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Abstract In this paper, we present formulae for evalu-

ating differential quantities at vertices of triangular meshes

that may approximate potential piecewise smooth surfaces

with discontinuous normals or discontinuous curvatures at

the joint lines. We also define the C1 and C2 discontinuity

measures for surface meshes using changing rates of one-

sided curvatures or changing rates of curvatures across

mesh edges. The curvatures are computed discretely as of

local interpolating surfaces that lie within a tolerance to the

mesh. Together with proper estimation of local shape

parameters, the obtained discontinuity measures own

properties like sensitivity to salient joint lines and being

scale invariant. A simple algorithm is finally developed for

detection of C1 or C2 discontinuity joint lines on triangular

meshes with even highly non-uniform triangulations. Sev-

eral examples are provided to demonstrate the effective-

ness of the proposed method.

Keywords Discrete differential geometry � Triangle

meshes � Discontinuity measures � Joint line detection

1 Introduction

Triangular meshes can be used to represent surfaces with

complex shapes, they can be rendered efficiently and also

they can be easily transferred among various CAD systems.

A triangular mesh can be regarded as the tessellation or the

approximation of an unknown piecewise smooth surface

that may have C1 or C2 discontinuity joint lines [6]. A mesh

edge is said to be C1 or C2 discontinuous if it approximates

a C1 or C2 discontinuity joint line of the surface. The

detection of normal or curvature discontinuity joint lines is

useful for further shape processing of triangular meshes

like patch segmentation [1, 12, 18], remeshing [25, 28],

feature sensitive hole filling [27], etc.

In contrast to edge detection in computer vision [4],

identification of C1 or C2 discontinuity joint lines for

meshes is more challenging. Detection of C1 or C2 dis-

continuity joint edges depends heavily on proper estima-

tion of normal vectors and curvatures on triangular meshes

that may have highly irregular or non-uniform triangula-

tions. Even discrete normals and curvatures have been

properly estimated, naive comparison of discrete normals

or curvatures does not guarantee the correct detection of all

C1 or C2 discontinuities. It may miss true discontinuities in

low curvature regions but introduce false ones in high

curvature regions.

For a mesh with unknown C1 or C2 discontinuities, we

assume that there is a unique normal vector at every edge

and normal curvatures at mesh edges or at their opposite

vertices are estimated as of local interpolating surfaces in a

small tolerance to the mesh. The C1 or C2 discontinuity of a

mesh edge can be measured by the changing rates of nor-

mal curvatures across the edge with respect to the normal

curvatures at two opposite vertices or the changing rate of

normal curvatures across the edge. Besides the fitting
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tolerance, we also estimate local shape parameters like

crease directions at mesh edges for robust computation of

discontinuity measures at edges. The obtained discontinu-

ity measures have the properties like sensitivity to true joint

lines and being scale invariant, etc. Then, the C1 or C2

discontinuity joint edges can be detected easily based on a

simple threshold. Moreover, the initially detected joint

edges can be smoothed further based on a few collective

properties or assumptions of the joint lines.

Figure 1 illustrates the main steps of joint line detection

on a triangular mesh. For a given surface mesh we first

compute differential quantities and shape parameters.

Figure 1b shows the crease directions across the mesh

edges. Afterwards, we compute C1 or C2 discontinuity

measures for every edge; see Fig. 1c for the plot of C2

discontinuity measures. Based on the discontinuity mea-

sures we can detect joint lines; see Fig. 1d for the result by

the proposed approach.

The organization of the paper is as follows. Section 2

introduces some related work. Notations and formulae for

some basic differential quantities will be given in Sect. 3.

The C1 or C2 discontinuity measures for mesh edges are

evaluated in Sect. 4. An algorithm for C1 or C2 disconti-

nuity joint line detection on triangular meshes is presented

in Sect. 5. Section 6 provides our experimental results.

Section 7 concludes the paper.

2 Related work

Usually, an edge with a dihedral angle greater than a given

threshold is considered a sharp edge. Hubeli et al. [7]

proposed to compute angles between normals of surface

patches that are fitted to selected neighborhoods of mesh

edges. Vidal et al. [23] proposed to compute angles

between one-sided tangent planes. Jiao and Heath [9]

proposed to detect joint edges based on the dihedral angles

across edges together with the smoothness assumption of

potential feature lines. Baker [3] and Jiao and Bayyana [8]

improved the technique further by using more collective

properties of feature lines and local geometric quantities of

the mesh.

Inspired by the technique of tensor voting [19, 20], Page

et al. [16] proposed to detect creases on surface meshes by

a normal voting method. Shimizu et al. [17] defined edge

strengths for meshes based on eigen analysis of covariance

matrices of voted normals. Recently, Angelo and Stefano

[2] proposed to detect C1 discontinuity edges using a

sharpness indicator defined by local fitting of paraboloid to

mesh data. Similar to the edge strength measure, this

method may miss salient feature edges in low curvature

regions or introduce false detected edges in high curvature

regions. Kim et al. [10] proposed to classify vertices on a

triangular mesh into corners, edges or smooth surface

regions by the tensor voting theory, too, and they in fact

segment a surface into various feature parts.

In contrast to C1 discontinuity detection, detection of

joint lines across which the surface curvatures are not

continuous is more challenging. Yamakawa and Shimada

[28] proposed a polygon crawling technique to detect C2

discontinuity edges on cylinder like surfaces. Recently,

Jiao and Bayyana [8] proposed a method to detect C2

discontinuity edges based on a set of observed rules and a

heuristic algorithm. By this method, only edges lying on

boundaries of flat regions may be detected.

Joint lines can also be obtained when a surface has been

segmented into individual patches. Demarsin et al. [5]

proposed to detect closed sharp features on point set sur-

faces using normal estimation and graph theory. Sunil and

Pande [18] proposed to segment surface meshes into fea-

ture patches using region growing together with identifi-

cation of salient edges. Várady et al. [22] proposed to

recover primary surface patches in scan reconstructed

surfaces and then extract feature lines as the surface

boundaries. Though surface segmentation is itself an

important research area in CAD and graphics [1, 26], but it

is too costly to segment surfaces when only joint lines

should be detected.

