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Abstract In this paper, we present formulae for evalu-
ating differential quantities at vertices of triangular meshes
that may approximate potential piecewise smooth surfaces
with discontinuous normals or discontinuous curvatures at
the joint lines. We also define the C' and C? discontinuity
measures for surface meshes using changing rates of one-
sided curvatures or changing rates of curvatures across
mesh edges. The curvatures are computed discretely as of
local interpolating surfaces that lie within a tolerance to the
mesh. Together with proper estimation of local shape
parameters, the obtained discontinuity measures own
properties like sensitivity to salient joint lines and being
scale invariant. A simple algorithm is finally developed for
detection of C' or C? discontinuity joint lines on triangular
meshes with even highly non-uniform triangulations. Sev-
eral examples are provided to demonstrate the effective-
ness of the proposed method.
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1 Introduction

Triangular meshes can be used to represent surfaces with
complex shapes, they can be rendered efficiently and also
they can be easily transferred among various CAD systems.
A triangular mesh can be regarded as the tessellation or the
approximation of an unknown piecewise smooth surface
that may have C' or C? discontinuity joint lines [6]. A mesh
edge is said to be C' or C* discontinuous if it approximates
a C' or C? discontinuity joint line of the surface. The
detection of normal or curvature discontinuity joint lines is
useful for further shape processing of triangular meshes
like patch segmentation [1, 12, 18], remeshing [25, 28],
feature sensitive hole filling [27], etc.

In contrast to edge detection in computer vision [4],
identification of C' or C* discontinuity joint lines for
meshes is more challenging. Detection of C' or C* dis-
continuity joint edges depends heavily on proper estima-
tion of normal vectors and curvatures on triangular meshes
that may have highly irregular or non-uniform triangula-
tions. Even discrete normals and curvatures have been
properly estimated, naive comparison of discrete normals
or curvatures does not guarantee the correct detection of all
C' or C? discontinuities. It may miss true discontinuities in
low curvature regions but introduce false ones in high
curvature regions.

For a mesh with unknown C! or C? discontinuities, we
assume that there is a unique normal vector at every edge
and normal curvatures at mesh edges or at their opposite
vertices are estimated as of local interpolating surfaces in a
small tolerance to the mesh. The C' or C* discontinuity of a
mesh edge can be measured by the changing rates of nor-
mal curvatures across the edge with respect to the normal
curvatures at two opposite vertices or the changing rate of
normal curvatures across the edge. Besides the fitting
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Fig. 1 Joint line detection on a CAD mesh: a the input triangular
mesh; b the principal directions along edges; ¢ the plot of c?
discontinuity measure (the discontinuity measure of a vertex is

tolerance, we also estimate local shape parameters like
crease directions at mesh edges for robust computation of
discontinuity measures at edges. The obtained discontinu-
ity measures have the properties like sensitivity to true joint
lines and being scale invariant, etc. Then, the C' or C?
discontinuity joint edges can be detected easily based on a
simple threshold. Moreover, the initially detected joint
edges can be smoothed further based on a few collective
properties or assumptions of the joint lines.

Figure 1 illustrates the main steps of joint line detection
on a triangular mesh. For a given surface mesh we first
compute differential quantities and shape parameters.
Figure 1b shows the crease directions across the mesh
edges. Afterwards, we compute C' or C* discontinuity
measures for every edge; see Fig. lc for the plot of C*
discontinuity measures. Based on the discontinuity mea-
sures we can detect joint lines; see Fig. 1d for the result by
the proposed approach.

The organization of the paper is as follows. Section 2
introduces some related work. Notations and formulae for
some basic differential quantities will be given in Sect. 3.
The C' or C? discontinuity measures for mesh edges are
evaluated in Sect. 4. An algorithm for C' or C* disconti-
nuity joint line detection on triangular meshes is presented
in Sect. 5. Section 6 provides our experimental results.
Section 7 concludes the paper.

2 Related work

Usually, an edge with a dihedral angle greater than a given
threshold is considered a sharp edge. Hubeli et al. [7]
proposed to compute angles between normals of surface
patches that are fitted to selected neighborhoods of mesh
edges. Vidal et al. [23] proposed to compute angles
between one-sided tangent planes. Jiao and Heath [9]
proposed to detect joint edges based on the dihedral angles
across edges together with the smoothness assumption of
potential feature lines. Baker [3] and Jiao and Bayyana [8]
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(c)

defined as the maximum value of discontinuity measures of all
abutting edges); d the detected C! (red) and c? (cyan) discontinuity
joint edges (color figure online)

improved the technique further by using more collective
properties of feature lines and local geometric quantities of
the mesh.

Inspired by the technique of tensor voting [19, 20], Page
et al. [16] proposed to detect creases on surface meshes by
a normal voting method. Shimizu et al. [17] defined edge
strengths for meshes based on eigen analysis of covariance
matrices of voted normals. Recently, Angelo and Stefano
[2] proposed to detect C' discontinuity edges using a
sharpness indicator defined by local fitting of paraboloid to
mesh data. Similar to the edge strength measure, this
method may miss salient feature edges in low curvature
regions or introduce false detected edges in high curvature
regions. Kim et al. [10] proposed to classify vertices on a
triangular mesh into corners, edges or smooth surface
regions by the tensor voting theory, too, and they in fact
segment a surface into various feature parts.

In contrast to C! discontinuity detection, detection of
joint lines across which the surface curvatures are not
continuous is more challenging. Yamakawa and Shimada
[28] proposed a polygon crawling technique to detect C*
discontinuity edges on cylinder like surfaces. Recently,
Jiao and Bayyana [8] proposed a method to detect C*
discontinuity edges based on a set of observed rules and a
heuristic algorithm. By this method, only edges lying on
boundaries of flat regions may be detected.

