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a b s t r a c t

Pythagorean-hodograph (PH) curves have nice properties and have found important applications in
geometric modeling and CNC machining. While the unit normals of PH curves of degree n are generally
rational curves of degree n − 1, this paper investigates PH curves of arbitrary degrees but with only
quadratic rational unit normals when the curves are convex or with quartic rational unit normals
when the curves have single inflection points. PH curves with quadratic or quartic rational normals
have simple Gauss maps and hodographs of the curves are given by low degree tangent vector fields
together with simple real scaling functions. Practical algorithms for interpolation of point-normal pairs
or point-normal-curvature pairs together with unit normals at selected parameter coordinates or at
inflection points by the investigated PH curves without or with the constraint of arc lengths have
been given. The parameters for defining the interpolating PH curves are either obtained directly from
the input data or by solving simple linear systems. This method of PH curve interpolation has unique
solutions and the shapes of the interpolating PH curves are controlled well by the interpolated data.
Even though the interpolating curves may have cusps, the regularity of the PH curves can be checked
easily based on the signs of the real scaling functions within the hodographs.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Polynomial Pythagorean-hodograph (PH) curves were intro-
duced by Farouki and Sakkalis in 1990 [1]. PH curves have poly-
nomial arc lengths and rational offsets and they have found
important applications in geometric modeling and CNC machin-
ing [2]. Inspired by its original definition, PH curves have been
studied and generalized extensively in the past few decades.
Particularly, PH space curves, PH rational curves, PH spline curves
or PH curves in non-polynomial spaces, etc., have been devel-
oped [3–8]. More theories and techniques about PH curves and
their applications can be found in the book [9] or a recent survey
paper [10].

Though PH curves are generally represented as Bézier curves,
it needs more assumptions or constraints for defining PH curves.
Roughly, the methods for defining or constructing PH curves
can be classified into two categories. The first kind of methods
are by integrating given tangent vector fields or fitting known
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normal vector fields. If the norms of the tangent vector fields are
polynomials or the normal vectors are unit, the obtained curves or
surfaces are PH curves or Pythagorean normal surfaces [1,11,12].
Another kind of methods for constructing PH curves are by using
properly defined control polygons for Bézier curves [13–18]. The
control polygon based techniques can even be used to define PH
spline curves or for recognizing PH curves from Bézier curves
[19,20].

Interpolation of Hermite data by single or multi-connected
PH curves is an efficient way for approximating general smooth
curves or fitting discrete data and it has been used in various
applications [21–26]. Besides interpolating the boundary data, a
PH curve may also have a prescribed arc length [27]. It should
be noted that Hermite interpolation by PH curves may have
multiple solutions and one has to choose the best one based
on properly defined fairness measures [28]. Alternatively, one
can use additional degrees of freedom for shape control or op-
timization of an interpolating PH curve [29]. When a sequence
of points are interpolated by a spline of PH curves, the tangents
or curvatures at the joint points will be determined by solving
nonlinear systems [30]. If only locally convex curves are desired,
one may use intrinsically defined curves or specially defined arc
splines for interpolation [31,32].

Our approach for defining planar PH curves is based on the
integral of scaled low degree tangent vector fields. Particularly,
we assume a convex PH curve has quadratic rational unit normals
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while a PH curve with a single inflection point has quartic rational
unit normals obtained by reparameterizing quadratic rational
unit normals. This also implies that the angle between any two
normals on a PH curve is less than π . PH curves with low degree
rational normals have simple Gauss maps and the basic shapes
of the PH curves can be characterized by the normals very well.
The hodographs of a family of PH curves with the same rational
unit normals are obtained as the scaling tangent vector fields
perpendicular to the normals. Based on the scaling functions of
hodographs, the obtained PH curves have additional degrees of
freedom for shape editing or data interpolation. The regularity of
the PH curves can be checked easily based on the signs of the
scaling functions.

We apply PH curves with quadratic or quartic rational unit
normals for geometric interpolation. Given two distinct points,
two unit normals at the points and another unit normal at a
selected parameter coordinate or at the inflection point, a G1

interpolating PH curve will be constructed. If the arc length or
curvatures at two end points are also given, a G1 interpolating
PH curve with a prescribed arc length or a G2 interpolating PH
curve will be obtained. For each type of geometric interpolation
we first construct a quadratic or quartic rational Bézier curve
to interpolate the three unit normals. The free parameters of
the scaling functions within the hodographs are then obtained
by solving simple linear systems that are developed from the
interpolation conditions of end points, arc lengths or end curva-
tures. The interpolating PH curves are unique and usually have
please-looking shapes when the input data are properly given.

The paper is organized as follows. In Section 2, we present
definition of PH curves with low order rational normals. Section 3
describes the technique of geometric interpolation by planar PH
curves with quadratic rational unit normals. Methods for geomet-
ric interpolation by inflectional PH curves with quartic rational
unit normals are given in Section 4. Examples of geometric inter-
polation by PH curves with quadratic or quartic rational normals
are presented in Section 5. Section 6 concludes the paper with a
brief summary and discussion.

2. PH curves with low order rational normals

Suppose P(t) = (x(t), y(t)) is a planar polynomial curve. If the
derivative of the curve satisfies x′2(t)+ y′2(t) = σ 2(t), where σ (t)
is a polynomial, the curve P(t) is referred a PH curve [1]. Then,
the unit normal vector along a PH curve can be obtained as

n(t) =

(
−y′(t)
σ (t)

,
x′(t)
σ (t)

)
and the offset to curve P(t) with a signed distance d can be
represented by a rational curve

Po(t) = P(t) + dn(t).

Generally, n(t) is a rational curve of degree n−1 when the curve
P(t) is a polynomial curve of degree n. On another hand, if the
hodograph P ′(t) = (x′(t), y′(t)) is known, the curve P(t) can be
obtained by integral of P ′(t) directly.

2.1. PH curves with prescribed rational normals

In this paper we are interested in a special kind of PH curves
of which the normal vectors are just of low order rational curves.
Particularly, we use low order rational normals to characterize
the basic shapes of PH curves and use degrees of freedom of the
real scaling functions within the hodographs for modeling and
interpolation.