Fig. 1 Joint line detection on a CAD mesh: a the input triangular

mesh; b the principal directions along edges; c the plot of C2

discontinuity measure (the discontinuity measure of a vertex is

defined as the maximum value of discontinuity measures of all

abutting edges); d the detected C1 (red) and C2 (cyan) discontinuity

joint edges (color figure online)
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Our proposed algorithm depends on proper estimation of

normal vectors or curvatures at mesh vertices. Though

these two topics have been studied extensively in the lit-

erature [13, 14, 15, 20, 21], but all these methods assume

that a triangular mesh is approximating a smooth surface

and there is a unique normal vector or curvature tensor at a

vertex. If a vertex lies on a joint line, these methods may

not work. We will propose methods to compute normal

vectors and normal curvatures in selected directions even

when a vertex is a joint point of several surface patches.

3 Notations and basic geometric quantities

This section presents formulae for computing several basic

geometric quantities for surface meshes. Before that,

notations for variables used in the paper are given in

Table 1.

3.1 Normals and angles at edges

Assume p0p1 is an edge shared by two triangles f0 and f1 on

the left or the right side, respectively. Let n0 and n1 be the

unit normal vectors of the two triangles, the unit normal

vector at the edge is given by

ne ¼
n0 þ n1

kn0 þ n1k
: ð1Þ

The signed dihedral angle across edge p0p1 can be

computed as the angle between vectors n0 and n1. The

angle is positive when the surface is local convex and the

angle is negative otherwise. We have

he ¼
arccosðn0 � n1Þ ; if ðn0 � n1Þ � ðp1 � p0Þ[ 0

� arccosðn0 � n1Þ ; otherwise

�

ð2Þ

We note that all angles and angle thresholds in this

paper are in radian.

3.2 Normal curvatures at vertices or across edges

Assume q is a vertex neighboring to edge p0p1 on a triangle

mesh; see Fig. 2a. To estimate normal curvature of the

mesh at q in a direction perpendicular to edge p0p1 we

have to estimate normal vector at the vertex in a plane

perpendicular to the edge. Instead of computing the inter-

section line between the plane and the mesh, we compute

the normal vector at vertex q as a weighted sum of normal

vectors of neighboring triangles. To define the normal

vector properly when the vertex q is lying on a joint line

between two faces, the coefficient for a facet normal ni

should be proportional to the vertex angle ai of the ith

neighbor triangle. The influence of ni should be decreased

further when ni and edge p0p1 are far from being orthog-

onal. Let ui be the angle between line p0p1 and the plane

through the ith neighbor triangle, we compute the normal

vector that is approximately perpendicular to edge p0p1 as

�ne
q ¼

P
i2NðqÞ ai cos2k uini

k
P

i2NðqÞ ai cos2k uinik
; ð3Þ

where N(q) means the index set of neighboring triangles at

vertex q and k is an integer that controls the coefficients.

Let ue ¼ p1�p0

kp1�p0k
, the angle ui can be computed by

cos2 ui ¼ 1� ðue � niÞ2; see Fig. 2b.

If k equals zero, �ne
q reduces to an angle-weighted normal

vector nq, which can be used as the normal vector of a

potential smooth surface at vertex q. With increased value

of k, the weights of those neighboring triangles which are

approximately perpendicular to edge p0p1 will decrease

drastically. In our experiments we choose k = 10 that

can give reasonable estimation of normal curvatures.

Table 1 Notations for the variables used in the paper

e = p0p1 A mesh edge and the end vertices of the edge

ue The unit direction of the edge e

ne(nq) Unit normal vector at an edge (vertex)

nq
e Unit normal at vertex q in a plane perpendicular to edge e

he The signed dihedral angle at an edge

kqb Normal curvature at q in direction b - q

Hqb The height of the arc that interpolates points q, b and

normal nq

Tq The tensor matrix at a vertex q

tq Unit crease direction at a vertex

te Unit crease direction at an edge

kl
b(kl

e) The beginning (end) curvature of a spiral to the left side of

edge e

kr
b(kr

e) The beginning (end) curvature of a spiral to the right side

of edge e

kl
m(kr

m) The middle curvature of a spiral to the left (right) side of

edge e

le
-(le

?) The curvature changing rate at the left (right) side of edge

e

le
c The curvature changing rate across an edge

le
1(le

2) The C1 (C2) discontinuity measure of edge e

/e The angle between an edge e and the crease direction at

the edge

/n The angle between two planes spanned by vectors p0p1

and n0 or by vectors p0p1 and n1

qe Local roughness of edge e

lm Mean edge length of the mesh

kave The average of curvatures across a set of selected edges of

the mesh

sm The tolerance bound for a mesh which approximates a

piecewise smooth surface
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The unit normal vector at vertex q in a plane perpendicular

to edge p0p1 is obtained as

ne
q ¼

�ne
q � ð�ne

q � ueÞue

k�ne
q � ð�ne

q � ueÞuek
: ð4Þ

Assume b is the perpendicular foot of vertex q onto the

edge p0p1. Following the method in [15, 20], the normal

curvature at vertex q in direction qb can be estimated by an

interpolating circular arc. It yields

kqb ¼
2ðq� bÞ � ne

q

kq� bk2
: ð5Þ

Similarly, the normal curvature across edge p0p1 in a

direction bq can be computed by kbq ¼ 2ðb�qÞ�ne

kb�qk2 .

Besides estimation of normal curvatures, we can also

estimate the fitting error from a potential interpolating

surface to the mesh by computing the heights of interpo-

lating arcs. Let / be the unsigned acute angle between

vector nq and vector q - b, we have cos / ¼ jn
e
q�ðq�bÞj
kq�bk and

sin / ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 /

p
. The height Hqb from the arc to the

chord q - b can be computed by

Hqb ¼
kq� bk
2 cos /

ð1� sin /Þ: ð6Þ

Since Hqb is determined by points q, b and normal vector

nq
e, we denote further Hqb = H(q, nq

e, b).

