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This paper considers the problem of G1 curve interpolation using a special type of discrete 
logarithmic spirals. A “logarithmic arc spline” is defined as a set of smoothly connected 
circular arcs. The arcs of a logarithmic arc spline have equal angles and the curvatures of 
the arcs form a geometric sequence. Given two points together with two unit tangents at 
the points, interpolation of logarithmic arc splines with a user specified winding angle is 
formulated into finding the positive solutions to a vector equation. A practical algorithm 
is developed for computing the solutions and construction of interpolating logarithmic arc 
splines. Compared to known methods for logarithmic spiral interpolation, the proposed 
method has the advantages of unbounded winding angles, simple offsets and NURBS 
representation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Spirals, which have monotone curvatures, find wide applications in the fields of fair shape modeling, highway route 
design or artistic pattern design, etc. (Meek and Walton, 1992; Wang et al., 2004; Xu and Mould, 2009; Meek et al., 2012). 
Particularly, the clothoid spiral (also known as the Euler spiral) whose curvature is a linear function of its arc length, has 
often been used as a primary tool for curve completion or fair shape modeling (Kimia et al., 2003; Zhou et al., 2012). 
Another popular spiral is the logarithmic spiral whose radius of curvature is a linear function of its arc length. The study 
of logarithmic spirals goes back to Descartes and Jacob Bernoulli (Davis, 1993). Logarithmic spirals have many elegant 
properties and can be used to model fair shapes as well as natural objects (Harary and Tal, 2011).

As a generalization of Euler spirals and logarithmic spirals, Miura (2006) proposed a general equation for log-aesthetic 
curves. By choosing different values for a particular parameter, one can define various spirals by the equation. Except for a 
few special cases like circles, evaluation of log-aesthetic curves depends on numerical integration or computation of special 
functions (Ziatdinov et al., 2012a). If boundary points and tangents are given first, parameters for an interpolating spiral are 
usually determined by solving nonlinear systems or by searching strategies (Coope, 1992; Miura, 2000; Yoshida and Saito, 
2006; Ziatdinov et al., 2012b).

Inspired by the fact that log-aesthetic curves are usually computed numerically or approximated by other types of 
curves such as polynomials or rational polynomials, one can construct interpolating spirals discretely or using polynomials 
directly (Baumgarten and Farin, 1997; Yoshida and Saito, 2009; Walton and Meek, 2013; Yoshida et al., 2013). Polynomials 
or rational polynomials that have approximate linear plots of log curvatures are quasi-log-aesthetic spirals. These spirals 
can be evaluated explicitly. However, these curves are not log-aesthetic spirals exactly and many quasi-log-aesthetic spirals 
have to be pieced together when a high accuracy of approximation is desired. Geometric Hermite interpolating curves with 
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minimal energy can generate fair shapes (Yong and Cheng, 2004), but the Euler spiral and the logarithmic spiral are of 
special interest in shape modeling.

In this paper we consider G1 Hermite interpolation by logarithmic arc splines. Our proposed algorithm is motivated by 
the equiangular property of logarithmic spirals and the high accuracy approximation of spirals by arc splines (Meek and 
Walton, 1999). By assuming that a logarithmic spiral is approximated by a sequence of smoothly connected circular arcs 
of equal angles and the curvatures or radii of curvatures of all arcs form a geometric sequence, we obtain a logarithmic 
arc spline. G1 Hermite interpolation by logarithmic arc splines can be formulated as solving the free parameters from a 
simple equation. All solutions to the equation can be obtained using an efficient numerical method. As opposed to previous 
approaches which assumed bounded winding angles and unique interpolating curves, we have no such restrictions and all 
interpolating curves to the given boundary data can be obtained efficiently. As offsets of circular arcs are circular arcs, the 
offsets of logarithmic arc splines are easy to compute. Logarithmic arc splines and their offsets can be represented by NURBS 
or transformed into curvature continuous curves conveniently (Yang, 2004). Therefore, the proposed curve can be used as 
an efficient tool for shape modeling and CNC machining.

The paper is structured as follows. Section 2 briefly reviews important properties of logarithmic spirals and proposes a 
definition of a logarithmic arc spline. Section 3 describes basic formulations of G1 curve interpolation by logarithmic arc 
splines. Theoretical analysis on the existence and algorithm steps for logarithmic arc spline interpolation are also presented. 
Several interesting examples are provided in Section 4, and they demonstrate the applicability of the proposed algorithm. 
Section 5 concludes the paper.