Suppose n(t) =

(
−η(t)
ω(t) ,

ξ (t)
ω(t)

)
, 0 ≤ t ≤ 1, represents a circular

arc of radius 1. Let U(t) = (ξ (t), η(t)). It yields that U(t) · n(t) ≡

0. A family of PH curves with prescribed unit normal n(t) are
obtained as

P(t) =

∫ t

0
ρ(τ )U(τ )dτ + P0, (1)

where ρ(t) is an arbitrary real polynomial and P0 is a chosen point
on the plane.

Because ξ 2(t) + η2(t) = ω2(t), we have ∥U(t)∥ = ω(t), where
∥ · ∥ means the Euclidean norm of a vector. The norm of the
derivative of curve given by Eq. (1) is ∥P ′(t)∥ = ω(t)|ρ(t)|. As
explained later, a PH curve constructed by Eq. (1) is regular only
when the sign of ρ(t) does not change and the normal vectors
are properly given. Particularly, if ρ(t) > 0 for 0 ≤ t ≤ 1, U(t)
coincides with the tangent direction of P(t) and the arc length of
the curve can be computed by

L(t) =

∫ t

0
ω(τ )ρ(τ )dτ . (2)

With simple computation, the curvature of the curve P(t) can be
obtained as

k(t) =
P ′(t) ∧ P ′′(t)

∥P ′(t)∥3 =
U(t) ∧ U ′(t)
ω3(t)ρ(t)

,

where P ′(t) ∧ P ′′(t) represents the scalar cross product of two
planar vectors. Equivalently, the function ρ(t) can be computed
when the normal vectors and the curvatures of a PH curve are
known. It yields

ρ(t) =
U(t) ∧ U ′(t)
ω3(t)k(t)

. (3)

If ρ(t) is negative, the derivative of P(t) has opposite direction
with U(t). Then, the unsigned arc length and curvatures of P(t)
can be computed just by replacing ρ(t) with −ρ(t) within above
equations. From the computation of curvatures, we have the
following proposition.

Proposition 1. If ρ(t) ̸= 0, for 0 ≤ t ≤ 1, then the PH curve given
by Eq. (1) is non-singular.

2.2. PH curves with quadratic or quartic rational normals

The lowest degree rational curves to represent the normal
vector field n(t) of a PH curve P(t) are quadratic rational Bézier
curves. Then, the scaled tangent vector field U(t) is a quadratic
Bézier curve Uquad(t) =

∑2
i=0 UiBi,2(t), where Bi,2(t), i = 0, 1, 2,

are Bernstein basis functions. A regular PH curve with quadratic
rational unit normals is convex. As explained in Section 4, the unit
normals n(t) can be quartic rational Bézier curves just by repa-
rameterizing initial quadratic rational normals. Quartic rational
unit normals can be used to construct PH curves with inflec-
tions. Consequently, the vector field U(t) becomes Uquar (t) =∑4

i=0 UiBi,4(t).
When the normal vector field n(t) or the scaled tangent vector

field U(t) has already been defined or computed, we construct
PH curves by Eq. (1) using U(t) and a properly chosen real
function ρ(t). The degrees of freedom within ρ(t) permit shape
adjustment or data interpolation by the obtained PH curves.
Particularly, ρI (t) =

∑1
j=0 ρjBj,1(t), ρII (t) =

∑2
j=0 ρjBj,2(t) and

ρIII (t) =
∑3

j=0 ρjBj,3(t) will be used to construct PH curves for
G1 or G2 interpolation without or with constraint of arc lengths.
We compute hodographs for PH curves by choosing different U(t)
and ρ(t) as follows.

• Choose U(t) = Uquad(t) and ρ(t) = ρI (t). The product of
Uquad(t) and ρI (t) is obtained as

H3(t) = Uquad(t)ρI (t)
=

∑3
k=0 DkBk,3(t),

(4)
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where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D0 = ρ0U0

D1 =
1
3 (ρ1U0 + 2ρ0U1)

D2 =
1
3 (2ρ1U1 + ρ0U2)

D3 = ρ1U2.

• Choose U(t) = Uquad(t) and ρ(t) = ρII (t). The product of
Uquad(t) and ρII (t) is

H4(t) = Uquad(t)ρII (t)
=

∑4
k=0 DkBk,4(t),

(5)

where⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

D0 = ρ0U0

D1 =
1
2 (ρ1U0 + ρ0U1)

D2 =
1
6 (ρ2U0 + 4ρ1U1 + ρ0U2)

D3 =
1
2 (ρ2U1 + ρ1U2)

D4 = ρ2U2.

• Choose U(t) = Uquad(t) and ρ(t) = ρIII (t). The product of
Uquad(t) and ρIII (t) is

H5(t) = Uquad(t)ρIII (t)
=

∑5
k=0 DkBk,5(t),

(6)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0 = ρ0U0

D1 =
1
5 (3ρ1U0 + 2ρ0U1)

D2 =
1
10 (3ρ2U0 + 6ρ1U1 + ρ0U2)

D3 =
1
10 (ρ3U0 + 6ρ2U1 + 3ρ1U2)

D4 =
1
5 (2ρ3U1 + 3ρ2U2)

D5 = ρ3U2.

• Choose U(t) = Uquar (t) and ρ(t) = ρI (t). The product of
Uquar (t) and ρI (t) is

H̄5(t) = Uquar (t)ρI (t)
=

∑5
k=0 D̄kBk,5(t),

(7)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̄0 = ρ0U0

D̄1 =
1
5 (ρ1U0 + 4ρ0U1)

D̄2 =
1
5 (2ρ1U1 + 3ρ0U2)

D̄3 =
1
5 (3ρ1U2 + 2ρ0U3)

D̄4 =
1
5 (4ρ1U3 + ρ0U4)

D̄5 = ρ1U4.

• Choose U(t) = Uquar (t) and ρ(t) = ρII (t). The product of
Uquar (t) and ρII (t) is

H̄6(t) = Uquar (t)ρII (t)
=

∑6
k=0 D̄kBk,6(t),

(8)

Fig. 1. Families of PH curves with the same (a) quadratic or (b) quartic rational
unit normals.