3.3 Estimating the fitting tolerance

Based on the assumption that a triangular mesh is an

approximation of a piecewise smooth surface, we should

then estimate the bound of fitting error for the mesh.

Because an edge with a low absolute dihedral angle may lie

on a flat region and an edge with a large dihedral angle is

probably a feature edge, we then estimate local heights for

mesh edges of which the dihedral angles belong to a

properly chosen interval [hl, hL]. Assume p0p1 is an edge

with two opposite vertices q0 and q1 on two sharing

triangles, the local height at the edge can be computed as

the distance between lines p0p1 and q0q1. We have

he ¼
kðp0 � q0Þ � ððp1 � p0Þ � ðq1 � q0ÞÞk

kðp1 � p0Þ � ðq1 � q0Þk
: ð7Þ

The fitting tolerance for a triangular mesh is given by

sm ¼
3

n

X
hl � jhej � hL

he; ð8Þ

where n is the total number of edges that satisfy

hl B |he| B hL.

4 C1 and C2 discontinuity measures

In this section we propose to measure C1 or C2 disconti-

nuities across mesh edges by the changing rates of normal

curvatures on either side or across the edges. A robust

algorithm for shape aware discontinuity measure compu-

tation will also be given.

4.1 Curvature based discontinuity measures

4.1.1 Choosing opposite vertices for an edge

Basically, the opposite vertices for an edge p0p1 can be

chosen as vertices q0 and q1 on two sharing triangles

Dp0p1q0 and Dp0p1q1, respectively. Though this choice

works well for most examples, it may still introduce false

detected discontinuity edges when some triangles or small

local flat regions have been over tessellated into more tri-

angles on the same planes. To choose proper neighbor

vertices for an edge p0p1 which may have over tessellated

neighbor triangles, we check local shape of the mesh near

vertex q0 or q1 and extend the vertices along some edges if

local over tessellation has been detected.

We check vertex q0 on triangle Dp0p1q0 as follows,

vertex q1 on triangle Dp0p1q1 can be checked in the same

way. Without loss of generality, we assume the lengths

of two edges abutting vertex q0 satisfy kp0 � q0k\
kp1 � q0k; see Fig. 3. Let hp0q0

and hp1q0
be the dihedral

angles at the two edges, respectively. Assume qa is a

1-ring neighbor vertex to q0 which is computed by

qa ¼ arg minq2N1ðq0Þ;q 6¼p0;p1
fjhq0q � hp0q0

jg. Opposite vertex

q0 will be extended to a new position qa if the following

three conditions hold simultaneously.

1. The dihedral angles satisfy inequalities jhp0q0
j[ e0 and

jhp1q0
j\e0;

2. The acute angle / between vectors p0q0 and p1q0 is

large enough such as / [ p
3

;

3. The lines p0q0 and q0qa are nearly parallel, but the

normal vectors nq0
and nqa

do not. Practically, the

(b)(a)

Fig. 2 Computing vertex normals for normal curvature estimation
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vectors should satisfy
qa�q0

kqa�q0k �
q0�p0

kq0�p0k[ 1� e0 and

nq0
� nqa

\1� e0.

In the following we will still denote the opposite verti-

ces as q0 or q1 even they are the extended ones.

4.1.2 Robust and monotone curvatures

Assume that p0p1 is an arbitrary edge on a triangular mesh

with two opposite vertices q0, q1 on two sides of the edge. Let

b0 and b1 be the perpendicular feet of q0 and q1 onto the edge,

respectively; see Fig. 4. We will define the discontinuity

measures at edge p0p1 by computing normal curvatures at

q0, q1, b0 and b1, all in a direction perpendicular to the edge.

Let ne, ne
q0

and ne
q1

be the normal vectors at the edge p0p1

or at two opposite vertices, respectively. The normal cur-

vature across the edge or at their opposite vertices can be

computed by Eq. (5). However, if the triangle mesh is

highly irregular or have non-uniform triangulations, the

computed curvatures may suffer even minor data noise

when the chord kb0 � q0k is very short. We then modify

Eq. (5) for robust curvature estimation using a filtered

chord length. Let lb = 0.1lm be a lower bound of

chord lengths, we replace kb0 � q0k in Eq. (5) by

d0 ¼ maxfkq0 � b0k; lbg. By this refinement, too small

chord length will be increased, and the normal curvatures

at b0, q0 are then computed by

kb0
¼ �2�d0 � ne

d0

; kq0
¼

2�d0 � ne
q0

d0

; ð9Þ

where �d0 ¼ q0�b0

kq0�b0k. Similarly, the normal curvatures at b1

and q1 can be obtained as

kb1
¼ �2�d1 � ne

d1

; kq1
¼

2�d1 � ne
q1

d1

; ð10Þ

where d1 ¼ maxfkq1 � b1k; lbg and �d1 ¼ q1�b1

kq1�b1k:
Motivated by curve completion using spiral curves [11],

we measure curvature changing rate at one side of an edge

by assuming that the discrete curvatures are sampled from

a spiral curve which also lies in a tolerance to the mesh.

When the points q0, b0 and normal vectors ne
q0

, ne all lie in

a plane perpendicular to edge p0p1, there exists a spiral that

interpolates the boundary data in the plane [24]. Moreover,

the interpolating spiral curve also lies in a region bounded

by two circular arcs that interpolates two end points and

either of the end normals; see Fig. 5a.