Joint lines can also be obtained when a surface has been
segmented into individual patches. Demarsin et al. [5]
proposed to detect closed sharp features on point set sur-
faces using normal estimation and graph theory. Sunil and
Pande [18] proposed to segment surface meshes into fea-
ture patches using region growing together with identifi-
cation of salient edges. Varady et al. [22] proposed to
recover primary surface patches in scan reconstructed
surfaces and then extract feature lines as the surface
boundaries. Though surface segmentation is itself an
important research area in CAD and graphics [1, 26], but it
is too costly to segment surfaces when only joint lines
should be detected.
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Our proposed algorithm depends on proper estimation of
normal vectors or curvatures at mesh vertices. Though
these two topics have been studied extensively in the lit-
erature [13, 14, 15, 20, 21], but all these methods assume
that a triangular mesh is approximating a smooth surface
and there is a unique normal vector or curvature tensor at a
vertex. If a vertex lies on a joint line, these methods may
not work. We will propose methods to compute normal
vectors and normal curvatures in selected directions even
when a vertex is a joint point of several surface patches.

3 Notations and basic geometric quantities
This section presents formulae for computing several basic
geometric quantities for surface meshes. Before that,

notations for variables used in the paper are given in
Table 1.

Table 1 Notations for the variables used in the paper

e = pop; A mesh edge and the end vertices of the edge

u, The unit direction of the edge e

n.(n,) Unit normal vector at an edge (vertex)

n; Unit normal at vertex q in a plane perpendicular to edge e

0. The signed dihedral angle at an edge

kap Normal curvature at q in direction b — q

Hy, The height of the arc that interpolates points q, b and
normal n,

T, The tensor matrix at a vertex q

t, Unit crease direction at a vertex

t, Unit crease direction at an edge

KP(KS) The beginning (end) curvature of a spiral to the left side of
edge e

kf (k) The beginning (end) curvature of a spiral to the right side
of edge e

Kk The middle curvature of a spiral to the left (right) side of
edge e

T(Thp) The curvature changing rate at the left (right) side of edge
e

He The curvature changing rate across an edge

u;(uf) The C' (Cz) discontinuity measure of edge e

b The angle between an edge e and the crease direction at
the edge

o The angle between two planes spanned by vectors pop;
and ng or by vectors pop; and n;

Pe Local roughness of edge e

I Mean edge length of the mesh

Kave The average of curvatures across a set of selected edges of
the mesh

Tm The tolerance bound for a mesh which approximates a

piecewise smooth surface

3.1 Normals and angles at edges

Assume pgp; is an edge shared by two triangles fy and f on
the left or the right side, respectively. Let ny and n; be the
unit normal vectors of the two triangles, the unit normal
vector at the edge is given by

n, = oM (1)
[[mo +m ]

The signed dihedral angle across edge pop; can be
computed as the angle between vectors ny and n;. The
angle is positive when the surface is local convex and the
angle is negative otherwise. We have

if (ng xmy) - (p; —py) >0
, otherwise

{ arccos(ng - my) )
0, =
—arccos(ng - np)

(2)

We note that all angles and angle thresholds in this
paper are in radian.

3.2 Normal curvatures at vertices or across edges

Assume q is a vertex neighboring to edge pop; on a triangle
mesh; see Fig. 2a. To estimate normal curvature of the
mesh at q in a direction perpendicular to edge pop; we
have to estimate normal vector at the vertex in a plane
perpendicular to the edge. Instead of computing the inter-
section line between the plane and the mesh, we compute
the normal vector at vertex q as a weighted sum of normal
vectors of neighboring triangles. To define the normal
vector properly when the vertex q is lying on a joint line
between two faces, the coefficient for a facet normal n;
should be proportional to the vertex angle o; of the ith
neighbor triangle. The influence of n; should be decreased
further when n; and edge pop; are far from being orthog-
onal. Let ¢; be the angle between line pgp; and the plane
through the ith neighbor triangle, we compute the normal
vector that is approximately perpendicular to edge pop; as

2k
e EiEN(q) o; COS™ @;n;

n —
o ZieN(q) o; cos? pn;||’

(3)

where N(g) means the index set of neighboring triangles at
vertex q and k is an integer that controls the coefficients.
Let u, = ﬁ, the angle ¢; can be computed by

cos?2p;, = 1 — (u, - m;)%; see Fig. 2b.

If k equals zero, n{ reduces to an angle-weighted normal
vector ng, which can be used as the normal vector of a
potential smooth surface at vertex q. With increased value
of k, the weights of those neighboring triangles which are
approximately perpendicular to edge pop; will decrease
drastically. In our experiments we choose k = 10 that
can give reasonable estimation of normal curvatures.
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(a) (b)

Fig. 2 Computing vertex normals for normal curvature estimation

The unit normal vector at vertex ( in a plane perpendicular
to edge pop; is obtained as
. ng—(n-u)u,

q
n, = — — .
0 [Ing — (0 - we)u||

(4)

Assume b is the perpendicular foot of vertex q onto the
edge pop;. Following the method in [15, 20], the normal
curvature at vertex ( in direction gb can be estimated by an
interpolating circular arc. It yields

2(q —b) -n
kgp = ——————+. (5)
lg —b]|
Similarly, the normal curvature across edge pop; in a
direction bq can be computed by kp;, = zﬁ‘?’__‘;)‘"?“.

Besides estimation of normal curvatures, we can also
estimate the fitting error from a potential interpolating
surface to the mesh by computing the heights of interpo-
lating arcs. Let ¢ be the unsigned acute angle between

[ng-(q—b)|
and
lla=bll

sin¢ = /1 — cos? ¢. The height H,, from the arc to the
chord q — b can be computed by

= ”zqcos';'a —sin¢h). (6)

vector n, and vector q — b, we have cos ¢ =

Since H,, is determined by points q, b and normal vector
n;, we denote further H,, = H(q, ng, b).

3.3 Estimating the fitting tolerance

Based on the assumption that a triangular mesh is an
approximation of a piecewise smooth surface, we should
then estimate the bound of fitting error for the mesh.
Because an edge with a low absolute dihedral angle may lie
on a flat region and an edge with a large dihedral angle is
probably a feature edge, we then estimate local heights for
mesh edges of which the dihedral angles belong to a
properly chosen interval [0;, 0;]. Assume pgp; is an edge
with two opposite vertices o and q; on two sharing

@ Springer

triangles, the local height at the edge can be computed as
the distance between lines pop; and qoq;. We have

(Po — qo) - ((P1 — Po) % (q; — qp))]| 7
1(P1 — Po) * (a1 — o)l '

ol

The fitting tolerance for a triangular mesh is given by

rmzé Z he, (8)

Mo <Jo <o,

where n is the total number of edges that satisfy
06, <10, < 0,.