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̄0 = ρ0U0

D̄1 =
1
3 (ρ1U0 + 2ρ0U1)

D̄2 =
1
15 (ρ2U0 + 8ρ1U1 + 6ρ0U2)

D̄3 =
1
5 (ρ2U1 + 3ρ1U2 + ρ0U3)

D̄4 =
1
15 (6ρ2U2 + 8ρ1U3 + ρ0U4)

D̄5 =
1
3 (2ρ2U3 + ρ1U4)

D̄6 = ρ2U4.

• Choose U(t) = Uquar (t) and ρ(t) = ρIII (t). The product of
Uquar (t) and ρIII (t) is

H̄7(t) = Uquar (t)ρIII (t)
=

∑7
k=0 D̄kBk,7(t),

(9)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̄0 = ρ0U0

D̄1 =
1
7 (3ρ1U0 + 4ρ0U1)

D̄2 =
1
7 (ρ2U0 + 4ρ1U1 + 2ρ0U2)

D̄3 =
1
35 (ρ3U0 + 12ρ2U1 + 18ρ1U2 + 4ρ0U3)

D̄4 =
1
35 (4ρ3U1 + 18ρ2U2 + 12ρ1U3 + ρ0U4)

D̄5 =
1
7 (2ρ3U2 + 4ρ2U3 + ρ1U4)

D̄6 =
1
7 (4ρ3U3 + 3ρ2U4)

D̄7 = ρ3U4.

When the product of selected U(t) and ρ(t) has been formu-
lated as a Bézier curve, i.e., ρ(t)U(t) =

∑k
i=0 DiBi,k(t), the PH

curve P(t) is obtained by integral (1) as

P(t) =

k+1∑
i=0

PiBi,k+1(t), (10)

where Pi+1 = Pi + 1
k+1Di, i = 0, 1, . . . , k.

Fig. 1 illustrates two families of PH curves with same quadratic
or quartic rational unit normals. Particularly, the normal vectors
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in Fig. 1(a) are computed by a quadratic rational Bézier curve
that satisfies n(0) = (cos(0.4π ), sin(0.4π )), n( 29 ) = (cos(0.5π ),
sin(0.5π )) and n(1) = (cos(0.85π ), sin(0.85π )). The PH curves
with cyan, green or red normals are obtained by employing Eq.
(4) and Eq. (10) and choosing ρ(t) = 1, ρ(t) = 1 + 2t or
ρ(t) = 3 − 2t . Given n0 = (cos(0.85π ), sin(0.85π )), n1 =

(cos(0.35π ), sin(0.35π )) and n2 = (cos(0.75π ), sin(0.75π )), the
PH curves with cyan, green or red normals in Fig. 1(b), all having
normal vectors n0, n2 at two ends and n1 at the inflection points,
are obtained from Eq. (7) and Eq. (10) by choosing ρ(t) = 1,
ρ(t) = 2 − t or ρ(t) = 1 + 2t , respectively. Quadratic or
quartic rational unit normal interpolation will be explained in the
following two sections. It is noticed that each family of PH curves
have basically similar shapes but the curves also differ a lot when
different real functions ρ(t) are used for defining the hodographs.

3. Geometric interpolation by PH curves with quadratic ratio-
nal unit normals

Assume PA and PB are two distinct points sampled from a con-
vex curve and n0 and n2 are two unit normals at the two points.
Assume that the angle between n0 and n2 is less than π and n1 is
another unit normal lying between n0 and n2 with a given param-
eter 0 < t0 < 1, we construct a convex PH curve with quadratic
rational normals interpolating the points and normals. If the arc
length Larc or the curvatures kA and kB at the two boundary points
are also given, a G1 interpolating PH curve with prescribed arc
length or a G2 interpolating PH curve will be constructed.

3.1. Quadratic rational unit normal interpolation

As a first step of the proposed PH curve interpolation, we
construct a quadratic rational curve n(t) satisfying ∥n(t)∥ ≡ 1
as well as n(0) = n0, n(t0) = n1 and n(1) = n2.

Before constructing an interpolating rational curve n(t) di-
rectly, we first construct a quadratic rational Bézier curve v(s)
to interpolate points n0 and n2 at the boundaries; see Fig. 2. Let
v0 = n0, v2 = n2, µ =

∥n0+n2∥

2 and v1 =
1
µ

n0+n2
∥n0+n2∥

. A quadratic
rational Bézier curve is constructed as

v(s) =
v0B0,2(s) + µv1B1,2(s) + v2B2,2(s)

B0,2(s) + µB1,2(s) + B2,2(s)
, s ∈ [0, 1].

Because v(s) just represents a segment of circular arc, we have
v(0) = n0, v(1) = n2 and ∥v(s)∥ ≡ 1. We then construct a
quadratic rational Bézier curve n(t) by a Mobius transformation
of the parameter of v(s). Let s = s(t) =

γ t
γ t+(1−t) , where γ > 0 is

a free parameter. Substituting s = s(t) into v(s), we have

n(t) = v(s(t)) =
v0B0,2(t) + γµv1B1,2(t) + γ 2v2B2,2(t)

B0,2(t) + γµB1,2(t) + γ 2B2,2(t)
,

t ∈ [0, 1]. (11)

Same as v(s), the normal field n(t) also satisfies n(0) = n0,
n(1) = n2 and ∥n(t)∥ ≡ 1.

The parameter γ within Eq. (11) is chosen based on the inter-
polation condition n(t0) = n1. Let V (t) = v0B0,2(t)+γµv1B1,2(t)+
γ 2v2B2,2(t). Since V (t0)||n1, we have

V (t0) ∧ n1 = a0γ 2
+ b0γ + c0 = 0,

where a0 = B2,2(t0)v2 ∧ n1, b0 = µB1,2(t0)v1 ∧ n1 and c0 =

B0,2(t0)v0 ∧ n1. When n1 lies between n0 and n2, it yields that
a0c0 < 0. Therefore, the above equation has two real solutions

γ1,2 =

−b0 ±

√
b20 − 4a0c0

2a0
.