If Hl: H(b0, ne, q0) \ sm, we regard the height of the

interpolating spiral to the left side of edge p0p1 lying in the

tolerance and choose kb0
and kq0

as the sampled curvatures

of a spiral curve. If Hl [ sm, the tolerance constrained

interpolating curve should have a local minimum curvature

value and the spiral segment can be a part of the interpo-

lating curve; see Fig. 5b. We re-estimate end curvatures of

a spiral segment when the height Hl or the dihedral angle at

the edge is a large value. The discrete curvatures of a spiral

segment at the left side of edge p0p1 are chosen as follows

kb
l ¼ kb0

; ke
l ¼ kq0

if ðHl� smÞandðjhej\hLÞ
kb

l ¼ �2�d0�ne

lb
; ke

l ¼ 0 otherwise

(
ð11Þ

We modify the end curvatures as of a local spiral

segment when the height of an osculating arc exceeds the

tolerance by experiment. Similarly, the normal curvatures

at the right side of edge p0p1 are obtained as

kb
r ¼ kb1

; ke
r ¼ kq1

if ðHr� smÞandðjhej\hLÞ
kb

r ¼ �2�d1�ne

lb
; ke

r ¼ 0 otherwise

(
ð12Þ

4.1.3 Defining the discontinuity measures

Now we have spiral based sampling curvatures kl
b and kl

e at

the left side of edge p0p1 and spiral based sampling cur-

vatures kr
b and kr

e at the right. Edge p0p1 is a C1 disconti-

nuity joint edge if inequalities kl
b � kl

e and kr
b � kr

e hold. If

either of the mentioned inequalities holds or the two cur-

vatures kl
b and kr

b differ greatly, the edge is probably a C2

discontinuity joint edge.

Fig. 3 Choosing opposite vertices for a mesh edge

Fig. 4 Discontinuity measure computation for a mesh edge
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Instead of using curvature differences, we measure

changing rates of curvatures using ratios of curvatures.

The curvature ratios are scale invariant and can be used

for detection of joint edges on high curvature regions and

low curvature regions as well. The definition of curvature

ratios requires that each pair of curvatures have a same

sign. To achieve such a goal, we sample a midpoint

curvature of the interpolating spiral at the left side of edge

p0p1 as follows

km
l ¼

1
2
ðkb

l þ ke
l Þ if ðkb

l ke
l [ 0Þ

sgnðkb
l
Þ

2
maxfjkb

l j; jke
l jg otherwise

(
ð13Þ

where the function sgn() equals 1, -1 or 0 depending on

the sign of a real number. The new sampled curvature of

the right interpolating curve is given by

km
r ¼

1
2
ðkb

r þ ke
r Þ if ðkb

r ke
r [ 0Þ

sgnðkb
r Þ

2
max

jkb
r j
2
;
jke

r j
2

n o
otherwise

(
ð14Þ

Based on the sampled curvatures, we define the

curvature changing rates at either side or across the edge

p0p1 as follows

l�e ¼
jkb

l j þ e
jkm

l j þ e
; ð15Þ

lþe ¼
jkb

r j þ e
jkm

r j þ e
; ð16Þ

lc
e ¼

maxfjkb
l j; jkb

r jg þ jkb
l � kb

r j þ e

maxfjkb
l j; jkb

r jg þ e
; ð17Þ

where e [ 0 is a number that can keep the denominator

from being zero or reduce the influences of data noise.

From the definitions of the discontinuity measures in

Eqs. (15–17), we can easily draw several interesting

properties of the measures:

1. limke
l
!kb

l
l�e ¼ limke

r!kb
r
lþe ¼ limkb

l
!kb

r
lc

e ¼ 1:

2. If maxfjke
l j; jkb

l j; jkb
r j; jke

r jg � e, we have le
-&1, le

?&1

and le
c & 1.

3. If jkb
l j � e and |kl

b| � |kl
e|, we have le

- & 2.

4. If jkb
r j � e and |kr

b| � |kr
e|, we have le

? & 2.

5. If |kl
b| � |kr

b| or |kr
b| � |kl

b|, we have le
c & 2.

6. If kl
b = -kr

b and jkb
r j � e, we have le

c & 3.

Property 1 means that the one-sided discontinuity

measures for edges sampled from curvature continuous

surfaces are close to constant 1. From property 2 we know

that the influences of data noise can be reduced greatly by

choosing a proper value for the parameter e. Properties 3

and 4 show that rapid change of curvature on one side of a

joint edge can lead to a large discontinuity measure.

Properties 5 and 6 imply that large jump of curvatures

across an edge may lead to a large discontinuity measure.

For a given threshold lT, if le
- [ lT [ 1 and le

? [
lT [ 1, the normal curvatures at the either side of edge p0p1

are greater than the normal curvatures at their opposite ver-

tices, the edge is probably a C1 discontinuity joint edge. We

then measure the normal discontinuity across edges by

l1
e ¼ minflþe ; l�e g:

If one of measures le
-, le

? or le
c is much [1 (but still

\3), the discrete curvatures either jump suddenly across

the edge p0p1 or decrease rapidly at one side of the edge. In

this case, the edge is a C2 discontinuity joint edge. The

curvature discontinuity at an edge can be measured by

l2
e ¼ maxfl�e ; lþe ; lc

eg:

4.2 Crease directions across edges and shape aware

discontinuity measures

4.2.1 Crease directions across mesh edges

An efficient way to estimate crease directions at mesh

vertices is by the normal voting technique [16]. We modify

the technique a little for computing crease directions at

vertices first, and then compute crease directions across

mesh edges based on the piecewise smoothness assumption

of the surfaces.

Assume ni is the normal vector and ci is the center of a

triangle incident to vertex q, nq is the normal vector at

vertex q (Fig. 6a), the voted normal by ni is computed by

n0i ¼
ni � 2ðri � niÞri þ nq

kni � 2ðri � niÞri þ nqk
;

(a)

(b)

Fig. 5 Curvature computation using tolerance constrained curve

interpolation
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where ri ¼ q�ci

kq�cik. We have modified the previous approach

by adding nq in each voted normal. This modification can

increase the robustness of crease direction estimation even

when the vertex is lying on a joint line between two planes

with opposite normals.

By the voted normal vectors, the tensor matrix at vertex

q is obtained as Tq ¼
P

i2N1ðqÞ ain
0
in
0t
i , where t means the

transpose of a column vector. It is clear that the matrix

Tq is symmetric and it can be decomposed into

Tq = k1e1e1
t ? k2e2e2

t ? k3e3e3
t , where k1 C k2 C k3 are

the eigenvalues and e1, e2 and e3 are the corresponding

eigenvectors of the matrix.