2. Logarithmic spiral and logarithmic arc spline

2.1. Basics of logarithmic spirals

A logarithmic spiral of which the pole lies at the origin can be represented by polar coordinates as

r(t) = r0eλt, r0 ∈ R
+, λ ∈R (1)

or, by Cartesian coordinates as

S(t) =
(

x(t)

y(t)

)
= r0eλt

(
cos(t)

sin(t)

)
. (2)

Particularly, S(t) will approach the pole when λt approaches −∞.
A logarithmic spiral arc can be defined by either of the above equations when the parameter t belongs to an interval 

[t1, t2]. The winding angle of the logarithmic spiral arc is obtained as φ = t2 − t1 when λ > 0 or φ = t1 − t2 when λ < 0. 
If the winding angle satisfies |φ| ≤ 2π , the spiral arc is also referred as a single-winding logarithmic spiral; otherwise, it is a 
multi-winding logarithmic spiral.

Logarithmic spiral has several distinguished properties which make it a powerful tool for shape modeling. The clear or 
easily proved properties are listed with no proof.

Property 2.1. The angle between any radial line and the tangent line that passes through the same point does not change when the 
point moves along the logarithmic spiral.

This property is also known as the equiangular property, which was first observed by Rene Descartes. In particular, the 
angle ϕ between the radial line and the tangent line is computed by λ = cotϕ , where λ is the parameter as in Eq. (1).

Property 2.2. Let S(t) be a logarithmic spiral, k ∈ Z
+ , the tangents at points S(t) or S(t + 2kπ) are parallel and the angle between the 

tangent direction and the chord S(t + 2kπ) − S(t) is acute.

Property 2.3. Let Pa and Pb be the endpoints of a logarithmic spiral arc, the curvature decreasing from Pa to Pb and the winding angle 
being less than 2π . Assume α and β are the unsigned angles between Pb − Pa and the tangent to the arc at Pa or between Pb − Pa and 
the tangent to the arc at Pb, respectively. It follows that α > β .

Proof. Without loss of generality we assume the logarithmic spiral is represented by Eq. (2) with λ > 0, and the endpoints 
of a logarithmic spiral arc are Pa = S(t) and Pb = S(t + τ ). If the winding angle τ is less than π , the logarithmic spiral arc 
is convex and short and the property holds based on Vogt’s theorem (Theorem 3.17 in Guggenheimer, 1977).

We prove α > β for π ≤ τ < 2π . Since 0 < α, β < π , we should only prove cosα < cosβ . From Eq. (2), we have

cosα = S(t + τ ) − S(t)

‖S(t + τ ) − S(t)‖ · S′(t)
‖S′(t)‖ = eλτ (λ cosτ + sinτ ) − λ√

1 + e2λτ − 2eλτ cosτ
√

1 + λ2

and
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Fig. 1. A logarithmic arc spline that consists of n circular arcs.

cosβ = S(t + τ ) − S(t)

‖S(t + τ ) − S(t)‖ · S′(t + τ )

‖S′(t + τ )‖ = λeλτ − λ cosτ + sinτ√
1 + e2λτ − 2eλτ cosτ

√
1 + λ2

.

Omitting the common denominator within cosα and cos β , the sign of cosβ − cosα is judged by

h(t) = λeλτ − λ cosτ + sinτ − [
eλτ (λ cosτ + sinτ ) − λ

]
= λ

(
1 + eλτ

)
(1 − cosτ ) + sinτ

(
1 − eλτ

)

= 2 sin
τ

2

[
λ
(
1 + eλτ

)
sin

τ

2
+ (

1 − eλτ
)

cos
τ

2

]
.

As λ > 0 and π
2 ≤ τ

2 < π , it is derived that h(t) > 0. This proves the property. �
Property 2.4. If a sequence of points are sampled from a logarithmic spiral with a constant winding angle between every two neigh-
boring samples, the curvatures at the sampled points form a geometric sequence.

It is noted that the points sampled with a constant winding angle from a logarithmic spiral also form a discrete loga-
rithmic spiral. However, this curve is only C0 continuous. In the following, we will present a new discrete logarithmic spiral 
that is C1 continuous. A practical algorithm for Hermite interpolation by this curve will also be given.