Fig. 2. Quadratic rational unit normal interpolation.

Since γ1γ2 =
c0
a0

< 0, the unique positive solution γ1 or γ2 will
be chosen as the parameter for the construction of interpolating
normal field.

Assume v = (vx vy) and let

Mθ (v) =

(
cos θ − sin θ

sin θ cos θ

)(
vx
vy

)
be the vector rotated from v by angle θ . The quadratic tangent
vector field U(t) perpendicular to n(t) is obtained as U(t) =∑2

i=0 UiBi,2(t), where U0 = M−
π
2
(v0), U1 = M−

π
2
(γµv1) and

U2 = M−
π
2
(γ 2v2). The denominator of n(t) is represented as

ω(t) = B0,2(t)+γµB1,2(t)+γ 2B2,2(t). In the following subsections,
we will construct G1 or G2 interpolating PH curves by using U(t),
ω(t) and appropriately chosen ρ(t).

3.2. G1 Interpolation by convex PH curves

Since the rational curve given by Eq. (11) interpolates normals
n0, n1 and n2, we further compute a polynomial ρI (t) = ρ0(1 −

t) + ρ1t such that the curve computed by Eq. (1) interpolates
points PA and PB at the boundaries.

Substituting P0 = PA, ρ(t) = ρI (t) and U(t) =
∑2

i=0 UiBi,2(t)
into Eq. (1), we have

P(t) =
∫ t
0 ρ(τ )U(τ )dτ + PA

= ρ0
∫ t
0 (1 − τ )U(τ )dτ + ρ1

∫ t
0 τU(τ )dτ + PA

= ρ0
∫ t
0

∑2
i=0

3−i
3 UiBi,3(τ )dτ

+ ρ1
∫ t
0

∑2
i=0

i+1
3 UiBi+1,3(τ )dτ + PA.

(12)

From Eq. (12), we have P(1) = ρ0A0 + ρ1A1 + PA, where A0 =
1
4U0 +

1
6U1 +

1
12U2 and A1 =

1
12U0 +

1
6U1 +

1
4U2. The solution to

the equation P(1) = PB is

(ρ0 ρ1) = (PB − PA)
(

A0
A1

)−1

.

When ρ0 and ρ1 have been obtained, a quartic PH curve inter-
polating points PA, PB and unit normals n0, n1, n2 is obtained
by Eqs. (4) and (10). Based on Proposition 1 we know that the
interpolating PH curve is convex with no cusps when ρ0 and ρ1
have the same sign.

3.3. G1 Interpolation by convex PH curves with prescribed arc
lengths

To construct a convex PH curve that interpolates points PA
and PB at the boundaries, unit normals n0, n1 and n2 at selected
parameter coordinates, as well as with a prescribed arc length
Larc , we choose ρ(t) = ρII (t) =

∑2
j=0 ρjBj,2(t) together with
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U(t) =
∑2

i=0 UiBi,2(t) for the construction of the curve. Let P0 =

PA. From Eq. (1), a PH curve is obtained as

P(t) =
∫ t
0 ρ(τ )U(τ )dτ + PA

=
∑2

j=0 ρj
∫ t
0

∑2
i=0 UiBi,2(τ )Bj,2(τ )dτ + PA

=
∑2

j=0 ρj
∫ t
0

∑2
i=0

C i
2C

j
2

C i+j
4

UiBi+j,4(τ )dτ + PA,

(13)

where C i
n =

n!
i!(n−i)! . Therefore, we have

P(1) = ρ0W0 + ρ1W1 + ρ2W2 + PA,

where⎧⎪⎨⎪⎩
W0 =

1
5 (U0 +

1
2U1 +

1
6U2)

W1 =
1
5 (

1
2U0 +

2
3U1 +

1
2U2)

W2 =
1
5 (

1
6U0 +

1
2U1 + U2).

Let ω0 = 1, ω1 = γµ and ω2 = γ 2. In the same way as the
computation of point P(1), the arc length of the PH curve can
be computed by substituting ω(t) =

∑2
i=0 ωiBi,2(t) and ρ(t) =∑2

j=0 ρjBj,2(t) into Eq. (2). We have

L(1) = ρ0ω̄0 + ρ1ω̄1 + ρ2ω̄2,

where⎧⎪⎨⎪⎩
ω̄0 =

1
5 (ω0 +

1
2ω1 +

1
6ω2)

ω̄1 =
1
5 (

1
2ω0 +

2
3ω1 +

1
2ω2)

ω̄2 =
1
5 (

1
6ω0 +

1
2ω1 + ω2).

Based on the condition of boundary point interpolation and arc
length constraint, a linear system in terms of unknown coeffi-
cients ρ0, ρ1 and ρ2 is established as follows{

ρ0W0 + ρ1W1 + ρ2W2 = PB − PA
ρ0ω̄0 + ρ1ω̄1 + ρ2ω̄2 = Larc .

By solving the linear system, we have the function ρ(t) =∑2
j=0 ρjBj,2(t). If the sign of ρ(t) does not change for 0 ≤ t ≤ 1,

a quintic interpolating PH curve with a prescribed arc length is
obtained by Eqs. (5) and (10).

3.4. G2 Interpolation by convex PH curves

Besides unit normals n0, n1, n2, boundary points PA, PB, a G2

interpolating PH curve can be constructed to have prescribed
curvatures kA and kB at the ends. We choose ρ(t) = ρIII (t) =∑3

j=0 ρjBj,3(t) together with U(t) =
∑2

i=0 UiBi,2(t) for the con-
struction of the PH curve. Let P0 = PA, a PH curve computed
by Eq. (1) is obtained as

P(t) =
∫ t
0 ρ(τ )U(τ )dτ + PA

=
∑3

j=0 ρj
∫ t
0

∑2
i=0 UiBi,2(τ )Bj,3(τ )dτ + PA

=
∑3

j=0 ρj
∫ t
0

∑2
i=0

C i
2C

j
3

C i+j
5

UiBi+j,5(τ )dτ + PA.