The crease direction at vertex q is then chosen as

tq = e3. The crease direction across a mesh edge should be

parallel to the edge when the edge is lying on the C1 or C2

discontinuity joint line between two surfaces. For a trian-

gular mesh with no prior knowledge of joint lines, we set

te = ue for an edge p0p1 if it is a potential C1 or C2 dis-

continuity joint edge judged by the following two simple

rules:

1. If H(b0, ne, q0) [ sm or H(b1, ne, q1) [ sm, edge p0p1

is a potential sharp edge and it will be dealt as a C1 or

C2 discontinuity joint edge.

2. If edge p0p1 is a short edge of a thin triangle, especially,

when maxfkq0 � b0k; kq1 � b1kg[ 10kp1 � p0k, the

edge is probably lying on a joint line between two

different surfaces.

If none of above two conditions holds, we treat edge

p0p1 as lying on a local smooth region (Fig. 6b). Assume

that t0 and t1 are the two unit crease directions at two end

vertices of the edge p0p1, the crease direction for the edge

is chosen by default as t0e ¼ t0þt1

kt0þt1k when kt0 þ t1k[ kt0 �
t1k or t0e ¼ t0�t1

kt0�t1k otherwise. If an edge is connected to

other discontinuity joint edges at one of its end vertices, the

crease direction across the edge can be chosen as the crease

direction at the other end vertex. Assume that the acute

angles between vectors t0, t1 or t0e with direction p1- p0

are /0, /1 or /0e, respectively, the crease direction across

the edge is chosen as follows

te ¼
t0e; by default

t0; if /0\ minf/0e;/1;/Eg
t1; if /1\ minf/0e;/0;/Eg

8<
: ð18Þ

where /E is a threshold characterizing the smoothness of

discrete crease directions.

4.2.2 Shape aware discontinuity measures for mesh edges

We compute shape aware discontinuity measures for mesh

edges by choosing parameter e for Eqs. (15–17) based on

local shape analysis of the triangular mesh. In particular,

the parameter should have low values for edges lying on

boundaries of flat surfaces or joint lines between two

curved surfaces but have larger values for edges lying on

smooth surface regions.

The angle /e between edge direction ue and crease

direction te across edge p0p1 can be obtained by /e ¼
cos�1ðjte � uejÞ; see Fig. 7. From the assumption that the

direction of a C1 discontinuity joint edge is approximately

parallel to the crease direction, the smaller the angle /e the

smaller the value of e should be for one-sided discontinuity

measures le
- and le

?.

If a mesh is obtained by the tessellation of a piecewise

smooth surface with a small error bound, a C1 or C2 dis-

continuity joint edge p0p1 and the normal vectors n0, n1 at

the ends of the edge usually lie on a same plane exactly or

approximately. To measure the coplanarity of vectors n0,

n1 and ue, we compute the angle /n between two planes

(a) (b)

Fig. 6 Estimating the crease direction at a vertices or b across the

edge

Fig. 7 Computing local shape parameters for the discontinuity

measures of a mesh edge
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spanned by vectors p0p1 and n0 or by vectors p0p1

and n1, respectively. With simple computation, we have

/n ¼ cos�1ðj n0�ue

kn0�uek �
n1�ue

kn1�uekjÞ. If /n is a small value, we

should choose small value of e for the discontinuity mea-

sures defined by Eqs. (15–17).

To distinguish boundary edges of flat surfaces or the

joint edges between two curved surfaces from other

roughly tessellated edges in smooth regions, we compute

local roughness for mesh edges. Assume a0, b0, a1 and b1

are the angles between edge p0p1 and the principal direc-

tions at other four edges of two sharing triangles of edge

p0p1 (Fig. 7). We compute the weighted angles for the two

sharing triangles by

�h0 ¼ cos2 a0jhp0q0
j þ cos2 b0jhp1q0

j;
�h1 ¼ cos2 a1jhp0q1

j þ cos2 b1jhp1q1
j;

where hp0q0
, hp1q0

, hp0q1
and hp1q1

are the dihedral angles at

four edges of the two sharing triangles. We define the local

roughness of edge p0p1 as qe ¼ minf�h0;�h1g
jhp0p1

j . If one neighbor

triangle lies on a local flat region or the minor principal

directions at two edges (other than p0p1) are perpendicular

to edge p0p1, either �h0 or �h1 is a low value and the edge is

probably a boundary edge of a flat surface or the joint edge

between two curved surfaces. If qe is a large number, both
�h0 and �h1 are large enough as compared with hp0p1

, the edge

p0p1 is probably a rough tessellated edge in a smooth

surface region.

To overcome the influences of data noise on disconti-

nuity measures further, we compute the average curvature

across selected edges on low curved surface regions. For an

arbitrary edge p0p1 with two opposite vertices q0 and q1 on

two sharing triangles, b0 and b1 are the perpendicular feet

of q0 and q1 on the edge. The curvature across the edge

p0p1 is computed as ke ¼ 2 sinðhe

2
Þ=le, where le =

max{la,0.1lm} and la ¼ ðkq0 � b0k þ kq1 � b1kÞ=2. The

average curvature of selected edges is then computed as

kave ¼ 1
n

P
hl\jhej\hT

jkej, where hT is a threshold and n is

the total number of edges of which the dihedral angles

satisfy hl \ |he| \ hT.

Based on the above analysis, we choose two shape

parameters e1 and e2 heuristically as follows

e1 ¼ ðsin2 /e þ sin2 /nÞkmax þ ke; ð19Þ
e2 ¼ 2 sin /nkmax þ ke; ð20Þ

where kmax = max{|kl
b|, |kr

b|}, kmin = min{|kl
b|, |kr

b|} and

ke ¼ qekmin þ 0:05kave þ 10�5. We choose the shape

parameter e ¼ e1 for Eqs. (15) and (16) and choose e ¼ e2

for Eq. (17). The main steps for the computation of C1 or

C2 discontinuity measures for mesh edges are summarized

in Algorithm 1.

5 The discontinuity detection algorithm

Based on the computed discontinuity measures for mesh

edges, we present a practical algorithm for C1 or C2 dis-

continuity joint edge detection. An algorithm for smooth

joint line generation from initially detected joint edges will

also be presented.