4 C" and C? discontinuity measures

In this section we propose to measure C' or C* disconti-
nuities across mesh edges by the changing rates of normal
curvatures on either side or across the edges. A robust
algorithm for shape aware discontinuity measure compu-
tation will also be given.

4.1 Curvature based discontinuity measures
4.1.1 Choosing opposite vertices for an edge

Basically, the opposite vertices for an edge pop; can be
chosen as vertices qo and q; on two sharing triangles
Apopi1qo and Apop.q;, respectively. Though this choice
works well for most examples, it may still introduce false
detected discontinuity edges when some triangles or small
local flat regions have been over tessellated into more tri-
angles on the same planes. To choose proper neighbor
vertices for an edge pop; which may have over tessellated
neighbor triangles, we check local shape of the mesh near
vertex (o or (; and extend the vertices along some edges if
local over tessellation has been detected.

We check vertex qq on triangle Apgp;qo as follows,
vertex ; on triangle Apop,q; can be checked in the same
way. Without loss of generality, we assume the lengths
of two edges abutting vertex qq satisfy |p, — qoll <
Ilp1 — qoll; see Fig. 3. Let 0,4, and 0,4, be the dihedral
angles at the two edges, respectively. Assume q, is a
I-ring neighbor vertex to o which is computed by
q, = arg minqul (99),9#Po-P, {‘0%61 - 0170110 |}. Opposite vertex
qo will be extended to a new position q, if the following
three conditions hold simultaneously.

1. The dihedral angles satisfy inequalities |0,,4,| > & and
|0p190| <e0:

2. The acute angle ¢ between vectors poqo and p;qp is
large enough such as ¢ > §;

3. The lines pogqo and qopq, are nearly parallel, but the
normal vectors ng, and ng, do not. Practically, the
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Fig. 3 Choosing opposite vertices for a mesh edge

P
ng() l
Qo e
ng
q:
Po

Fig. 4 Discontinuity measure computation for a mesh edge

: 9%—9 . _90—Po _ .
vectors should satisfy Ta—al " Ta=pal > 1 —¢ and
ng -ng <l —&.
In the following we will still denote the opposite verti-
ces as (g or q; even they are the extended ones.

4.1.2 Robust and monotone curvatures

Assume that pop; is an arbitrary edge on a triangular mesh
with two opposite vertices qq, q; on two sides of the edge. Let
b and b be the perpendicular feet of qg and q; onto the edge,
respectively; see Fig. 4. We will define the discontinuity
measures at edge pop; by computing normal curvatures at
qo, 41, boand by, all in a direction perpendicular to the edge.

Letn,, ng and n{ be the normal vectors at the edge pop;
or at two opposite vertices, respectively. The normal cur-
vature across the edge or at their opposite vertices can be
computed by Eq. (5). However, if the triangle mesh is
highly irregular or have non-uniform triangulations, the
computed curvatures may suffer even minor data noise
when the chord ||by — qq|| is very short. We then modify
Eq. (5) for robust curvature estimation using a filtered
chord length. Let I, = 0.1/, be a lower bound of
chord lengths, we replace |bp—qq| in Eq. (5) by
dp = max{||qy — bo||,/n}. By this refinement, too small

chord length will be increased, and the normal curvatures
at by, qq are then computed by

b — —2dy - n, _ 2d, 'nflo 9)
by d() ) q0 dO )
where dy = %. Similarly, the normal curvatures at b,

and q; can be obtained as

-2d; -n, 2d; - n¢
= d—l’ kq = —qlv (10)

ks ] 7

where d; = max{||q; — by||,/,} and d; = ﬁ.
Motivated by curve completion using spiral curves [11],
we measure curvature changing rate at one side of an edge
by assuming that the discrete curvatures are sampled from
a spiral curve which also lies in a tolerance to the mesh.

When the points qg, by and normal vectors ngo, n, all lie in
a plane perpendicular to edge pop;, there exists a spiral that
interpolates the boundary data in the plane [24]. Moreover,
the interpolating spiral curve also lies in a region bounded
by two circular arcs that interpolates two end points and
either of the end normals; see Fig. Sa.

If Hi= H(by, n,, q¢) < T, we regard the height of the
interpolating spiral to the left side of edge pop; lying in the
tolerance and choose ky, and k,, as the sampled curvatures
of a spiral curve. If H,> 1, the tolerance constrained
interpolating curve should have a local minimum curvature
value and the spiral segment can be a part of the interpo-
lating curve; see Fig. 5b. We re-estimate end curvatures of
a spiral segment when the height H; or the dihedral angle at
the edge is a large value. The discrete curvatures of a spiral
segment at the left side of edge pop; are chosen as follows

k> = kp,, kt = kg, if (Hy < 1p)and(|0,] <0)
kp = =2t ke — 0 otherwise (1)

We modify the end curvatures as of a local spiral
segment when the height of an osculating arc exceeds the
tolerance by experiment. Similarly, the normal curvatures
at the right side of edge pop; are obtained as

{kfzkbl,kf:kql if (H; <1tm)and(]0.]<6,) (12)

k= =2 ke =0 otherwise

4.1.3 Defining the discontinuity measures

Now we have spiral based sampling curvatures & and k{ at
the left side of edge pop; and spiral based sampling cur-
vatures k¢ and k¢ at the right. Edge pop; is a C' disconti-
nuity joint edge if inequalities k& >> k{ and & >> S hold. If
either of the mentioned inequalities holds or the two cur-
vatures ki and kP differ greatly, the edge is probably a C*
discontinuity joint edge.
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(b)

Fig. 5 Curvature computation using tolerance constrained curve
interpolation

Instead of using curvature differences, we measure
changing rates of curvatures using ratios of curvatures.
The curvature ratios are scale invariant and can be used
for detection of joint edges on high curvature regions and
low curvature regions as well. The definition of curvature
ratios requires that each pair of curvatures have a same
sign. To achieve such a goal, we sample a midpoint
curvature of the interpolating spiral at the left side of edge
Pop: as follows

w_ | 2R A
O a1 1)
2 11 1™

if (kK¢ > 0)

otherwise

(13)

where the function sgn() equals 1, —1 or O depending on
the sign of a real number. The new sampled curvature of
the right interpolating curve is given by

W_{a@+m if (k2K > 0)

sgn(k? Kk .
% max {‘—2‘ , %} otherwise

(14)

Based on the sampled curvatures, we define the
curvature changing rates at either side or across the edge
Pop: as follows

kP +e
b
I e
Fe = lkm[+ ¢ (16)

¢ max{|k}’\, |k}’\} + |k}’ — kf| + &
‘ max{[kP[, [kP|} + & ’

(17)

where ¢ > 0 is a number that can keep the denominator
from being zero or reduce the influences of data noise.

