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Euler spirals have linear varying curvature with respect to arc length and can be applied in fields 
such as aesthetics pleasing shape design, curve completion or highway design, etc. However, 
evaluation and interpolation of Euler spirals to prescribed boundary data is not convenient since 
Euler spirals are represented by Fresnel integrals but with no closed-form expression of the 
integrals. We investigate a class of Bézier or B-spline curves called Euler Bézier spirals or Euler 
B-spline spirals which have specially defined control polygons and approximate linearly varying 
curvature. This type of spirals can be designed conveniently and evaluated exactly. Simple but 
efficient algorithms are also given to interpolate 𝐺1 boundary data by Euler Bézier spirals or cubic 
Euler B-spline spirals.

1. Introduction

Euler spirals, also known as Cornu spirals or Clothoids, are a special type of spirals of which the curvatures vary linearly with 
respect to arc lengths of the curves. Euler spirals have found wide applications in aesthetics pleasing shape design (Baran et al., 
2010; Havemann et al., 2013), shape completion (Kimia et al., 2003; Zhou et al., 2012), highway design or route description of 
robots (Wang et al., 2001; Ynchausti et al., 2022), etc. Though curvatures of Euler spirals are simple linear functions of arc length, 
the Cartesian coordinates of Euler spirals are usually represented by Fresnel integrals that have no closed-form solution. Practically, 
the Cartesian coordinates of Euler spirals have to be evaluated numerically or approximately (Montés et al., 2008; Sánchez-Reyes 
and Chacón, 2003; Chen et al., 2017; Farouki et al., 2021). When one want to interpolate an Euler spiral to prescribed points and 
tangents at the boundaries, nonlinear equations will be solved to determine the parameters of the Euler spiral (Walton and Meek, 
2009; Bertolazzi and Frego, 2015).

Bézier curves and B-spline curves are polynomial curves or piecewise polynomial curves that can be designed using control 
polygons and evaluated exactly using the well known de Casteljau algorithm or de Boor algorithm (Farin, 2001). Investigation of 
Bézier or B-spline curves that have monotone curvature profiles is useful for fair shape design. Frey and Field (2000) studied spirals 
represented by Bézier conic segments while Dietz and Piper (2004) proposed technique of curve interpolation by cubic spirals. 
Sufficient conditions for the curvature monotonicity of degree 𝑛 Bézier curves or B-spline curves have been given in (Wang et al., 
2004). Recently, Saito and Yoshida (2023) have presented curvature monotonicity evaluation functions on rational Bézier curves. 
When the control polygon of a planar Bézier curve is obtained by rotating and scaling edges from previous ones with a constant angle 
and a constant scaling factor, the Bézier curve can have monotone curvature profile when the rotation angle and the scaling factor 
are properly chosen (Mineur et al., 1998). Farin (2006) proposed Class A Bézier curves by generalizing typical Bézier curves to 3D 
space. In recent years, typical or Class A Bézier curves have been studied extensively (Cantón et al., 2021; Romani and Viscardi, 2021; 
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Tong and Chen, 2021; Wang et al., 2023). It is noticed that planar typical or Class A Bézier curves are approximants to logarithmic 
spirals and they can converge to logarithmic spirals when the degrees of Bézier curves are increased (Yoshida et al., 2008).

Similar to planar typical or Class A Bézier curves that employ discrete logarithmic spirals as control polygons, we propose to 
construct planar Bézier curves or planar B-spline curves by employing Euler spiral-like control polygons that have equal-length edges 
and linearly varying vertex angles. Just like discrete Euler spirals which are approximants to Euler spirals, the defined polygons are 
also approximants to Euler spirals. Consequently, the Bézier curves or B-spline curves constructed by the polygons are approximants 
to Euler spirals too. This makes it possible to construct Bézier curves or B-spline curves with monotone curvature profiles by choosing 
proper parameters for the specially defined control polygons. If the control polygons have increased numbers of vertices but reduced 
maximum vertex angles, then the polygons can approximate Euler spirals with even higher accuracy while the obtained Bézier or 
B-spline curves lie much closer to the control polygons. It follows that the constructed Bézier curves or B-spline curves can have 
approximate linearly varying curvature profiles with respect to the parameter. Since this type of Bézier or B-spline curves behave 
like Euler spirals, we refer the curves as Euler Bézier spirals or Euler B-spline spirals. Unlike planar typical Bézier curves that can only 
be used to model local convex curves, Euler Bézier spirals and Euler B-spline spirals can be employed to model convex curves as 
well as curves with inflections. Given a pair of 𝐺1 boundary data, an interpolating Euler Bézier spiral or Euler B-spline spiral can be 
obtained efficiently by smoothing rough control polygons and inserting new control points iteratively.