5.1 Initial joint line detection

When the C1 or C2 discontinuity measures have been

obtained for all mesh edges, the initial joint edges can just

be selected using a given threshold lT. However, some

obvious joint edges may still be missed in this way because

of inaccurate discontinuity measures. We then refine the

chosen edges a little to reduce false detected edges and

pick missed joint edges as much as possible. The refine-

ment is based as the following rules:

1. No three discontinuity joint edges lie on a same

triangle;

2. Every C1 or C2 discontinuity joint edge lies on a

smooth joint line;

3. The edges with large dihedral angles are possibly C1 or

C2 discontinuity joint edges.

From rule 1 we can delete the edge with minimum

discontinuity measure when the discontinuity measures of

three edges of a triangle are all larger than the threshold lT.

By rule 2 or rule 3 we can pick some missed joint edges by

extending the current joint lines.

The extension of a joint line on a triangular mesh is

based on the choice of smooth connected edge at an end

vertex of the line. Assume v0 and v1 are the two vertices of
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an edge e on a triangle mesh, the smooth joint edge of edge

e at vertex v1 is chosen from the 1-ring neighborhood of

vertex v1. The other end vertex of the smooth connected

edge x to edge e is picked by

vs ¼ arg maxva2N1ðv1Þ
v1 � v0

kv1 � v0k
� va � v1

kva � v1k
�ha

� �
;

where �ha ¼ jhv1va
j þ p. When we obtain a smooth joint

edge x to a given edge e, we compute the turning angle /
between the projections of edges e and x onto the tangent

plane that passes through vertex v1 with normal vector nv1
.

For every end C1 or C2 discontinuity joint edge e we find

the smooth joint edge x and add the edge x as a disconti-

nuity joint edge if it satisfies one of the following

conditions:

1. The discontinuity measure lx [ l0T ¼ lT � 0:05 and

the edge x is connected to at most one other C1 or C2

discontinuity joint edge at the other end;

2. The dihedral angle of edge x satisfies |hx| [ hT, the

turning angle / \/T and the edge x is connected to at

most one other C1 or C2 discontinuity joint edge.

Condition 1 implies that some discontinuity joint edges

can be detected by using adaptive thresholds while by

condition 2 we may pick some discontinuity joint edges

that have large dihedral angles and small turning angles

with known discontinuity joint edges. We restrict the new

extended edge connecting to at most one another C1 or C2

discontinuity joint edge to avoid the generation of new

branch joint lines. See Algorithm 2 for the main steps for

initial joint line detection.

5.2 Smooth joint line generation

Based on the assumption that C1 or C2 discontinuity joint

lines of piecewise smooth surfaces are usually smooth

and there is no isolated or short branches on the joint

lines, we present an algorithm to detect smooth joint

lines from the initially detected joint edges. The algo-

rithm consists of three main steps: one-edge-length-

branch pruning, one-edge-length-gap filling and short

branch pruning.

We delete an end discontinuity joint edge if one of the

following conditions holds:

1. The end joint edge e is an isolated joint edge;

2. Two end joint edges e and x are connected and the

dihedral angles of the two edges are less than hT;

3. The end joint edge e is connected to a joint line with

turning angle /[ /T at the joint point;

4. The end joint edge e is connected to two or more other

joint lines and the smallest turning angle /[ /T at the

joint point.
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We note that in case 2, both edge e and edge x can be

deleted. Case 3 and case 4 imply that edge e turns rapidly

from other joint lines and the edge will be deleted as a one-

edge-length-branch.

The procedure for one-edge-length-gap filling is similar

to joint edge extension in Sect. 5.1. If the smooth extended

edge of a joint line is also connected to one or more other

joint edges, the extended edge can be a missed gap edge of

a smooth joint line or a missed joint edge from one joint

line to other joint lines. Let e = vavb be the smooth

extended edge of ea at va, and eb be the smooth extended

joint edge of e at vertex vb; see Fig. 8a, b. We compute the

turning angle /a between ea and e, the turning angle /b

between e and eb, or the angle /e between e and the crease

direction te at e when vb is the joint vertex of two or more

joint edges. We add edge e as a new joint edge if one of the

following conditions holds:

1. Both edges ea and eb are end joint edges and angles /a

and /b are less than /T;

2. Edge eb is not an end joint edge but angles /a and

min{/b, /e} are less than /T.

We prune the short branches that have at most two edges

as a third step for smooth joint line generation. Figure 8c

shows two short branches which should be pruned by the

smoothing procedure. The main steps for joint line

smoothing are given in Algorithm 3.

5.3 Selection of parameters

As a triangular mesh can be the approximation or the tes-

sellation of various (piecewise) smooth surfaces, the

detection of joint lines on a surface mesh is not determined

without proper assumptions. We detect the C1 and C2

discontinuity joint edges on a triangular mesh based on

selection or computation of several parameters. The

parameters can be grouped into three categories: fixed

parameters, user chosen parameters and adaptively com-

puted parameters for meshes or mesh edges.

The fixed parameters include:

e0: the threshold for characterizing whether two lines or

vectors are parallel. In our experiments we choose

e0 ¼ 0:001:

/E: the threshold used for characterizing the smoothness

of crease directions at mesh edges or at mesh vertices.

We choose /E ¼ p
6

in our experiments.

hl, hL, hT: If the dihedral angle he of an edge satisfies

|he| \ hl, the edge is probably lying on a local flat region.

If |he| [ hL, the edge is regarded as a C1 discontinuity

joint edge. If |he| \ hT, it implies that the edge is lying

on a local smooth surface region. We choose hl ¼
0:01; hL ¼ p

4
and hT ¼ p

10
:

/T: this parameter is used as a threshold for character-

izing the smoothness of a polygon on a surface mesh. In

our experiments we choose /T ¼ p
10
:

The only parameter user can choose interactively is the

threshold lT for C1 or C2 discontinuity measures. Based on

the properties of the C1 or C2 discontinuity measures, the

threshold lT can be selected in the interval (1,2]. Many

more C1 or C2 discontinuity joint edges will be detected

using a lower threshold and only salient discontinuity joint

edges can be detected using a larger one. A default

threshold lT = 1.5 can be used for automatic joint line

detection which gives satisfying results for most examples.