@ Springer

From the definitions of the discontinuity measures in
Egs. (15-17), we can easily draw several interesting
properties of the measures:

: - — 1 ERT c_
L. hmkleﬁk}’ te = limye g p = hmk%kp e = 1.

2. Ifmax{[k|, kP, |kP], |k¢|} < & wehave p; ~ 1, pf ~1
and pg ~ 1.

3. If |kP| > ¢ and Ik]I > Ik§l, we have p, ~ 2.
4. If [k°| > & and 1KYl > IKSl, we have p ~ 2.
5. If Ikl > kDl or IKD] > IkPl, we have pé ~ 2
6. If k) = —kP and |kP| > ¢, we have p¢ ~ 3.
Property 1 means that the one-sided discontinuity

measures for edges sampled from curvature continuous
surfaces are close to constant 1. From property 2 we know
that the influences of data noise can be reduced greatly by
choosing a proper value for the parameter e. Properties 3
and 4 show that rapid change of curvature on one side of a
joint edge can lead to a large discontinuity measure.
Properties 5 and 6 imply that large jump of curvatures
across an edge may lead to a large discontinuity measure.
For a given threshold pr, if p, > pr > 1 and pf >
pr > 1, the normal curvatures at the either side of edge pop;
are greater than the normal curvatures at their opposite ver-
tices, the edge is probably a C' discontinuity joint edge. We
then measure the normal discontinuity across edges by

pe = min{y, g}

If one of measures p,, pt or S is much >1 (but still
<3), the discrete curvatures either jump suddenly across
the edge pop; or decrease rapidly at one side of the edge. In
this case, the edge is a C? discontinuity joint edge. The
curvature discontinuity at an edge can be measured by

:uezz = max{y, , ., i }.

4.2 Crease directions across edges and shape aware
discontinuity measures

4.2.1 Crease directions across mesh edges

An efficient way to estimate crease directions at mesh
vertices is by the normal voting technique [16]. We modify
the technique a little for computing crease directions at
vertices first, and then compute crease directions across
mesh edges based on the piecewise smoothness assumption
of the surfaces.

Assume n; is the normal vector and ¢; is the center of a
triangle incident to vertex q, m, is the normal vector at
vertex q (Fig. 6a), the voted normal by n; is computed by

,  m—2(r;-m)ri+n,

n =
b = 2(r e + g
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where r; = ﬁ. We have modified the previous approach
by adding n, in each voted normal. This modification can
increase the robustness of crease direction estimation even
when the vertex is lying on a joint line between two planes
with opposite normals.

By the voted normal vectors, the tensor matrix at vertex

q is obtained as T, = >y, (,) ®mm;, where 7 means the

177

transpose of a column vector. It is clear that the matrix
T, is symmetric and it can be decomposed into
T, = hieje] + Areses + hzeses, where Ly > A, > Ay are
the eigenvalues and e;, e, and e; are the corresponding
eigenvectors of the matrix.

The crease direction at vertex q is then chosen as
t, = e3. The crease direction across a mesh edge should be
parallel to the edge when the edge is lying on the C' or C*
discontinuity joint line between two surfaces. For a trian-
gular mesh with no prior knowledge of joint lines, we set
t. = u, for an edge pop; if it is a potential C' or C? dis-
continuity joint edge judged by the following two simple
rules:

L If H(bO’ n,, qO) > Ty O H(bl’ n, ql) > Tm, edge PoP1
is a potential sharp edge and it will be dealt as a C' or
C? discontinuity joint edge.

2. Ifedge pop; is a short edge of a thin triangle, especially,
when max{[|qy — boll, [|q; = bi[]} > 10][p; — pol|, the
edge is probably lying on a joint line between two
different surfaces.

If none of above two conditions holds, we treat edge
PoP;: as lying on a local smooth region (Fig. 6b). Assume
that ty and t; are the two unit crease directions at two end
vertices of the edge pop;, the crease direction for the edge

. _ toft
is chosen by default as t, = Tere When Ito + t1]] > ||to —
ty|| or t, = H:g:::H otherwise. If an edge is connected to

other discontinuity joint edges at one of its end vertices, the

(a) (b)

Fig. 6 Estimating the crease direction at a vertices or b across the
edge

crease direction across the edge can be chosen as the crease
direction at the other end vertex. Assume that the acute
angles between vectors to, t; or t, with direction p;— po
are ¢g, ¢; or ¢, respectively, the crease direction across
the edge is chosen as follows

t,, by default
te =14 to, if ¢g<min{¢,, ¢, Pz} (18)
t], if d)] < min{(b;v ¢07 d)E}

where ¢ is a threshold characterizing the smoothness of
discrete crease directions.

4.2.2 Shape aware discontinuity measures for mesh edges

We compute shape aware discontinuity measures for mesh
edges by choosing parameter ¢ for Eqs. (15-17) based on
local shape analysis of the triangular mesh. In particular,
the parameter should have low values for edges lying on
boundaries of flat surfaces or joint lines between two
curved surfaces but have larger values for edges lying on
smooth surface regions.

The angle ¢, between edge direction u, and crease
direction t, across edge pop; can be obtained by ¢, =
cos~'(|t, - u,|); see Fig. 7. From the assumption that the
direction of a C' discontinuity joint edge is approximately
parallel to the crease direction, the smaller the angle ¢, the
smaller the value of ¢ should be for one-sided discontinuity
measures p, and pf.