2.2. Logarithmic arc spline

As a discrete approximation to the logarithmic spiral, a logarithmic arc spline is consisting of a sequence of smoothly 
connected circular arcs of which the center angles are the same and the curvatures form a geometric sequence. In particular, 
if all arcs are quater-circles and the growth rate of arc radii equals to the golden ratio, the logarithmic arc spline is a 
discrete approximation to the golden spiral.1 The clothoid arc spline was given in Meek and Walton (2004) and relaxed for 
interpolation of Hermite data in Zhou et al. (2012).

Assume that Pi , i = 0, 1, . . . , n are the end points or the joint points between consequent circular arcs of a logarithmic 
arc spline; see Fig. 1. The unit tangent at point Pi is Ti and the signed center angle of each arc is denoted as θ . If the 
rotation is counterclockwise the angle θ is positive; otherwise, it is negative. Let li = ‖Pi+1 − Pi‖ and Li = (Pi+1 − Pi)/li for 
i = 0, 1, . . . , n − 1. It follows that the angle between Ti and Li is θ/2 and the angle from Li to Li+1 is θ . Let

Mθ := M(θ) =
(

cos θ − sin θ

sin θ cos θ

)

be a rotation matrix, we have L0 = M θ
2

T0 and Li+1 = Mθ Li for i = 0, 1, . . . , n − 1.

Assume that the (signed) radius of the circular arc which interpolates points Pi , Pi+1 and tangent Ti is ri , we have 
li = 2ri sin(θ/2) for i = 0, 1, . . . , n − 1. Under the assumption that the curvatures, or equivalently, the radii of circular arcs 
form a geometric sequence, we have r1 = ρr0, r2 = ρr1 = ρ2r0, . . . , rn−1 = ρn−1r0, where ρ is a positive constant. It is 
further derived that l1 = ρl0, l2 = ρ2l0, . . . , ln−1 = ρn−1l0. By accumulating the vectors between neighboring points, an 
arbitrary joint point Pi , 0 < i ≤ n can be computed by

Pi = P0 + l0L0 + l1L1 + . . . + li−1Li−1

= P0 + (
l0I + ρl0Mθ + . . . + ρ i−1l0Mi−1

θ

)
L0

= P0 + l0(I − ρMθ )
−1(I − ρ iMi

θ

)
L0, (3)

1 http://en.wikipedia.org/wiki/Golden_spiral.

http://en.wikipedia.org/wiki/Golden_spiral
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Fig. 2. Approximating a segment of logarithmic spiral (dashed) by an interpolating logarithmic arc spline (solid) that consists of 10 (left) or 40 (right) 
circular arcs.

Table 1
Convergence rates of approximation of a logarithmic spiral by logarithmic arc splines.

Number of arcs Max error e(2n)/e(n) log2(e(2n)/e(n))

10 0.217324 NA NA
20 0.051959 0.239184 −2.063804
40 0.012879 0.247869 −2.012353
80 0.003208 0.249088 −2.005275

160 0.000802 0.25 −2.0
320 0.000201 0.250623 −1.996407

where I is the 2 × 2 identity matrix. If the start arc and the radii ratio are known, all joint points of a logarithmic arc spline 
will be computed by Eq. (3).

The unit tangent vector at point Pi can be computed by Ti = Mi
θ T0 = Miθ T0. In particular, Tn = Mnθ T0. Let Vi = Mπ/2Ti , 

the centers of all circular arcs are obtained as Oi = Pi + riVi , i = 0, 1, . . . , n − 1.
It is proved in Meek and Walton (1999) that a spiral segment can be approximated by a spiral arc spline with a high 

accuracy when the arc number is a large number. We check the convergence of approximating logarithmic arc splines nu-
merically. An original logarithmic spiral is defined by r(t) = 0.1e0.12t , 0 ≤ t ≤ 6π . We approximate the spiral by constructing 
logarithmic arc splines that interpolate the boundary data of the original spiral. Details of logarithmic arc spline interpola-
tion will be given in next section. Fig. 2 illustrates the initial spiral and an interpolating logarithmic arc spline that consists 
of 10 or 40 arcs. Approximation errors using various numbers of circular arcs are given in Table 1. From the table we can see 
that the approximation of a logarithmic spiral by an interpolating logarithmic arc spline appears to converge quadratically. 
However, a theoretical analysis is still not available at present.