(14)

From Eq. (14), we have

P(1) = ρ0W0 + ρ1W1 + ρ2W2 + ρ3W3 + PA,

where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W0 =

1
6 (U0 +

2
5U1 +

1
10U2)

W1 =
1
6 (

3
5U0 +

3
5U1 +

3
10U2)

W2 =
1
6 (

3
10U0 +

3
5U1 +

3
5U2)

W3 =
1
6 (

1
10U0 +

2
5U1 + U2).

We solve the parameters ρj, j = 0, 1, 2, 3, based on the
interpolation conditions P(1) = PB, k(0) = kA and k(1) = kB.
Based on expression of ω(t) we have ω(0) = 1 and ω(1) = γ 2.
Substituting k(0) = kA, k(1) = kB, ω(0) = 1 and ω(1) = γ 2

into Eq. (3), we have

ρ0 = ρ(0) =
U(0) ∧ U ′(0)
ω3(0)k(0)

=
2U0 ∧ U1

kA
and

ρ3 = ρ(1) =
U(1) ∧ U ′(1)
ω3(1)k(1)

=
2U1 ∧ U2

kBγ 6 .

After computing ρ0 and ρ3, ρ1 and ρ2 are then computed from
the equation P(1) = PB. We have

(ρ1 ρ2) = (PB − PA − ρ0W0 − ρ3W3)
(

W1
W2

)−1

.

When the polynomial ρIII (t) has been obtained, a sextic PH curve
that interpolates a pair of G2 Hermite data and an intermediate
normal vector is given by Eqs. (6) and (10). Particularly, if all ρj
have the same sign, the obtained PH curve is convex.

4. Geometric interpolation by PH curves with quartic rational
unit normals

This section presents techniques of geometric interpolation
by PH curves with single inflection points. Assume PA and PB
are two distinct points sampled from a planar curve with one
inflection point and n0 and n2 are unit normals at the two points.
Assume n1 is the unit normal vector at the inflection point. A G1

interpolating PH curve without or with constraint of arc length
will interpolate the two sampled points and three unit normals.
If curvatures kA and kB at the two boundary points are also given,
a G2 interpolating PH curve with a single inflection point will be
constructed to interpolate all the sampled points, normals and
curvatures.

4.1. Quartic rational unit normal interpolation

Similar to quadratic rational normal interpolation, we com-
pute quartic rational curve n(t) satisfying ∥n(t)∥ ≡ 1 for 0 ≤

t ≤ 1 as well as n(0) = n0, n(1) = n2 and n(t0) = n1 for some
0 < t0 < 1.

Unlike convex PH curve interpolation, the unit normal n1 at an
inflection point does not lie between n0 and n2. The boundaries
of a circular arc interpolating the three normals can be n1, n2
or n1, n0. Instead of constructing a rational curve n(t) satisfying
the above interpolation conditions directly, we first construct
a quadratic rational curve v(s) that has a constant norm and
satisfies v(0) = n1, v(1) = n2 or v(0) = n1, v(1) = n0. After
then, we construct a quartic rational curve n(t) that interpolates
n0 and n2 at the boundaries by a reparametrization of v(s).

Assume the quadratic rational Bézier curve is

v(s) =
v0B0,2(s) + µv1B1,2(s) + v2B2,2(s)

B0,2(s) + µB1,2(s) + B2,2(s)
, s ∈ [0, 1].

We choose the boundary control points of curve v(s) based on the
relationship among the three unit normals.

1. n0 lies between n1 and n2. As illustrated in Fig. 3, we
choose v0 = n1 and v2 = n2 for the construction of v(s).
The vector in between the boundaries is ns = n0.

2. n2 lies between n1 and n0. See Fig. 4 for this case. The
boundary control points of v(s) are chosen as v0 = n1 and
v2 = n0. The vector in between the boundaries is ns = n2.
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Fig. 3. Quartic rational unit normal interpolation: case 1.

Fig. 4. Quartic rational unit normal interpolation: case 2.

When the boundary control points are determined, the weight
µ and control point v1 are computed by µ =

∥v0+v2∥

2 and v1 =
1
µ

v0+v2
∥v0+v2∥

. Since v(s) represents a segment of circular arc, it yields
∥v(s)∥ ≡ 1 for 0 ≤ s ≤ 1.

As an essential step for reparametrization, we need to find a
parameter s0 which corresponds to the point ns on the curve v(s).
We find s0 by solving equation v(s0) = ns or v(s0)∧ns = 0. From
this last expression, we have

aB0,2(s0) + bB1,2(s0) + cB2,2(s0) = 0, (15)

where a = v0 ∧ ns, b = µv1 ∧ ns and c = v2 ∧ ns. Because ns lies
between v0 and v2, it yields that ac < 0. We solve the equation
in two cases. (1) b = 0. In this case, vectors v1 and ns are parallel
with each other. We have a = −c . Then, the equation reduces to
(1 − s0)2 = s20 and the solution is s0 = 0.5.

(2) b ̸= 0. In this case, vectors v1 and ns are not parallel. The
two solutions to Eq. (15) are

s1,2 =
a − b ±

√
b2 − ac

a + c − 2b
.

Since v(s) just represents a segment of conic section and ns lies
between v0 and v2, there exists a unique solution to Eq. (15)
satisfying 0 ≤ s0 ≤ 1. Therefore, we choose s0 = s1 when
0 ≤ s1 ≤ 1. Otherwise, we choose s0 = s2.

We reparameterize the quadratic rational curve v(s) by assum-
ing s = s(t) = k(t − t0)2. Particularly, k and t0 are chosen based
on the relationship of three normals n0, n1 and n2.

1. n0 lies between n1 and n2. In this case, we compute s(t)
by assuming s(0) = s0 and s(1) = 1. It yields that k =

(1+
√
s0)2 and t0 =

√
s0

1+
√
s0
. The function s(t) is obtained as

s(t) = (gt + h)2, where g = 1 +
√
s0 and h = −

√
s0. See

Fig. 3 for the reparametrization function.
2. n2 lies between n1 and n0. In this case, we compute s(t)

by assuming s(0) = 1 and s(1) = s0. The solutions are

k = (1 +
√
s0)2 and t0 =

1
1+

√
s0
. The function s(t) becomes

s(t) = (gt + h)2, where g = 1 +
√
s0 and h = −1. The

reparametrization function is plotted in Fig. 4.