If a mesh is obtained by the tessellation of a piecewise
smooth surface with a small error bound, a C Uor C? dis-
continuity joint edge pop; and the normal vectors ng, n; at
the ends of the edge usually lie on a same plane exactly or
approximately. To measure the coplanarity of vectors ny,
n; and u,, we compute the angle ¢, between two planes

Fig. 7 Computing local shape parameters for the discontinuity
measures of a mesh edge
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spanned by vectors pop; and ny or by vectors pop;
and nj, respectively. With simple computation, we have

_ —1(|_mgxuw,  _mxu, .
¢, = cos™( Mo " Taoxu] ). If ¢, is a small value, we

should choose small value of ¢ for the discontinuity mea-
sures defined by Eqgs. (15-17).

To distinguish boundary edges of flat surfaces or the
joint edges between two curved surfaces from other
roughly tessellated edges in smooth regions, we compute
local roughness for mesh edges. Assume oy, o, o; and B;
are the angles between edge pop; and the principal direc-
tions at other four edges of two sharing triangles of edge
pop: (Fig. 7). We compute the weighted angles for the two
sharing triangles by

60 = 0052 OC()|0Poqo‘ + COS2 ﬁ0|9[71¢]0|?
01 = cos® 1[0y, | + 08 B |0pq

where 0,405 Op o> Opyq, and 0, 4, are the dihedral angles at

four edges of the two sharing triangles. We define the local

min{()g,(jl

roughness of edge pop; as p, = b If one neighbor

Oppy |
triangle lies on a local flat region or the minor principal
directions at two edges (other than pop;) are perpendicular
to edge pop;, either 6o or 0 is a low value and the edge is
probably a boundary edge of a flat surface or the joint edge
between two curved surfaces. If p, is a large number, both
0p and 0, are large enough as compared with Opyp, > the edge
PoP: is probably a rough tessellated edge in a smooth
surface region.

To overcome the influences of data noise on disconti-
nuity measures further, we compute the average curvature
across selected edges on low curved surface regions. For an
arbitrary edge pop; with two opposite vertices qq and q; on
two sharing triangles, by and b, are the perpendicular feet
of qo and q; on the edge. The curvature across the edge
pop: is computed as k, = 25in(0—2“) /l., where [, =
max (1,01} and I, = (o — bol| + [la — bi[])/2. The
average curvature of selected edges is then computed as
kave = %20,<\0e\<0r |k.|, where O is a threshold and n is
the total number of edges of which the dihedral angles
satisfy 0, <10, < Or.

Based on the above analysis, we choose two shape
parameters ¢; and &, heuristically as follows

&1 = (sin® ¢, + sin® ¢, Vkmax + ke, (19)
& = 2 sin d)nkmax + kg7 (20)

where kg = max{Ik}l, Ik2}, kyin = min{I&]l, IK°1} and
ke = pokmin + 0.05kyye + 1073, We choose the shape
parameter ¢ = & for Egs. (15) and (16) and choose ¢ = ¢,
for Eq. (17). The main steps for the computation of C' or
C? discontinuity measures for mesh edges are summarized
in Algorithm 1.
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Algorithm 1. Discontinuity measure computation

input: A triangular mesh

output: discontinuity measures for all edges

1. Compute ne and 6. for each edge pyp;;

2. Compute 7, and kgye for the mesh;

3. Compute crease directions for all vertices;

4. for each edge pyp;
choose vertices qg, q; on two sharing triangles;
Compute perpendicular feet by and by;
Compute Hg = H(bg,ne,qq) and H1 = H(b1,ne,q;);
if (Ho > Tm or H1 > Tm) set te = ue;

l19o=boll 9y =bal.

P1—Poll = P —Poll’
if (ro > 10 or 71 > 10) set te = ue;
else compute t. by Equation (18);
5. for each edge pyp;
choose (extended) opposite vertices qg, qy;
Compute normal vectors nS_ and ng ;
Compute perpendicular feet bg and by;
Compute Ky, kqq, kb, » kqy;
Compute parameters €; and 2 for the edge;
Compute pg , pd, nE by Eqn.s (13-17).

else Compute rg = and rp

5 The discontinuity detection algorithm

Based on the computed discontinuity measures for mesh
edges, we present a practical algorithm for C' or C?* dis-
continuity joint edge detection. An algorithm for smooth
joint line generation from initially detected joint edges will
also be presented.

5.1 Initial joint line detection

When the C' or C* discontinuity measures have been
obtained for all mesh edges, the initial joint edges can just
be selected using a given threshold . However, some
obvious joint edges may still be missed in this way because
of inaccurate discontinuity measures. We then refine the
chosen edges a little to reduce false detected edges and
pick missed joint edges as much as possible. The refine-
ment is based as the following rules:

1. No three discontinuity joint edges lie on a same
triangle;

2. Every C' or C* discontinuity joint edge lies on a
smooth joint line;

3. The edges with large dihedral angles are possibly C' or
C? discontinuity joint edges.

From rule 1 we can delete the edge with minimum
discontinuity measure when the discontinuity measures of
three edges of a triangle are all larger than the threshold pr.
By rule 2 or rule 3 we can pick some missed joint edges by
extending the current joint lines.

The extension of a joint line on a triangular mesh is
based on the choice of smooth connected edge at an end
vertex of the line. Assume v, and v, are the two vertices of
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an edge e on a triangle mesh, the smooth joint edge of edge
e at vertex v; is chosen from the 1-ring neighborhood of
vertex vy. The other end vertex of the smooth connected
edge x to edge e is picked by

Vi — Vo Vg — V1 @
Vs = argmax, cn,(v,) ||V1 _ VO” : ”Va — V1||l a (s

where 0, = |0y,y,| + 7. When we obtain a smooth joint
edge x to a given edge e, we compute the turning angle ¢
between the projections of edges e and x onto the tangent
plane that passes through vertex v; with normal vector n,,.