3. G1 curve interpolation by logarithmic arc splines

Assume Pa and Pb are two distinct points on a plane, Ta and Tb are the two corresponding unit tangents that satisfy the 
following two requirements. (1) Neither Ta nor Tb is parallel or antiparallel to PL = Pb − Pa . (2) The angle between Ta and 
PL is acute when the vectors Ta and Tb are the same. We compute the winding angles of all potential logarithmic spirals 
that match the boundary data first and then construct a logarithmic arc spline that has a specified winding angle φ and 
interpolates the given points and the given tangents at the points.

3.1. Computing the winding angles

The logarithmic spirals interpolating points Pa , Pb and tangents Ta , Tb can be multi-winding spirals of which the magni-
tudes of winding angles are larger than 2π or just a single-winding spiral of which the absolute winding angle is no more 
than 2π . We refer the winding angle corresponding to the single-winding interpolating spiral as the minimum winding angle. 
The winding angles corresponding to multi-winding interpolating spirals can then be obtained by adding/subtracting 2kπ , 
where k ∈ Z

+ , from the minimum winding angle.
The computation of the minimum winding angle φmin depends on whether the tangents Ta and Tb lie on one or two 

sides of the line through Pa and Pb . Let U = PL/‖PL‖, the unsigned angles between Ta and U or between Tb and U can 
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Fig. 3. Curve interpolation by single-winding logarithmic spirals: (a) logarithmic spirals that interpolate boundary tangents lying at two sides of a chord; 
(b) logarithmic spirals that interpolate boundary tangents lying on one side of a chord.

be computed by α = cos−1(Ta · U) and β = cos−1(Tb · U), respectively. If vectors Ta and Tb lie on two sides of chord PaPb , 
the interpolating single-winding logarithmic spiral lies on one side of the chord and the minimum winding angle satisfies 
|φmin| = α + β . Moreover, the winding direction of the tangent along the spiral from Pa to Pb coincides with the direction 
from Ta to U (with angle less than π ). In this case, the (signed) minimum winding angle φmin is computed by

φmin =
{+(α + β), if Ta ∧ U > 0

−(α + β), otherwise

where Ta ∧U represents the scalar cross product of two planar vectors. Fig. 3(a) illustrates several single-winding logarithmic 
spirals lying on one side of the given chord.

If the two given tangents lie on one side of the chord, the interpolating single-winding logarithmic spiral will wind 
around one end vertex and cross the line through Pa and Pb . Based on Property 2.3, the interpolating logarithmic spiral will 
wind around Pa when α > β or wind around Pb when α < β . Particularly, the winding direction of the tangent along the 
spiral from Pa to Pb coincides with the direction from U to Ta when the interpolating spiral winds around Pa . Similarly, the 
winding direction of the tangent coincides with the direction from Ta to U when the spiral winds around Pb . Combining 
these two cases together we have

φmin =
{

2π − |α − β|, if (α − β)(U ∧ Ta) > 0

|α − β| − 2π, if (α − β)(U ∧ Ta) < 0

Fig. 3(b) illustrates several single-winding logarithmic spirals that wind around one of the two end vertices of the chord.
If Ta = Tb and α = β < π

2 , an interpolating logarithmic spiral can wind around either of the two vertices. If we choose 
φmin = 2π , the interpolating spiral winds around vertex Pa when U ∧ Ta > 0 or winds around vertex Pb when U ∧ Ta < 0. If 
we choose φmin = −2π the interpolating spiral will wind around vertex Pb or Pa , respectively in the mentioned two cases.

Let φa and φb be the winding angles of the tangent direction along the interpolating single-winding spiral from Ta to U
or from U to Tb , respectively. These two angles have the same sign with φmin and satisfy φmin = φa + φb . Particularly, the 
angles also satisfy |φa| = α and |φb| = β when Ta and Tb lie on two sides of the chord PaPb . If Ta and Tb lie on the same 
side of the chord, the angles satisfy |φa| = 2π − α and |φb| = β when α > β or |φa| = α and |φb| = 2π − β otherwise. We 
note that φa and φb are not essential for the construction of interpolating curves, but they will be used for the analysis of 
solutions to the interpolation problem.