The adaptively computed parameters include:

sm: the tolerance for construction of fitting curves and

surfaces.

e1: the local shape parameter characterizing whether an

edge is lying on the boundary curve of a flat surface or

the C1 discontinuity joint line between two curved

surfaces.

e2: the local shape parameter characterizing whether an

edge is lying on the C2 discontinuity joint line between

two surfaces.

Exact evaluation of these three parameters depends on

the analytical representation of a piecewise smooth surface.

By Eqs. (8, 19) and (20), we compute values for these

parameters heuristically for triangle meshes.

6 Examples and comparisons

In this section we present several interesting examples to

illustrate the results of C1 or C2 discontinuity joint edge

detection. We have tested CAD-like meshes, surface meshes

with re-triangulations as well as triangle meshes recon-

structed from real data. To distinguish C2 discontinuity edges

(a)

(b) (c)

Fig. 8 One edge length gap filling and short branch pruning
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from C1 discontinuity ones, we detect C1 discontinuity edges

using C1 discontinuity measures first and detect C2 discon-

tinuity edges by computing C2 discontinuity measures for the

rest edges.

We have compared the results by our proposed C1

discontinuity measure with the results by edge strength

measure s given in [17] or by the sharpness indicator pre-

sented in [2]. The methods of edge strength measure and the

sharpness indicator are either popular or among the latest

ones for C1 discontinuities detection. The comparisons of

C2 discontinuity edge detection by our proposed algorithm

and by a recent method stated in [8] are also given.

First, we detect C1 or C2 discontinuity joint edges on a

top shape model. The mesh illustrated in Fig. 9a is

obtained by triangulating a piecewise smooth surface

consisting of two spheres parts, three cylinders, one cone

part and two blending surface patches, and there are totally

1,735 vertices and 3,466 triangles within the mesh. Except

the joint lines between the cone and a small sphere patch or

the boundary lines of two blending surfaces which are C2

discontinuous joint lines, all other joint lines are C1 dis-

continuous. Though the sizes and shapes of triangles on the

mesh differ greatly, all C1 and C2 discontinuity joint lines

have been detected correctly by our proposed procedure.

Figure 9b, c illustrate the plot of discontinuity measures

and the detected joint lines. According to Jiao and

Bayyana’s algorithm [8], only those C2 discontinuity joint

edges lying on planes may be detected. Several C2 dis-

continuity joint lines have been missed by this method; see

Fig. 9d.

Second, we compare the results of joint line detection on

a casting model originally shown in Fig. 1a. Figure 1c, d

show that the discontinuities across mesh edges can be

measured properly by our proposed measures and almost

all C1 or C2 discontinuity joint edges have been detected

using the default threshold by our proposed algorithm.

However, the joint lines cannot be detected satisfactorily

by several existing methods. Figure 10a illustrates the

detection result by Jiao and Bayyana’s algorithm [8]. From

the figure we can see that C1 discontinuity joint edges have

been detected correctly but C2 discontinuity joint lines

lying on non flat regions have been missed. When only C1

discontinuity joint lines should be detected, both the

sharpness indicator and the edge strength measure have

introduced false detected joint edges in high curvature

regions. See the red lines on the thin blending surfaces on

top part of the model in Fig. 10b, c.

Third, we detect joint edges on a tessellated mesh that

have noise. Figure 11a shows a tessellated mesh from a

circulant equipment which is composed of several cylin-

ders, cones and many parts of spheres. After the tessella-

tion, a surface mesh consisting of 89,016 vertices and

178,040 triangles is obtained. Though the triangles have

similar sizes, the vertices and edges in high curvature

regions (like the thin cylinders) may still suffer noise.

Since C2 discontinuities are more sensitive to noise, we

only detect C1 discontinuities for this example. From

Fig. 11b, c we can see that most C1 discontinuity joint lines

in either high curvature regions or low curvature regions

have been detected successfully by our proposed C1

discontinuity measure. As a comparison, the sharpness

indicator and the edge strength measure have missed many

salient C1 discontinuity joint edges in low curvature

regions and introduced false detected C1 discontinuity joint

edges in high curvature regions due to data noise. See the

results in Fig. 11d, e.

Fourth, we detect C1 discontinuity edges on a

reconstructed cap model that has 7,513 vertices and 14,880

triangles; see Fig. 12a. The C1 discontinuity measures are

computed and plotted in Fig. 12b. From the figure we can

see clearly that edges across which the surface normals

change rapidly have higher values of C1 discontinuity

measures than other edges on smooth surface regions. The

C1 discontinuity joint lines on the surface mesh can be

detected using the default discontinuity threshold by the

proposed joint line detection algorithm; see the results in

Fig. 12c. Figure 12d, e are the results detected by sharp-

ness indicator or the edge strength measure, respectively.

From these two figures we can see that both sharpness

indicator and edge strength measure may introduce false

Fig. 9 C1 and C2 discontinuity

joint line detection on a top

shape model: a the triangular

mesh; b the C2 discontinuity

measure; c the C1 and C2

discontinuity joint lines detected

by the proposed algorithm (we

choose (lT = 1.5) in this and

following examples); d the C1

and C2 discontinuity joint edges

detected by Jiao’s algorithm [8]
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C1 discontinuity joint edges in smooth but high curvature

regions. On another hand, some C1 discontinuity joint

edges shared by triangles with large or different sizes may

be missed by these two measures.