Algorithm 2. Initial joint line detection
input: A triangular mesh, dihedral angles and discontinuity
measures at edges and a threshold pr
output: a set of detected joint edges
1. for each edge e
if (pe > pr) index(e)=joint_edge;
else index(e)=no-index;
2. for each triangle with edges ep, e1 and eg
if (ep, e1 and ez are all indexed joint_edges)
delete the joint edge with min{jiey, fe, s tes }3
3. for each vertex v
M (v)=the number of joint edges connecting v;
4. for each joint edge e = vovy
if (M(vo) ==1]|] M(v1)==1)
find extended edge x = vgva or X = viVva;
compute angle ¢ between e and x;
if (pe > (pr —0.05) && M(vz) <1)
index(x)=joint_edge;
if (|0z] > 01 && |¢| < ¢ && M(va) <1)
index(x)=joint_edge;
end if

For every end C' or C? discontinuity joint edge e we find
the smooth joint edge x and add the edge x as a disconti-
nuity joint edge if it satisfies one of the following
conditions:

1. The discontinuity measure p, > pf = pip — 0.05 and
the edge x is connected to at most one other C' or C*
discontinuity joint edge at the other end;

2. The dihedral angle of edge x satisfies 16,] > 67, the
turning angle ¢ < ¢ and the edge x is connected to at
most one other C' or C? discontinuity joint edge.

Condition 1 implies that some discontinuity joint edges
can be detected by using adaptive thresholds while by
condition 2 we may pick some discontinuity joint edges
that have large dihedral angles and small turning angles
with known discontinuity joint edges. We restrict the new
extended edge connecting to at most one another C' or C*
discontinuity joint edge to avoid the generation of new
branch joint lines. See Algorithm 2 for the main steps for
initial joint line detection.

5.2 Smooth joint line generation

Based on the assumption that C' or C* discontinuity joint
lines of piecewise smooth surfaces are usually smooth
and there is no isolated or short branches on the joint
lines, we present an algorithm to detect smooth joint
lines from the initially detected joint edges. The algo-
rithm consists of three main steps: one-edge-length-
branch pruning, one-edge-length-gap filling and short
branch pruning.

We delete an end discontinuity joint edge if one of the
following conditions holds:

1. The end joint edge e is an isolated joint edge;

2. Two end joint edges e and x are connected and the
dihedral angles of the two edges are less than Or;

3. The end joint edge e is connected to a joint line with
turning angle ¢ > ¢y at the joint point;

4. The end joint edge e is connected to two or more other
joint lines and the smallest turning angle ¢ > ¢ at the
joint point.

Algorithm 3. Smooth joint line generation
input: A mesh and initially detected joint edges
output: refined discontinuity joint edges
1. for each vertex v
M (v)=the number of joint edges connecting v;
2. for each end joint edge e = vovy
if (M(vo)==1 && M(v1) ==1) delete ¢;
if (M(vo)==1&& M(v1)==2)
find joint edge x = viva;
if (M(va) == 1&&|0c| < 07&&|0| < O7)
delete edges e and x;
if (M(v2)>1)
compute angle ¢ between e and x;
if (¢ > ¢r) delete joint edge e;
end if
end if
if (M(vo)==1&&M(v1) > 2)
find closest attached joint edge x at vi;
compute unsigned angle ¢ between e and x;
if (¢ > ¢r) delete joint edge e;
end if
3. for each end joint edge e, with end vertex v
find straight extended edge e = v, vy;
if (M(vp) > 1) find extended joint edge ep;
compute angles ¢q, dp, Pe;
if (M(vy) == 1 && max{|¢al, 65|} < é1)
add e as a joint edge;
if (max{|ga|, min{|gy|, [éc[}} < 61
&&M(vp) > 1) add e as a joint edge;
end if
4. for every end joint edge e = vovi
if (M(v1) > 2) delete joint edge e;
i (M(v1) == 2)
find attached joint edge x = vivy;
if (M (vg) > 2) delete joint edges e and x;
end if

@ Springer
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Fig. 8 One edge length gap filling and short branch pruning

We note that in case 2, both edge e and edge x can be
deleted. Case 3 and case 4 imply that edge e turns rapidly
from other joint lines and the edge will be deleted as a one-
edge-length-branch.

The procedure for one-edge-length-gap filling is similar
to joint edge extension in Sect. 5.1. If the smooth extended
edge of a joint line is also connected to one or more other
joint edges, the extended edge can be a missed gap edge of
a smooth joint line or a missed joint edge from one joint
line to other joint lines. Let e = v,v, be the smooth
extended edge of e, at v,, and e, be the smooth extended
joint edge of e at vertex v,,; see Fig. 8a, b. We compute the
turning angle ¢, between e, and e, the turning angle ¢,
between e and e, or the angle ¢, between e and the crease
direction t, at e when v, is the joint vertex of two or more
joint edges. We add edge e as a new joint edge if one of the
following conditions holds:

1. Both edges e, and e, are end joint edges and angles ¢,
and ¢, are less than ¢r;

2. Edge e, is not an end joint edge but angles ¢, and
min{¢;, ¢.} are less than ¢r.

We prune the short branches that have at most two edges
as a third step for smooth joint line generation. Figure 8c
shows two short branches which should be pruned by the
smoothing procedure. The main steps for joint line
smoothing are given in Algorithm 3.

5.3 Selection of parameters

As a triangular mesh can be the approximation or the tes-
sellation of various (piecewise) smooth surfaces, the
detection of joint lines on a surface mesh is not determined
without proper assumptions. We detect the C' and C>
discontinuity joint edges on a triangular mesh based on
selection or computation of several parameters. The
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parameters can be grouped into three categories: fixed
parameters, user chosen parameters and adaptively com-
puted parameters for meshes or mesh edges.

The fixed parameters include:

&o: the threshold for characterizing whether two lines or
vectors are parallel. In our experiments we choose
g = 0.001.

¢g: the threshold used for characterizing the smoothness
of crease directions at mesh edges or at mesh vertices.
We choose ¢ = ¢ in our experiments.

0,, 0;, 61: If the dihedral angle 0, of an edge satisfies
16,] < 0, the edge is probably lying on a local flat region.
If 16, > 0, the edge is regarded as a C' discontinuity
joint edge. If 16| < Oy, it implies that the edge is lying
on a local smooth surface region. We choose 0; =
0.01,0, =7 and 0 = 5.

¢ this parameter is used as a threshold for character-
izing the smoothness of a polygon on a surface mesh. In
our experiments we choose ¢ = 5.