When the minimum winding angle has been obtained, the winding angles for multi-winding interpolating logarithmic 
spirals can be defined by

φ =
{

φmin + 2kπ, if φmin > 0

φmin − 2kπ, otherwise
(4)

where k is an arbitrary positive integer.

3.2. Formulation of logarithmic arc spline interpolation

For given boundary data and a specified winding angle φ which satisfies Eq. (4), we construct an interpolating logarith-
mic arc spline consisting of n segments of circular arcs. From the definition of logarithmic arc spline the center angle of 
each circular arc can be chosen as θ = φ

n . The unit vector corresponding to the chord of the first circular arc is obtained as 
Mθ/2Ta , where Mθ/2 is the rotation matrix as defined in Section 2. When a logarithmic arc spline interpolates points Pa and 
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Pb at two ends, it implies that P0 = Pa and Pn = Pb with Pi , i = 1, 2, . . . , n − 1 as the intermediate joint points of the arc 
spline. From Eq. (3) we have

Pb − Pa = l0(I − ρMθ )
−1(I − ρnMφ

)
L0, (5)

where l0 is the chord length of the first arc and ρ is the ratio between consequent arc radii. This equation can be reformu-
lated as

l0
(
I − ρnMφ

)
L0 + ρMθ PL = PL . (6)

To solve the unknowns ρ and l0, we derive two scalar equations from Eq. (6). Crossing both sides of Eq. (6) with 
(I − ρnMφ)L0, we have

f (ρ) = aρn+1 + bρn + cρ + d = 0, (7)

where a = (MφL0) ∧ (Mθ PL), b = −(MφL0) ∧ PL , c = −L0 ∧ (Mθ PL) and d = L0 ∧ PL . Crossing both sides of Eq. (6) with Mθ PL , 
we have another scalar equation

l0
(
I − ρnMφ

)
L0 ∧ (Mθ PL) = PL ∧ (Mθ PL). (8)

Provided ρ has already been obtained, l0 can be solved out from Eq. (8) immediately. It yields

l0 = PL ∧ (Mθ PL)

(I − ρnMφ)L0 ∧ (Mθ PL)
. (9)

If there exist positive solutions to Eq. (7) and the corresponding l0 are also positive, we can then construct logarithmic arc 
splines interpolating the given boundary data by the method stated in Section 2.2.

As Mφ = Mφmin and A ∧ B = ‖A‖‖B‖ sinϕ , where ϕ is the signed angle from A to B, the coefficients within Eq. (7) can be 
reformulated as

a = le sin(φb − θ/2); b = −le sin(φb + θ/2); c = le sin(φa + θ/2); d = −le sin(φa − θ/2),

where le = ‖PL‖. Before proving the existence of interpolating logarithmic arc splines we prove the existence of positive 
roots to Eq. (7).

Theorem 3.1. Assume that Ta and Tb are the specified unit tangents at two ends of chord PaPb. The angles α, β and φ are computed or 
specified as in Section 3.1. If we choose the total number of arcs satisfying n > |φ|

2 min{α,π−α,β,π−β} and compute θ = φ
n , the following 

results hold.

1. If Ta and Tb lie on two sides of chord PaPb, there exist one or three positive roots to Eq. (7).
2. If Ta and Tb lie on the same side of chord PaPb, there exist two positive roots to Eq. (7).

Proof. From the computation of α and β we know that 0 < α, β < π . By choosing n > |φ|
2 min{α,π−α,β,π−β} and computing 

θ = φ
n we know that | θ

2 | < min{α, π − α, β, π − β} ≤ π
2 . Thus, sin θ has the same sign as θ . Based on the relationship 

between α, β and φa , φb we conclude that the signs of sin(φa ± θ/2) or sin(φb ± θ/2) are the same as that of sin(φa) or 
sin(φb), respectively.

We next consider the solutions to Eq. (7) under the case that Ta and Tb lie on two sides of chord PaPb . In this case the 
winding angles φa and φb satisfy max{|φa|, |φb|} < π . Therefore, the coefficients a and d of Eq. (7) have different signs. Since 
f (0) = d and limρ→+∞ f (ρ) = limρ→+∞ aρn , the equation f (ρ) = 0 has at least one root in (0, +∞). From the expressions 
of the coefficients of Eq. (7) we know that the signs of a, b, c and d change three times. Based on Descartes’ rule of signs 
we know that Eq. (7) can have one or three positive roots.