When we substitute s = s(t) into v(s), we have a quartic rational
curve n(t) = v(s(t)). For both cases of relationships listed above,
we have n(0) = n0, n(t0) = n1 and n(1) = n2. It also yields that
∥n(t)∥ = ∥v(s(t))∥ ≡ 1. PH curves with normal vector n(t) each
have an inflection point at t = t0.

Concretely, substituting s(t) = (gt + h)2 into v(s), we have

n(t) =
V (t)
ω(t)

,

where

V (t) = (v0 − 2µv1 + v2)(g4t4 + 4g3ht3

+6g2h2t2 + 4gh3t + h4)

+(−2v0 + 2µv1)(g2t2 + 2ght + h2) + v0,

ω(t) = (2 − 2µ)(g4t4 + 4g3ht3 + 6g2h2t2 + 4gh3t + h4)

+(−2 + 2µ)(g2t2 + 2ght + h2) + 1.

Let Ua = M−
π
2
(v0 − 2µv1 + v2), Ub = M−

π
2
(−2v0 + 2µv1) and

Uc = M−
π
2
(v0). A tangent vector field perpendicular to n(t) is

obtained as

U(t) = M−
π
2
(V (t))

= (1 t t2 t3 t4)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Uah4
+ Ubh2

+ Uc

4Uagh3
+ 2Ubgh

6Uag2h2
+ Ubg2

4Uag3h

Uag4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
= (1 t t2 t3 t4)

⎛⎜⎜⎜⎜⎜⎜⎝
Ū0

Ū1

Ū2

Ū3

Ū4

⎞⎟⎟⎟⎟⎟⎟⎠ .

By applying basis transformation, the vector field U(t) can be rep-
resented by U(t) =

∑4
i=0 UiBi,4(t), where the coefficient vectors

are obtained as⎛⎜⎜⎜⎝
U0
U1
U2
U3
U4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
1 1

4 0 0 0
1 1

2
1
6 0 0

1 3
4

1
2

1
4 0

1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

Ū0

Ū1

Ū2

Ū3

Ū4

⎞⎟⎟⎟⎟⎠ .

Similar to the reformulation of U(t), the denominator of n(t)
can also be represented using Bernstein basis. Let µ̄ = 2(1 −

µ). We have ω(t) =
∑4

i=0 ωiBi,n(t), where the coefficients are
computed by⎛⎜⎜⎜⎝

ω0
ω1
ω2
ω3
ω4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
1 1

4 0 0 0
1 1

2
1
6 0 0

1 3
4

1
2

1
4 0

1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

µ̄h4
− µ̄h2

+ 1
4µ̄gh3

− 2µ̄gh
6µ̄g2h2

− µ̄g2

4µ̄g3h
µ̄g4

⎞⎟⎟⎟⎟⎠ .
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Based on the expression of ω(t), we have ω(0) = ω0 and ω(1) =

ω4. We will construct geometric interpolating PH curves in the
following subsections using the obtained functions U(t) and ω(t).

4.2. G1 Interpolation by PH curves with single inflection points

When the unit normals n0, n1 and n2 are interpolated by
a quartic rational Bézier curve n(t), we construct a PH curve
by Eq. (1) using U(t) =

∑4
i=0 UiBi,4(t) and ρ(t) = ρI (t) =

ρ0(1 − t) + ρ1t such that the obtained PH curve can interpolate
two given points PA and PB at the boundaries.

Substituting P0 = PA, ρ(t) = ρI (t) and U(t) =
∑4

i=0 UiBi,4(t)
into Eq. (1), we have

P(t) =
∫ t
0 ρ(τ )U(τ )dτ + PA

= ρ0
∫ t
0 (1 − τ )U(τ )dτ + ρ1

∫ t
0 τU(τ )dτ + PA

= ρ0
∫ t
0

∑4
i=0

5−i
5 UiBi,5(τ )dτ

+ ρ1
∫ t
0

∑4
i=0

i+1
5 UiBi+1,5(τ )dτ + PA.

(16)

From Eq. (16), we have P(1) = ρ0A0 + ρ1A1 + PA, where A0 =
1
6

∑4
i=0

5−i
5 Ui and A1 =

1
6

∑4
i=0

i+1
5 Ui. Based on the interpolation

condition P(1) = PB, we have

(ρ0 ρ1) = (PB − PA)
(

A0
A1

)−1

.

We note that if n0 and n2 are parallel, it yields that A0 = A1 due
to the symmetry property of vectors Uis. There is no solution to
equation P(1) = PB if the rank of matrix (At

0 At
1) is not equal to

the rank of matrix (At
0 At

1 (PB − PA)t ), where the upper letter ‘t’
means the transpose of a vector or matrix. If the two mentioned
matrices both have rank 1, there are infinitely many solutions to
the equation.

When ρ0 and ρ1 have been obtained, a sextic PH curve inter-
polating two pairs of G1 Hermite data and a prescribed normal
vector at the inflection point is obtained by Eqs. (7) and (10).
Particularly, the interpolating PH curve is regular when ρ0 and
ρ1 have the same sign.

4.3. G1 Interpolation by inflectional PH curves with prescribed arc
lengths

To construct an inflectional PH curve that interpolates points
PA and PB at the boundaries, unit normals n0, n1, n2 at the ends or
at the inflection point, as well as with a prescribed arc length Larc ,
we choose ρ(t) = ρII (t) =

∑2
j=0 ρjBj,2(t) together with U(t) =∑4

i=0 UiBi,4(t) for the construction of the curve. Let P0 = PA.
From Eq. (1), a PH curve is obtained as

P(t) =
∫ t
0 ρ(τ )U(τ )dτ + PA

=
∑2

j=0 ρj
∫ t
0

∑4
i=0 UiBi,4(τ )Bj,2(τ )dτ + PA

=
∑2

j=0 ρj
∫ t
0

∑4
i=0

C i
4C

j
2

C i+j
6

UiBi+j,6(τ )dτ + PA.

