 is still not fair enough. Fig. 4(c) shows that a
higher order matrix weighted rational B-spline curve with point-
normal control pairs can be more fair than lower order matrix
weighted rational B-spline curves or integer B-spline curves.

Second, we present an example to show how matrix weighted
rational B-spline curves can be used to fit and fair planar point
sets. Fig. 5(a) illustrates a quintic B-spline curve that fits a set of
points sampled from a rotor profile. From the figure we can see
that the B-spline curve fits the points closely but the curvature
of the curve is very sensitive to data noise. By estimating normal
vectors at all initial points, a matrix weighted rational B-spline
curve of degree 5 can be constructed from the points and normals
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Fig. 5. Planar point set fitting or fairing by B-spline ormatrix weighted NURBS curves: (a) a quintic B-spline curve fitting to the points; (b) amatrix weighted rational B-spline
curve of degree 5 constructed from the given points and the estimated normals; (c) matrix weighted rational B-spline curve of degree 5 after 10 times of resampling and
refitting. The crosses ‘ ’ denote the input points and the circles ‘ ’ denote the control points of the fitting curves.

Fig. 6. Space curve modeling with the same set of control points: (a) a quintic B-spline curve; (b) a matrix weighted rational B-spline curve of degree 5 with point-normal
control pairs; (c) a matrix weighted rational B-spline curve of degree 5 with point-tangent control pairs.

directly; see Fig. 5(b). Though the curvature plot shows that the
matrix weighted rational B-spline curve is somewhat fairer than
the B-spline curve, it still has unnecessary curvature undulations.
After 10 iterations of data sampling and curve fitting by Algorithm
2, the finally obtained matrix weighted rational B-spline curve is
fair enough; see Fig. 5(c). We note that the control points on the
top or the bottom circular edges of the curve are kept unchanged
after each time of data sampling just for the preservation of the
salient features of the curve shape.

Third, we construct matrix weighted rational B-spline curves
from a sequence of points, tangents or normals sampled from a
closed space curve. Suppose that the original curve is given by{x(t) = 0.15(cos(2t) + cos(4t)) + 1.5(cos(t) + cos(3t)),
y(t) = 0.9 sin(t) + 1.5 sin(3t),
z(t) = 0.6 sin(4t) − 0.3(sin(6t) + cos(6t)) + 0.3.

The curve r(t) = (x(t), y(t), z(t))T is periodic and satisfies r(t +

2π ) = r(t). For a given number n, we sample npoints togetherwith
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Fig. 7. Fitting and fairing Hermite-type data in 3D space: (a) a cubic B-spline curve interpolating the given points; (b) a matrix weighted rational B-spline curve of degree 3
constructed from the given points and the estimated tangents; (c) matrix weighted rational B-spline curve of degree 3 after 2 times of resampling and refitting; (d) matrix
weighted rational B-spline curve of degree 3 after 20 times of resampling and refitting. The circles ‘ ’ denote the input points or the resampled points. The control points of
the interpolating B-spline curve and the added point-tangent control pairs at the boundaries of the matrix weighted rational B-spline curves are not shown for clarity.

Table 1
Average distances from control points to the quintic B-spline curve or the matrix
weighted rational B-spline curves of degree 5.

# points B-spline curve point-normal point-tangent

20 0.370825 0.191567 0.109114
40 0.102556 0.019438 0.010415
60 0.046716 0.003962 0.002583
80 0.026509 0.001281 0.000937

100 0.017028 0.000519 0.000414
120 0.011847 0.000248 0.000205

unit tangents and unit normal vectors at t0 = 0, ti = ti−1 +
2π
n , i =

1, 2, . . . , n. Then a periodic B-spline curve is constructed by using
the sampled points as control points. Similarly, periodic matrix
weighted rational B-spline curves with point-normal or point-
tangent control pairs are also obtained. Fig. 6 illustrates a quintic
B-spline curve and two matrix weighted rational B-spline curves
of degree 5 with control data sampled from the original curve by
choosing n = 40. From the figure we can see that the two obtained
matrixweighted rational B-spline curves lie closely to their control
points while the B-spline curve deviates from the control polygon
obviously. The average distances from control points to B-spline
curves or matrix weighted rational B-spline curves with different
numbers of control data are summarized in Table 1. From the table
we learn thatmatrixweighted rational B-spline curves can approx-
imate their control points closely when the control data have been
sampled properly. Moreover, a spatial matrix weighted rational B-
spline curvewith point-tangent control pairs canusually have even
higher approximation accuracy than a matrix weighted rational B-
spline curve with point-normal control pairs. In the following we
present examples to show how to fit and fair measured points in
3D space by matrix weighted rational B-spline curves with point-
tangent control pairs.