The paper is organized as follows. In Section 2 we review some basic properties of Euler spirals and discrete Euler spirals. In 
Section 3 we propose definitions of Euler Bézier spirals and Euler B-spline spirals. Algorithms for 𝐺1 interpolation by Euler Bézier 
spirals or Euler B-spline spirals will be given in Section 4. In Section 5 we present several interesting examples for curve and surface 
modeling by the proposed models and Section 6 concludes the paper with a brief summary.

2. Background

Our proposed special types of Bézier curves and B-spline curves are closely related with intrinsic definition of Euler spirals as well 
as discrete Euler spirals.

The curvature 𝑘 of an Euler spiral can be represented as a linear function of its arc length 𝑠 as

𝑘(𝑠) = 𝑎𝑠+ 𝑏, (1)

where 𝑎 ∈ℝ and 𝑏 ∈ℝ are constants. If 𝑎 = 0, the spiral reduces to a circle or a line with constant curvature 𝑏; otherwise, the spiral 
has a single inflection point at 𝑠 =− 𝑏

𝑎
. By integral of curvature, the tangent or winding angle Φ with respect to arc length is obtained 

as

Φ(𝑠) = 1
2

𝑎𝑠2 + 𝑏𝑠+ 𝑐, (2)

where 𝑐 is the tangent angle at 𝑠 = 0. Based on the expression of tangent angle, the unit tangent direction of the Euler spiral at 𝑠 is 
given by

𝑇 (𝑠) =
(
cos(Φ(𝑠))
sin(Φ(𝑠))

)
.

The integral of 𝑇 (𝑠) gives the Cartesian coordinates of Euler spiral as

𝑄(𝑠) =

𝑠

∫
0

𝑇 (𝑢)𝑑𝑢.

However, the integral has no closed-form expression when 𝑎 ≠ 0, numerical techniques have to be employed to evaluate the points 
on the curve.

Assume 𝑠𝑖 = 𝑠0 + 𝑖Δ𝑠, 𝑖 = 0, 1, … , 𝑛, are a sequence of sampled parameters with a fixed arc length step Δ𝑠. A polygon 
𝑄(𝑠0)𝑄(𝑠1) ⋯ 𝑄(𝑠𝑛) is obtained as a discrete Euler spiral. For each 0 < 𝑖 < 𝑛, the turning angle 𝜃𝑖 at vertex 𝑄(𝑠𝑖) is estimated as 
the angle between tangent vector 𝑇 (𝑠

𝑖− 1
2
) and tangent vector 𝑇 (𝑠

𝑖+ 1
2
), where 𝑠

𝑖+ 1
2
= 1

2 (𝑠𝑖 + 𝑠𝑖+1). We have

𝜃𝑖 ∶= Φ(𝑠
𝑖+ 1

2
) − Φ(𝑠

𝑖− 1
2
) = 𝑎(Δ𝑠)2𝑖+ 𝑎(Δ𝑠)𝑠0 + 𝑏Δ𝑠, 𝑖 = 1,2,… , 𝑛− 1.

The angle 𝜃𝑖 is positive when the tangent vector is winding counter-clockwise at 𝑄(𝑠𝑖) and negative otherwise. If all 𝜃𝑖s have 
absolutely small values, the polygon 𝑄(𝑠0)𝑄(𝑠1) ⋯ 𝑄(𝑠𝑛) has nearly equal-length edges and linearly varying vertex angles. Assume 
𝑎 ≠ 0 and denote 𝑎(Δ𝑠)2 = Δ𝜃, it yields that 𝜃𝑖 − 𝜃𝑖−1 = Δ𝜃, 𝑖 = 2, 3, … , 𝑛 − 1. Because 𝑘′(𝑠) = 𝑎 and Δ𝜃 have the same sign, the 
curvature of an Euler spiral increases when Δ𝜃 > 0 and decreases when Δ𝜃 < 0.