(17)

Therefore, we have

P(1) = ρ0W0 + ρ1W1 + ρ2W2 + PA,

where⎧⎪⎪⎨⎪⎪⎩
W0 =

1
7 (U0 +

2
3U1 +

2
5U2 +

1
5U3 +

1
15U4)

W1 =
1
7 (

1
3U0 +

8
15U1 +

3
5U2 +

8
15U3 +

1
3U4)

W2 =
1
7 (

1
15U0 +

1
5U1 +

2
5U2 +

2
3U3 + U4).

Let ω(t) =
∑4

i=0 ωiBi,4(t) be the function obtained in
Section 4.1. The arc length of the inflectional PH curve can be
computed by substituting ω(t) and ρ(t) into Eq. (2). We have

L(1) = ρ0ω̄0 + ρ1ω̄1 + ρ2ω̄2,

where⎧⎪⎪⎨⎪⎪⎩
ω̄0 =

1
7 (ω0 +

2
3ω1 +

2
5ω2 +

1
5ω3 +

1
15ω4)

ω̄1 =
1
7 (

1
3ω0 +

8
15ω1 +

3
5ω2 +

8
15ω3 +

1
3ω4)

ω̄2 =
1
7 (

1
15ω0 +

1
5ω1 +

2
5ω2 +

2
3ω3 + ω4).

Based on equalities P(1) = PB and L(1) = Larc , we have a linear
system in terms of the unknown coefficients ρ0, ρ1 and ρ2 as
follows:{

ρ0W0 + ρ1W1 + ρ2W2 = PB − PA
ρ0ω̄0 + ρ1ω̄1 + ρ2ω̄2 = Larc .

Solving the linear system, we have function ρ(t) =
∑2

j=0 ρjBj,2(t).
A G1 interpolating inflectional PH curve is obtained by Eqs. (8)
and (10). If the function ρ(t) ̸= 0 for 0 ≤ t ≤ 1, the obtained
curve is regular and has a prescribed arc length.

4.4. G2 Interpolation by PH curves with single inflection points

When the unit normals n0, n1 and n2 have been interpolated
by n(t), we choose ρ(t) = ρIII (t) =

∑3
j=0 ρjBj,3(t) together with

U(t) =
∑4

i=0 UiBi,4(t) for the construction of a PH curve with
one inflection point to interpolate points PA and PB as well as
prescribed curvatures kA and kB at the boundaries.

Let P0 = PA, a PH curve constructed by Eq. (1) is obtained as

P(t) =
∫ t
0 ρ(τ )U(τ )dτ + PA

=
∑3

j=0 ρj
∫ t
0

∑4
i=0 UiBi,4(τ )Bj,3(τ )dτ + PA

=
∑3

j=0 ρj
∫ t
0

∑4
i=0

C i
4C

j
3

C i+j
7

UiBi+j,7(τ )dτ + PA.

(18)

From Eq. (18), we have

P(1) = ρ0W0 + ρ1W1 + ρ2W2 + ρ3W3 + PA,

where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
W0 =

1
8 (U0 +

4
7U1 +

2
7U2 +

4
35U3 +

1
35U4)

W1 =
1
8 (

3
7U0 +

4
7U1 +

18
35U2 +

12
35U3 +

1
7U4)

W2 =
1
8 (

1
7U0 +

12
35U1 +

18
35U2 +

4
7U3 +

3
7U4)

W3 =
1
8 (

1
35U0 +

4
35U1 +

2
7U2 +

4
7U3 + U4).

The parameters ρj, j = 0, 1, 2, 3, are solved based on the
interpolation conditions P(1) = PB, k(0) = kA and k(1) = kB.
Particularly, ρ0 and ρ3 are first computed using the last two
equations. Substituting k(0) = kA and k(1) = kB into Eq. (3), we
have

ρ0 = ρ(0) =
U(0) ∧ U ′(0)
ω3(0)k(0)

=
4U0 ∧ U1

ω3(0)kA
and

ρ3 = ρ(1) =
U(1) ∧ U ′(1)
ω3(1)k(1)

=
4U3 ∧ U4

ω3(1)kB
.

After computing ρ0 and ρ3, ρ1 and ρ2 are then computed from
the equation P(1) = PB. We have

(ρ1 ρ2) = (PB − PA − ρ0W0 − ρ3W3)
(

W1
W2

)−1

.
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Fig. 5. (a) Original logarithmic spiral; (b) G1 interpolation by a quartic PH curve
with quadratic rational unit normals; (c) G1 interpolation by a quintic PH curve
that has quadratic rational unit normals and a prescribed arc length; (d) G2

interpolation by a sextic PH curve with quadratic rational unit normals.

Similar to G1 interpolation by PH curves with single inflection
points, there is none or infinite many solutions (ρ1 ρ2) when the
normal vectors n0 and n2 are parallel.

When the polynomial ρIII (t) has been obtained, a PH curve
of degree 8 that interpolates a pair of G2 Hermite data and
a prescribed normal vector at the inflection point is given by
Eqs. (9) and (10). Particularly, if all ρj have the same sign, the
obtained PH curve is regular. Similar to G1 interpolation of PH
curves with arc length constraint, G2 interpolating PH curves can
also have prescribed arc lengths. By choosing ρ(t) as a quartic
polynomial, the unknown coefficients of ρ(t) will be determined
by solving a linear system that is established by the G2 interpola-
tion conditions as well as the arc length constraint. We leave the
concrete steps of G2 interpolation of PH curves with arc length
constraint to interested readers.

5. Examples

In this section we present a few examples to demonstrate how
the proposed PH curve interpolation technique can be used in
curve approximation and geometric modeling.

First, we construct convex PH curves interpolating points,
normals, curvatures or even the arc length sampled or computed
from a logarithmic spiral. Let r0 = 0.5 and λ = 0.12. A segment
of logarithmic spiral is given by{

x(t) = r0eλt cos(t)
y(t) = r0eλt sin(t)

with t ∈ [0, 0.8π ]. Logarithmic spiral has no inflection point
and the curvature of the curve is monotone. See Fig. 5(a) for the
curvature plot of the original logarithmic spiral.