Fourth, we fit and fair a set of points in 3D space by cubic
B-spline or matrix weighted rational B-spline curves. Fig. 7(a)

illustrates a cubic B-spline curve that interpolates the given points.
The curvature normals at sampled points show that the curve is not
fair. By estimating unit tangent vectors at all initial points, amatrix
weighted rational B-spline curve of degree 3 is constructed directly
from the points and the tangents; see Fig. 7(b) for the obtained
curve. From the computed curvature normals we know that the
curve is not fair, either. By applying Algorithm2,we resample same
number of points from each fitting curve and construct another
matrix weighted rational B-spline curve using the sampled points
and the newly estimated tangents at the points. The curves after
2 or 20 iterations of resampling and refitting are illustrated in
Fig. 7(c) and (d), respectively. It is clear that much fairer curves
are obtained after more times of fairing. Along with iterations of
data sampling and curve refitting, the deviations from the original
points to the new fitting curves may increase while the deviations
from the newly sampled points to the refitting curves decrease
rapidly. Themaximumdeviation from the original points to the ini-
tialmatrixweighted rational B-spline curve is about 0.0084% of the
curve length, but the deviation increases to 0.0165% and 0.0405%
of the curve length after 2 or 20 times of fairing. Meanwhile, the
maximum deviation from the latest set of sampling points to the
final fitting curve is about 0.001% of the curve length.

Lastly, we present another example for fitting and fairing points
in 3D space by B-spline or matrix weighted rational B-spline
curves. The original input points are illustrated in Fig. 8(a). Dif-
ferently from the last example, the points nearly lie on a straight
line and they are not uniformly spaced in general. A non-uniform
quintic B-spline curve can fit the points closely, but the curva-
ture normals show that the curve is sensitive to the data noise
heavily. A matrix weighted rational B-spline curve of degree 5
that fits the points and the estimated tangents at the points has
similar curvature normals as the B-spline curve; see Fig. 8(b). By
constructing matrix weighted rational B-spline curves from the
resampled points and re-estimated tangent vectors at the points,
much fairer curves can be obtained. Fig. 8(c) and (d) show the
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Fig. 8. Fitting and fairing Hermite-type data in 3D space: (a) a quintic B-spline curve fitting the given points; (b) a matrix weighted rational B-spline curve of degree 5
constructed from the given points and the estimated tangents; (c) matrix weighted rational B-spline curve of degree 5 after 10 times of resampling and refitting; (d) matrix
weighted rational B-spline curve of degree 5 after 500 times of resampling and refitting. The circles ‘ ’ denote the input or the resampled points.

matrix weighted rational B-spline curves of degree 5 after 10 or
500 times of point sampling and curve refitting. The maximum
deviations from the original points to the initial matrix weighted
rational B-spline curve or the matrix weighted rational B-spline
curves after 10 or 500 iterations of refitting are 0.0029%, 0.0083%
or 0.025% of the curve length, respectively.

Except for salient feature points and boundary points, in this
paper we did not fair planar or spatial points with any tolerance
constraint. If all or selected points can only be moved in permitted
tolerances, the corresponding points sampled on a (re)fitting curve
should then be re-positioned within the prescribed tolerances. In
our experiments, the boundary points of open curves are kept
unchanged after each time of refitting just by using symmetric
control data near the boundaries.

6. Conclusions and discussions

This paper has proposed techniques to fit and fair planar or
spatial Hermite-type data by matrix weighted NURBS curves. For
a sequence of points together with given or estimated normals or
tangents at the points, a matrix weighted NURBS curve of arbitrary
degree that fits the given data is constructed by choosing the
input points as control points and computing the weight matrices
using the known normals or tangents. Due to almost circular or
helical precision, matrix weighted NURBS curves approximate the

input points closely when the control data are uniformly sam-
pled from curves with smoothly varying tangents and curvatures.
Non-uniformly spaced or noisy data can be faired efficiently by
repeatedly constructing matrix weighted NURBS curves from the
data and sampling new points from the curves. Direct curve con-
struction without solving large systems is useful for speedy curve
modeling and online data fitting. The faired Hermite-type data and
fair fitting curves in a plane or 3D space can be used for fair shape
design, tool path generation for CNC machining, etc.

A matrix weighted NURBS curve may deviate from the control
points significantly when the original points are sparsely sampled
from a curve with rapidly changing curvature. Sparsely spaced
points can be faired under the constraint of prescribed tolerances
and traditional B-spline curves can be employed to interpolate the
faired points.
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