Lastly, we prove the theorem for the case that Ta and Tb lie on the same side of chord PaPb . From Section 3.1, we know 
that |φa| < π < |φb| < 2π or |φb| < π < |φa| < 2π . In this case the coefficients a, b, c and d satisfy ad > 0, bc > 0 but ab < 0
and ac < 0. Therefore, Eq. (7) has no more than two positive roots according to Descartes’ rule of signs. Without loss of 
generality, we assume a > 0 and then f (0) and limρ→+∞ f (ρ) are positive, too. Rewrite Eq. (7) as

f (ρ) = a

(
ρn + c

a

)(
ρ + b

a

)
+ 1

a
(ad − bc).

If |φmin| < 2π , we have f ( n
√

−c
a ) = 1

a (ad − bc) = l2e
a sin(φmin) sin θ < 0. In this case Eq. (7) has exactly two positive roots. If 

|φmin| = 2π , it is verified that c
a = −1 and Eq. (7) reduces to f (ρ) = a(ρn − 1)(ρ + b

a ). So, the positive roots to the equation 
are ρ1 = 1 and ρ2 = − b . �
a
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Besides the positive ρ we should also check whether the corresponding l0 is positive or not to construct an interpolating 
logarithmic arc spline from the given boundary data. By using the same technique as formulating a, b, c and d, Eq. (9) can 
be reformulated as

l0 = le
sin θ

sin(φa + θ/2) + ρn sin(φb − θ/2)
. (10)

As sin θ , sin(φa + θ/2) and sin(φb − θ/2) have the same sign when Ta and Tb lie on two sides of the chord PaPb , from 
Eq. (10) we have l0 > 0 when ρ > 0. Then the logarithmic arc spline computed by each positive root to f (ρ) = 0 and the 
corresponding l0 interpolates the given boundary data.

From the proof of Theorem 3.1 we know that the two positive roots to Eq. (7) satisfy ρ1 < ρ̄ = n
√−c/a < ρ2 when 

Ta 
= Tb lie on one side of the chord PaPb . As ρ̄ ∼= 1 when n is a large number the two roots always satisfy ρ1 < 1 and 
ρ2 > 1. From Eq. (10) we have l0 ≈ le

sin θ
sin(φa+θ/2)

if ρn
1 
 1 and l0 ≈ le

sin θ
ρn

2 sin(φb−θ/2)
when ρn

2 � 1. By choosing ρ = ρ1 when 
α < β or choosing ρ = ρ2 when α > β we all have l0 > 0. The chosen parameter ρ and the computed chord length l0 can 
then be used for the construction of an interpolating logarithmic arc spline. If the two given tangents Ta and Tb are equal, 
the positive root to Eq. (7) is chosen as ρ = − b

a . Substitute it into Eq. (10) one can get l0 > 0, which will be used for the 
construction of an interpolating logarithmic arc spline.

3.3. The interpolation algorithm

In this subsection we first discuss how to obtain all positive roots to Eq. (7) and then we present the algorithm summary 
of geometric Hermite interpolation by logarithmic arc splines.

Except for the special solution ρ = − b
a for the case that the given tangents Ta = Tb and the angle between Ta and PL is 

acute, the solutions to Eq. (7) should be solved numerically. The solutions to equation f (ρ) = 0 can be obtained by Newton’s 
method when Ta 
= Tb . Starting from an initial value ρ0, the approximate solutions can be updated as follows

ρi+1 = ρi − f (ρi)

f ′(ρi)
.

The iteration process continues until |ρi+1 − ρi | < ε, where ε is a tolerance given by users. In our experiments, we choose 
ε = 1 × 10−10. In case the iteration process does not converge after a certain number (such as 100) of iterations, the initial 
ρ0 should be chosen other values.

To estimate a proper initial value for solving Eq. (7) by Newton’s algorithm we reformulate the equation as

ρ = −bρn + d

aρn + c
.