The only parameter user can choose interactively is the
threshold iy for C' or C? discontinuity measures. Based on
the properties of the C' or C* discontinuity measures, the
threshold pr can be selected in the interval (1,2]. Many
more C' or C? discontinuity joint edges will be detected
using a lower threshold and only salient discontinuity joint
edges can be detected using a larger one. A default
threshold pr = 1.5 can be used for automatic joint line
detection which gives satisfying results for most examples.

The adaptively computed parameters include:

Tm: the tolerance for construction of fitting curves and
surfaces.

&1: the local shape parameter characterizing whether an
edge is lying on the boundary curve of a flat surface or
the C' discontinuity joint line between two curved
surfaces.

& the local shape parameter characterizing whether an
edge is lying on the C? discontinuity joint line between
two surfaces.

Exact evaluation of these three parameters depends on
the analytical representation of a piecewise smooth surface.
By Egs. (8, 19) and (20), we compute values for these
parameters heuristically for triangle meshes.

6 Examples and comparisons

In this section we present several interesting examples to
illustrate the results of C' or C? discontinuity joint edge
detection. We have tested CAD-like meshes, surface meshes
with re-triangulations as well as triangle meshes recon-
structed from real data. To distinguish C? discontinuity edges
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Fig. 9 C' and C? discontinuity
joint line detection on a top
shape model: a the triangular
mesh; b the c? discontinuity
measure; ¢ the C' and C?
discontinuity joint lines detected
by the proposed algorithm (we
choose (it = 1.5) in this and
following examples); d the C'
and C? discontinuity joint edges
detected by Jiao’s algorithm [8]

from C' discontinuity ones, we detect C' discontinuity edges
using C' discontinuity measures first and detect C* discon-
tinuity edges by computing C? discontinuity measures for the
rest edges.

We have compared the results by our proposed C'
discontinuity measure with the results by edge strength
measure s given in [17] or by the sharpness indicator pre-
sented in [2]. The methods of edge strength measure and the
sharpness indicator are either popular or among the latest
ones for C' discontinuities detection. The comparisons of
C? discontinuity edge detection by our proposed algorithm
and by a recent method stated in [8] are also given.

First, we detect C' or C? discontinuity joint edges on a
top shape model. The mesh illustrated in Fig. 9a is
obtained by triangulating a piecewise smooth surface
consisting of two spheres parts, three cylinders, one cone
part and two blending surface patches, and there are totally
1,735 vertices and 3,466 triangles within the mesh. Except
the joint lines between the cone and a small sphere patch or
the boundary lines of two blending surfaces which are C>
discontinuous joint lines, all other joint lines are C' dis-
continuous. Though the sizes and shapes of triangles on the
mesh differ greatly, all C' and C* discontinuity joint lines
have been detected correctly by our proposed procedure.
Figure 9b, c illustrate the plot of discontinuity measures
and the detected joint lines. According to Jiao and
Bayyana’s algorithm [8], only those C* discontinuity joint
edges lying on planes may be detected. Several C? dis-
continuity joint lines have been missed by this method; see
Fig. 9d.

Second, we compare the results of joint line detection on
a casting model originally shown in Fig. la. Figure 1c, d
show that the discontinuities across mesh edges can be
measured properly by our proposed measures and almost
all C' or C* discontinuity joint edges have been detected
using the default threshold by our proposed algorithm.
However, the joint lines cannot be detected satisfactorily
by several existing methods. Figure 10a illustrates the
detection result by Jiao and Bayyana’s algorithm [8]. From
the figure we can see that C' discontinuity joint edges have

(b)

been detected correctly but C* discontinuity joint lines
lying on non flat regions have been missed. When only C'
discontinuity joint lines should be detected, both the
sharpness indicator and the edge strength measure have
introduced false detected joint edges in high curvature
regions. See the red lines on the thin blending surfaces on
top part of the model in Fig. 10b, c.

Third, we detect joint edges on a tessellated mesh that
have noise. Figure 11a shows a tessellated mesh from a
circulant equipment which is composed of several cylin-
ders, cones and many parts of spheres. After the tessella-
tion, a surface mesh consisting of 89,016 vertices and
178,040 triangles is obtained. Though the triangles have
similar sizes, the vertices and edges in high curvature
regions (like the thin cylinders) may still suffer noise.
Since C? discontinuities are more sensitive to noise, we
only detect C' discontinuities for this example. From
Fig. 11b, ¢ we can see that most C' discontinuity joint lines
in either high curvature regions or low curvature regions
have been detected successfully by our proposed C'
discontinuity measure. As a comparison, the sharpness
indicator and the edge strength measure have missed many
salient C' discontinuity joint edges in low curvature
regions and introduced false detected C' discontinuity joint
edges in high curvature regions due to data noise. See the
results in Fig. 11d, e.

Fourth, we detect C' discontinuity edges on a
reconstructed cap model that has 7,513 vertices and 14,880
triangles; see Fig. 12a. The C' discontinuity measures are
computed and plotted in Fig. 12b. From the figure we can
see clearly that edges across which the surface normals
change rapidly have higher values of C' discontinuity
measures than other edges on smooth surface regions. The
C' discontinuity joint lines on the surface mesh can be
detected using the default discontinuity threshold by the
proposed joint line detection algorithm; see the results in
Fig. 12c. Figure 12d, e are the results detected by sharp-
ness indicator or the edge strength measure, respectively.
From these two figures we can see that both sharpness
indicator and edge strength measure may introduce false
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Fig. 10 Joint line detection on
a casting model: a the C' and C?
discontinuities detected by
Jiao’s algorithm; b the C'
discontinuities detected using
the sharpness indicator; ¢ the C*
discontinuities detected by the
edge strength measure (s > 0.1)

Fig. 11 C' discontinuity joint line detection on a circulant equipment
model: a the triangular mesh; b the plot of C' discontinuity measure;
¢ the C' discontinuity joint lines detected by the proposed algorithm;

(a) (b)

Fig. 12 C' discontinuity joint line detection on a cap model: a the
triangular mesh; b the plot of C' discontinuity measure; ¢ the C'
discontinuity joint lines detected by the proposed algorithm; d the C'

C' discontinuity joint edges in smooth but high curvature
regions. On another hand, some C' discontinuity joint
edges shared by triangles with large or different sizes may
be missed by these two measures.