We sample points PA and PB at t = 0 or t = 0.8π , respectively.
The unit normal vectors of the original logarithmic spiral at t = 0,
t = 0.5π and t = 0.8π are also sampled. The arc length of the
curve segment is computed by

Larc =
∫ 0.8π
0

√
x′2(t) + y′2(t)dt

=
r0
λ

√
λ2 + 1(e0.8λ − 1)

Table 1
The maximum approximation errors and the maximum absolute curvature
differences for the interpolating curves to the logarithmic spiral.
Interpolation Max approx. error Max curvat. difference

G1 0.082633 0.911133
G1

+Length 0.004541 1.448335
G2 0.015263 0.137746

Table 2
The maximum approximation errors and the maximum absolute
curvature differences for the interpolating curves to the Euler spiral.
Interpolation Max approx. error Max curvat. difference

G1 0.020545 0.216066
G1

+Length 0.081761 0.439625
G2 0.021921 0.189648

and the curvature of the curve is given by

k(t) =
1

√
λ2 + 1r0eλt

.

When all the sampled data have been obtained, a quadratic
rational Bézier arc n(t) is constructed that satisfies n(0) = n0,
n(0.5) = n1 and n(1) = n2. After then, two G1 interpolating
PH curves without or with constraint of arc length and a G2

interpolating PH curve are computed by the technique proposed
in Section 3. See Figs. 5(b)–(d) for the obtained curves. The
maximum approximating errors to the original curve and the
maximum curvature differences between the interpolating curves
and the original logarithmic spiral are given in Table 1.

Second, we interpolate points and normals sampled from a
segment of Euler spiral. Assume the original spiral is defined by
k = s, where k means the curvature and s is the arc length of the
curve. Particularly, the Cartesian coordinates of the Euler spiral is
computed by{

x(s) =
∫ s
0 cos( ξ2

2 )dξ
y(s) =

∫ s
0 sin( ξ2

2 )dξ,

where s ∈ [−0.4π, 0.5π ]. From above equation, the points at
s = −0.4π or s = 0.5π are computed by Taylor expansion of the
integral while the unit normals at the ends or the inflection point
are computed explicitly by the derivatives of the curve. Since the
Euler spiral is parameterized by its arc length, the arc length of
the curve segment can be computed by the parameters directly.
To improve the fairness of the interpolating curve we choose
Larc = (0.5π + 0.4π ) ∗ 0.99 = 0.891π for PH curve interpolation
under arc length constraint.

Fig. 6 illustrates the original Euler spiral and the G1 or G2

interpolating PH curves. Differently from the last example, the
sampled normals at the ends or the inflection point are inter-
polated by a quartic rational curve and the obtained PH curves
have single inflection points. From the figure we can see that the
normal vectors of the interpolating PH curves match the original
Euler spiral very well and the shapes of the obtained curves are
please-looking too. The approximation errors given in Table 2
show that both positions and curvatures of original Euler spiral
have been approximated by the interpolating PH curves with high
accuracies.

Third, we design an 8-like shape by geometric interpolation
of PH curves. Let Oa = (0, 0.6) and Ob = (0, −0.6) be the
centers of two circles both with radius r = 0.5 on the plane.
Five unit normals Ni = N(θi) = (cos θi, sin θi), i = 0, 1, . . . , 4,
are given by choosing θi as −0.1π , 0.1π , −0.5π , 0.9π and 1.1π ,
respectively. Five points are then sampled on the two circles as
P0 = Oa − rN0, P4 = Oa − rN4, and Pi = Ob + rNi for i = 1, 2, 3. See
Fig. 7 for the chosen points and normals. Particularly, two sextic
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Fig. 6. (a) Original Euler spiral; (b) G1 interpolation by a sextic PH curve with quartic rational unit normals; (c) G1 interpolation by a septic PH curve that has quartic
rational unit normals and a prescribed arc length; (d) G2 interpolation by a PH curve of degree 8 with quartic rational unit normals.

Fig. 7. (a) Piecewise G1 interpolation to the sampled points and sampled normals; (b) piecewise G2 interpolation to the sampled points, normals and curvatures; (c)
the offsets to the G2 interpolating PH curves.

PH curves with single inflection points have been constructed to
interpolate point-normal pairs (P0,N0; P1,N1) or (P3,N3; P4,N4)
with prescribed unit normals N(0.32π ) or N(0.68π ) at the inflec-
tion points, respectively. The point-normal pairs (P1,N1; P2,N2),
(P2,N2; P3,N3) and (P4,N4; P0,N0) together with normalized av-
erage vectors of each pair of normals are interpolated by convex
quartic PH curves. Fig. 7(a) illustrates the piecewise G1 interpo-
lating PH curves.

Though the G1 interpolating PH curves are convex or have
single inflection points, the curvatures of the curves are not con-
tinuous at the joint points. When we set curvatures at respective
sampled points as k0 = k4 = 2.4 and k1 = k2 = k3 = −2.0, a
sequence of interpolating PH curves with prescribed curvatures as
well as with G2 continuity at the joints are obtained; see Fig. 7(b)

for the result. The offsets to the G2 interpolating PH curves at
distances d = 0.1 or d = −0.08 along normal directions are
plotted in Fig. 7(c).

6. Conclusions and discussions

This paper has proposed techniques to interpolate sampled
points, normals or curvatures by PH curves with quadratic or
quartic rational unit normals. The interpolating PH curves can
also have prescribed arc lengths. The parameters for defining
each interpolating PH curve are uniquely determined by solving a
simple linear system. The singularities of interpolating PH curves
can be checked easily based on the signs of a polynomial function
and the regular interpolating PH curves are either convex or have
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expected single inflection points with prescribed normals at the
points.

At present we assume that the angles between every two input
normals are less than π . If the maximum angle is greater than
or equal to π , one can insert one or more points and normals
between the original data and construct interpolating PH curves
to every pair of neighboring points and normals by the proposed
technique. Alternatively, one can construct rational unit normals
with even higher degrees from the input normals and compute
the interpolating PH curves using the same technique proposed
in this paper.
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