If a solution to Eq. (7) is much less than 1, it can then be estimated as ρ = − bρn+d
aρn+c ≈ − d

c . Similarly, a solution much greater 

than 1 can be estimated as ρ = − bρn+d
aρn+c ≈ − b

a . If the given tangents Ta and Tb lie on two sides of the chord PaPb , or 
equivalently ac > 0, Eq. (7) can have three solutions. The initial values for the solutions are then chosen as ρ0 = 1, ρ0 = − d

c

or ρ0 = − b
a , respectively. Note that the three initial values may lead to the same final solution because Eq. (7) can have just 

one positive solution.
From Theorem 3.1 we know that there exist two positive roots to Eq. (7) when the coefficients satisfy ac < 0. Particularly, 

the two solutions lie in intervals (0, ρ̄) and (ρ̄, +∞), respectively. So, the initial value for the solution should lie in the 
corresponding interval too. To find a solution in interval (0, ρ̄), the initial value can be chosen as

ρ0 =
{−d

c , if − d
c < ρ̄

ρ̄ − 0.01, otherwise

Similarly, the initial value for finding a solution in interval (ρ̄, +∞) can be chosen as

ρ0 =
{− b

a , if − b
a > ρ̄

ρ̄ + 0.01, otherwise

To sum up, we outline the algorithm steps for logarithmic arc spline interpolation (see Algorithm 1).
Fig. 4 illustrates an example of logarithmic arc spline interpolation that has one or three solutions. Two unit tangents 

at two end points lie on two sides of the chord and the angles between the tangents with Pb − Pa are α = 0.45π and 
β = 0.46π , respectively. By choosing φ = α + β and n = 10 we obtain a single-winding logarithmic arc spline consisting of 
10 arcs; see Fig. 4(a) for the interpolating curve. If we choose φ = α + β + 8π and n = 50 we have three positive solutions 
to Eq. (7). Based on each solution and the corresponding l0 an interpolating logarithmic arc spline consisting of 50 arcs is 
obtained; see Figs. 4(b)–(d) for the three interpolating curves.

Fig. 5 illustrates an example of logarithmic arc spline interpolation when the specified tangents lie on one side of the 
chord. The tangents at two ends of the chord PaPb are specified such that the angles between Pb − Pa and the two tangents 
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Algorithm 1 Logarithmic arc spline interpolation.
input: Points Pa , Pb , tangents Ta , Tb and winding number k
output: a sequence of circular arcs

1. Compute the angles α, β , φmin and φ from the input data as described in Section 3.1;
2. Choose an integer n satisfying n > |φ|

2 min{α,π−α,β,π−β} and compute θ = φ
n ;

3. Compute the coefficients a, b, c and d for Eq. (7);
4. if (ac > 0) Compute all positive solutions to Eq. (7) using Newton’s method;
5. if ((ac < 0)&(Ta 
= Tb )) do

if (α < β) Compute the root ρ = ρ1 ∈ (0, ρ̄);
else Compute the root ρ = ρ2 ∈ (ρ̄, +∞);

6. if ((Ta = Tb )&(α < π
2 )) Compute ρ = − b

a as the root to Eq. (7);
7. Compute l0 based on a selected root ρ by Eq. (9);
8. Compute (Pi , Ti) explicitly based on the obtained ρ and l0 as described in Section 2;
9. Compute arc radii and centers based on the joint points and tangents.

Fig. 4. Logarithmic arc spline interpolation: (a) the interpolating single-winding logarithmic arc spline with ρ = 0.994329; (b)–(d) the interpolating multi-
winding logarithmic arc splines with ρ = 0.914623, ρ = 1.008966 or ρ = 1.069486, respectively.

are α = π
2 and β = 2π

3 , respectively; see Fig. 5(a). By choosing φ = φmin = − 11
6 π and n = 10 the two positive solutions to 

the equation f (ρ) = 0 are obtained as ρ1 = 0.886635 and ρ2 = 1.429398. By choosing ρ = ρ1 we obtain a logarithmic arc 
spline interpolating the given boundary data. If we choose ρ = ρ2, the obtained l0 is negative and a logarithmic arc spline 
interpolating the opposite directions of the specified end tangents is obtained. When we choose φ = φmin − 4π and n = 20
we obtain a multi-winding logarithmic arc spline interpolating the Hermite data; see Fig. 5(b).