Fifth, we detect C' discontinuity joint edges and C>
discontinuity joint edges on the Fandisk model. Figure 13a
shows a surface mesh consisting of 6,475 vertices and
12,946 triangles. We detect C' discontinuity joint edges
and C? discontinuity joint edges consequently. Because C'
discontinuity joint lines are also C? discontinuous, the C'
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d the C' discontinuities detected using the sharpness indicator; e the
C' discontinuities detected by the edge strength measure (s > 0.05)

(d) (e)

discontinuities detected using the sharpness indicator; e the C'
discontinuities detected by the edge strength measure (s > 0.05)

discontinuity joint lines are set a high value of C* dis-
continuity measure in Fig. 13b. Figure 13c illustrates the
detected joint lines by the proposed method. As a com-
parison, the result by Jiao and Bayyana’s algorithm [8] for
C? discontinuity line detection was given in Fig. 13d. From
the figure we can see that an evident C* discontinuity joint
line on the surface has been missed by their method. We
note that even the model contains low noise, the sharpness
indicator and the edge strength measure still introduce false
C' discontinuity joint edges in high curvature regions or
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Fig. 13 C' and C? discontinuity joint line detection on the Fandisk algorithm; e the C' discontinuities detected using the sharpness
model: a the triangular mesh; b the C? discontinuity measure; ¢ the C" indicator; f the C' discontinuities detected by the edge strength
and C? discontinuity joint lines detected by the proposed algorithm; measure (s > 0.05)

d the C' and C* discontinuity joint edges detected by Jiao’s

(d)

Fig. 14 C' and C? discontinuity joint line detection: a, d the triangular meshes; b, e the C' and C? discontinuity joint lines detected by the
proposed algorithm; ¢, f the C' and C* discontinuity joint edges detected by Jiao’s algorithm
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Table 2 The numbers and the mean discontinuity measures of the detected joint edges by the proposed method

Model C! discontinuity edges C? discontinuity edges Other edges

Number Mean p! Number Mean p2 Number Mean p2
Casting 848 1.992954 874 1.844504 13,614 1.046087
Top shape 278 1.960233 221 1.886938 4,700 1.060526
Fandisk 749 1.988232 201 1.896420 18,469 1.028607
Hub 663 1.984036 30 1.824270 1,305 1.003227
Part with holes 360 1.993069 554 1.832866 4,672 1.044054
Circulant equipment 3,099 1.797989 NA NA 263,961 1.104138
Cap shape 1,204 1.890145 NA NA 21,188 1.127248

Table 3 Bounds of absolute dihedral angles of the detected C' or C? discontinuity joint edges by the proposed method

Model C! discontinuity edges C? discontinuity edges Other edges

Casting (0.400215, 1.612509) (0.015252, 0.812436) (0, 0.979705)
Top shape (0.499729, 1.570796) (0, 0.177997) (0, 0.308813)
Fandisk (0.041001, 1.613320) (0.014753, 0.200622) (0, 0.395902)
Hub (0.967451, 2.174142) (0.075420, 0.087268) (0, 0.174784)

Part with holes (0.959965, 1.570796)
(0.018235, 2.731584)

(0.213996, 3.141592)

Circulant equipment
Cap shape

(0.006825, 0.087772) (0, 0.176250)
NA (0, 2.508039)
NA (0, 3.069177)

miss true C' discontinuity joint edges in low curvature
regions. See Fig. 13e, f for the results by the two measures,
respectively.

Finally, we present two more examples to show C' and
C? discontinuity joint line detection by the proposed
method. The hub shape model in Fig. 14a has 658 vertices
and 1,332 triangles and the mechanical part with three
holes in Fig. 14d has 1,848 vertices and 3,704 triangles.
From the two figures we can see that both meshes have
many long and thin triangles. Though the C' discontinuity
joint edges in these two models have large values of
dihedral angles, but the C* discontinuity joint edges cannot
be distinguished from other edges based on dihedral angles
easily. By computing the discontinuity measures for all
mesh edges, except for a few edges lying on low curvature
regions, most C> discontinuity joint edges have been
detected successfully by the proposed method; see
Fig. 14b, e for the detection results. Figure 14c, f show that
Jiao and Bayyana’s algorithm [8] has missed many C>
discontinuity joint lines.

The numbers and the mean discontinuity measures of C'
or C? discontinuity joint edges for all the examples by the
proposed method are given in Table 2. From the table we
can also see that the joint edges are distinguished clearly
from other edges lying on smooth surface regions by the
discontinuity measures. Table 3 gives the lower and upper
bounds of absolute dihedral angles of the C' discontinuity
edges, the C? discontinuity edges or the other edges.
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From this table we learn that the C' or C* discontinuity
joint edges cannot be detected correctly just by the dihedral
angles at edges for general meshes.

7 Conclusions and discussions

This paper has presented new definitions of C' and C*
discontinuity measures for edges on triangular meshes.
Detailed formulae have been given for the computation of
discontinuity measures using properly estimated discrete
curvatures and shape parameters. A heuristic but practical
algorithm has also been developed to detect smooth C' or
C? discontinuity joint lines on surface meshes. Compared
with other measures or algorithms for C' or C* disconti-
nuity detection on surface meshes, the proposed technique
has two main advantages. First, the proposed discontinuity
measures are scale independent and the joint lines in low or
high curvature regions can be detected in a same way.
Second, the proposed measures do not depend on mesh
triangulations much, C' or C? discontinuity joint lines on
surface meshes with even highly irregular or non-uniform
triangulations can be detected successfully.

As the joint line detection on a triangular mesh is an
undetermined problem, we have chosen parameters heu-
ristically for joint line detection on CAD-like meshes. It
may be possible to set parameters in some other way such
as statistics or optimization based methods for automatic
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detection of joint edges. At present, we detect joint lines
that are consisting of mesh edges directly. In the future, we
plan to compute discontinuity measures for mesh vertices
and detect joint lines that pass a set of selected vertices
approximately. The vertex based scheme is promising for
approximate joint line detection for even wider types of
meshes.
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