Fifth, we detect C1 discontinuity joint edges and C2

discontinuity joint edges on the Fandisk model. Figure 13a

shows a surface mesh consisting of 6,475 vertices and

12,946 triangles. We detect C1 discontinuity joint edges

and C2 discontinuity joint edges consequently. Because C1

discontinuity joint lines are also C2 discontinuous, the C1

discontinuity joint lines are set a high value of C2 dis-

continuity measure in Fig. 13b. Figure 13c illustrates the

detected joint lines by the proposed method. As a com-

parison, the result by Jiao and Bayyana’s algorithm [8] for

C2 discontinuity line detection was given in Fig. 13d. From

the figure we can see that an evident C2 discontinuity joint

line on the surface has been missed by their method. We

note that even the model contains low noise, the sharpness

indicator and the edge strength measure still introduce false

C1 discontinuity joint edges in high curvature regions or

Fig. 10 Joint line detection on

a casting model: a the C1 and C2

discontinuities detected by

Jiao’s algorithm; b the C1

discontinuities detected using

the sharpness indicator; c the C1

discontinuities detected by the

edge strength measure (s [ 0.1)

Fig. 11 C1 discontinuity joint line detection on a circulant equipment

model: a the triangular mesh; b the plot of C1 discontinuity measure;

c the C1 discontinuity joint lines detected by the proposed algorithm;

d the C1 discontinuities detected using the sharpness indicator; e the

C1 discontinuities detected by the edge strength measure (s [ 0.05)

Fig. 12 C1 discontinuity joint line detection on a cap model: a the

triangular mesh; b the plot of C1 discontinuity measure; c the C1

discontinuity joint lines detected by the proposed algorithm; d the C1

discontinuities detected using the sharpness indicator; e the C1

discontinuities detected by the edge strength measure (s [ 0.05)
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Fig. 13 C1 and C2 discontinuity joint line detection on the Fandisk

model: a the triangular mesh; b the C2 discontinuity measure; c the C1

and C2 discontinuity joint lines detected by the proposed algorithm;

d the C1 and C2 discontinuity joint edges detected by Jiao’s

algorithm; e the C1 discontinuities detected using the sharpness

indicator; f the C1 discontinuities detected by the edge strength

measure (s [ 0.05)

Fig. 14 C1 and C2 discontinuity joint line detection: a, d the triangular meshes; b, e the C1 and C2 discontinuity joint lines detected by the

proposed algorithm; c, f the C1 and C2 discontinuity joint edges detected by Jiao’s algorithm
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miss true C1 discontinuity joint edges in low curvature

regions. See Fig. 13e, f for the results by the two measures,

respectively.

Finally, we present two more examples to show C1 and

C2 discontinuity joint line detection by the proposed

method. The hub shape model in Fig. 14a has 658 vertices

and 1,332 triangles and the mechanical part with three

holes in Fig. 14d has 1,848 vertices and 3,704 triangles.

From the two figures we can see that both meshes have

many long and thin triangles. Though the C1 discontinuity

joint edges in these two models have large values of

dihedral angles, but the C2 discontinuity joint edges cannot

be distinguished from other edges based on dihedral angles

easily. By computing the discontinuity measures for all

mesh edges, except for a few edges lying on low curvature

regions, most C2 discontinuity joint edges have been

detected successfully by the proposed method; see

Fig. 14b, e for the detection results. Figure 14c, f show that

Jiao and Bayyana’s algorithm [8] has missed many C2

discontinuity joint lines.

The numbers and the mean discontinuity measures of C1

or C2 discontinuity joint edges for all the examples by the

proposed method are given in Table 2. From the table we

can also see that the joint edges are distinguished clearly

from other edges lying on smooth surface regions by the

discontinuity measures. Table 3 gives the lower and upper

bounds of absolute dihedral angles of the C1 discontinuity

edges, the C2 discontinuity edges or the other edges.

From this table we learn that the C1 or C2 discontinuity

joint edges cannot be detected correctly just by the dihedral

angles at edges for general meshes.

7 Conclusions and discussions

This paper has presented new definitions of C1 and C2

discontinuity measures for edges on triangular meshes.

Detailed formulae have been given for the computation of

discontinuity measures using properly estimated discrete

curvatures and shape parameters. A heuristic but practical

algorithm has also been developed to detect smooth C1 or

C2 discontinuity joint lines on surface meshes. Compared

with other measures or algorithms for C1 or C2 disconti-

nuity detection on surface meshes, the proposed technique

has two main advantages. First, the proposed discontinuity

measures are scale independent and the joint lines in low or

high curvature regions can be detected in a same way.

Second, the proposed measures do not depend on mesh

triangulations much, C1 or C2 discontinuity joint lines on

surface meshes with even highly irregular or non-uniform

triangulations can be detected successfully.

As the joint line detection on a triangular mesh is an

undetermined problem, we have chosen parameters heu-

ristically for joint line detection on CAD-like meshes. It

may be possible to set parameters in some other way such

as statistics or optimization based methods for automatic

Table 2 The numbers and the mean discontinuity measures of the detected joint edges by the proposed method

Model C1 discontinuity edges C2 discontinuity edges Other edges

Number Mean le
1 Number Mean le

2 Number Mean le
2

Casting 848 1.992954 874 1.844504 13,614 1.046087

Top shape 278 1.960233 221 1.886938 4,700 1.060526

Fandisk 749 1.988232 201 1.896420 18,469 1.028607

Hub 663 1.984036 30 1.824270 1,305 1.003227

Part with holes 360 1.993069 554 1.832866 4,672 1.044054

Circulant equipment 3,099 1.797989 NA NA 263,961 1.104138

Cap shape 1,204 1.890145 NA NA 21,188 1.127248

Table 3 Bounds of absolute dihedral angles of the detected C1 or C2 discontinuity joint edges by the proposed method

Model C1 discontinuity edges C2 discontinuity edges Other edges

Casting (0.400215, 1.612509) (0.015252, 0.812436) (0, 0.979705)

Top shape (0.499729, 1.570796) (0, 0.177997) (0, 0.308813)

Fandisk (0.041001, 1.613320) (0.014753, 0.200622) (0, 0.395902)

Hub (0.967451, 2.174142) (0.075420, 0.087268) (0, 0.174784)

Part with holes (0.959965, 1.570796) (0.006825, 0.087772) (0, 0.176250)

Circulant equipment (0.018235, 2.731584) NA (0, 2.508039)

Cap shape (0.213996, 3.141592) NA (0, 3.069177)
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detection of joint edges. At present, we detect joint lines

that are consisting of mesh edges directly. In the future, we

plan to compute discontinuity measures for mesh vertices

and detect joint lines that pass a set of selected vertices

approximately. The vertex based scheme is promising for

approximate joint line detection for even wider types of

meshes.
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