An example for logarithmic arc spline interpolation to Hermite data with Ta = Tb is given in Fig. 2. A discrete logarithmic 
spiral consisting 10 or 40 circular arcs spline has been used to interpolate the boundary data of logarithmic spiral arc with 
winding angle 6π .

In Kurnosenko (2010) a spiral computed by inversions of logarithmic spiral has been used to interpolate G2 Hermite data 
with a big winding angle. As this spiral is in fact a rational function composed of logarithmic spiral and Möbius map, it is 
not exactly the logarithmic spiral generally. Our proposed logarithmic arc spline can approximate a continuous logarithmic 
spiral with a high accuracy and maintains many elegant properties of logarithmic spirals. Due to its flexibility and simplicity 
for computation, logarithmic arc splines can be used in fields of design and modeling.



X. Yang / Computer Aided Geometric Design 31 (2014) 701–711 709
Fig. 5. Logarithmic arc spline interpolation: (a) the logarithmic arc spline (solid) interpolating the specified tangents and the logarithmic arc spline (dashed) 
interpolating the opposite directions of the given tangents; (b) an interpolating curve with a large winding angle.

Fig. 6. Shape modeling by logarithmic arc spline interpolation: (a) model a “C”-shape curve by interpolating 4 pairs Hermite data; (b) model a blade profile 
by interpolating 6 pairs of Hermite data.

4. Applications

In this section we present a few more examples to show the applicability of logarithmic arc spline interpolation for 
various shape modeling purposes.

First, we present examples to model a “C”-shape curve and a blade profile by logarithmic arc spline interpolation. To 
model a “C”-like shape users can just input four points plus four tangents; see Fig. 6(a). From the figure we can see that 
the end tangents at two pairs of neighboring points lie on one side of the chord while the tangents for the rest two pairs 
of neighboring points lie on two sides of the corresponding chord. By choosing φ = φmin and n = 8 for each pair of Hermite 
data, a G1 smooth curve consisting of 32 circular arcs is obtained. By the same technique we model a blade profile by 
logarithmic arc spline interpolation. Starting from 6 input points together with 6 unit tangents at the points (Fig. 6(b)), the 
minimum winding angles for the curves interpolating each pair of consequent points and tangents are first computed. After 
then, an interpolating arc spline consisting of total 18 circular arcs is obtained by interpolating 6 pairs of Hermite data.

Next, we present an example of curve interpolation using single-winding as well as multi-winding logarithmic arc splines. 
A sequence of initial points and tangents are given in Fig. 7(a). For each pair of consequent points together with the unit 
tangents at the points the angles between the tangents and the chord are α = 3

8 π , β = π
2 or α = π

2 , β = 3
8 π . By choosing 

φ = φmin = − 7π
8 and n = 5 for constructing each logarithmic arc spline, a smooth curve consisting of total 80 circular arcs 

is obtained; see Fig. 7(b) for the interpolating curve. When we choose the winding angle φ = − 7π
8 − 2π and n = 20 for the 

construction of each interpolating logarithmic arc spline, the corresponding equation f (ρ) = 0 has just one positive root. 
As a result, a multi-winding logarithmic arc spline is obtained to interpolate each pair of Hermite data; see Fig. 7(c) for the 
interpolating arc splines or Fig. 7(d) for the final smooth curve.
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Fig. 7. Curve interpolation by logarithmic arc splines: (a) the input Hermite data and the interpolating single-winding logarithmic arc splines; (b) the 
interpolating logarithmic arc splines without the input data; (c) the Hermite data and the interpolating multi-winding logarithmic arc splines; (d) the 
interpolating curve without the tangents.

5. Conclusion

In this paper we have introduced logarithmic arc splines which are tangent smooth and have similar properties of 
logarithmic spirals. Logarithmic arc splines can approximate logarithmic spirals with high accuracies when the numbers of 
arcs are sufficiently large. Given two points together with two unit tangents at the points, a practical algorithm is developed 
to construct interpolating logarithmic arc splines with a specified winding angle. By formulating the interpolation problem 
as solving a vector equation, all solutions to the equation and all logarithmic arc splines that interpolate the boundary data 
can be obtained. As compared with previous logarithmic spiral interpolation schemes, the proposed method can be used 
to construct interpolating spirals with unbounded winding angles. It also benefits that the obtained curves are compatible 
with NURBS and the offsets are simple to compute.
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