Motivated by discrete Euler spirals, an Euler spiral-like polygon or Euler polygon is defined as follows.

Definition 2.1. Assume 𝑛 ≥ 3 is an integer and 𝑃0𝑃1… 𝑃𝑛 is a planar polygon. Assume 𝜃𝑖s are the signed angles from vector 𝑃𝑖−1𝑃𝑖 to 
vector 𝑃𝑖𝑃𝑖+1, 𝑖 = 1, 2, … , 𝑛 −1. If the edges and the vertex angles of the polygon satisfy ‖𝑃𝑖 −𝑃𝑖−1‖ = ‖𝑃𝑖+1 −𝑃𝑖‖, 𝜃𝑖 = 𝜃1 + (𝑖 −1)Δ𝜃, 
2

𝑖 = 1, 2, … , 𝑛 − 1, the polygon is referred as an Euler polygon.
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Fig. 1. An Euler polygon with equal-length edges and linearly varying vertex angles.

Let

R(𝜃) =
(
cos𝜃 −sin𝜃

sin𝜃 cos𝜃

)
.

Then R(𝜃)𝐯 represents a vector obtained by rotating vector 𝐯 with angle 𝜃. Particularly, if 𝜃 > 0 the rotation is counter-clockwise; 
otherwise, the rotation is clockwise. Given integer 𝑛 ≥ 3, vector 𝐯, real numbers 𝜃1 and Δ𝜃, the vertices of an Euler polygon starting 
from point 𝑃0 can be obtained by{

𝑃1 = 𝑃0 + 𝐯,
𝑃𝑖 = 𝑃𝑖−1 + R(𝜃1 +⋯+ 𝜃𝑖−1)𝐯, 𝑖 = 2,3,… , 𝑛,

(3)

where 𝜃𝑖 = 𝜃1 + (𝑖 − 1)Δ𝜃, 𝑖 = 2, … , 𝑛 − 1. Notice that R(𝜃1 +⋯ + 𝜃𝑖−1) = R(𝜃𝑖−1) ⋯ R(𝜃1), the second equality in Equation (3) can 
also be reformulated as 𝑃𝑖 −𝑃𝑖−1 = R(𝜃𝑖−1)(𝑃𝑖−1 −𝑃𝑖−2), 𝑖 = 2, 3, … , 𝑛. This means that the edges of an Euler polygon can be obtained 
by rotating previous edges sequentially. See Fig. 1 for an example of Euler polygon. From the definition of Euler polygons we know 
that an Euler polygon is approximately a discrete Euler spiral and it can approximate an Euler spiral even closely when the polygon 
is defined by increased number of vertices and absolutely smaller vertex angles. In next section we will show that Bézier or B-spline 
curves constructed with Euler polygons can be spirals when the vertex angles have been properly chosen.

3. Euler Bézier/B-spline spirals

In this section we construct Bézier or B-spline curves by choosing Euler polygons as control polygons. Simple necessary conditions 
for judging the curvature monotonicity of such Bézier or B-spline curves are given.

3.1. Euler Bézier spirals

Assume 𝑃0, 𝑃1, …, 𝑃𝑛 are a sequence of points given by Equation (3), a Bézier curve is obtained as 𝑃 (𝑡) =
∑𝑛

𝑖=0 𝑃𝑖𝐵𝑖,𝑛(𝑡), where 
𝐵𝑖,𝑛(𝑡) =

𝑛!
𝑖!(𝑛−𝑖)! 𝑡

𝑖(1 − 𝑡)𝑛−𝑖, 𝑖 = 0, 1, … , 𝑛, are Bernstein basis functions. To judge whether or not the Bézier curve is a spiral, the 
curvature and the curvature derivative will be computed.

Under the assumption that the control polygon is an Euler polygon, the first order derivative of a Bézier curve of degree 𝑛 is 
computed as

𝑃 ′(𝑡) = 𝑛

𝑛−1∑
𝑖=0

Δ𝑃𝑖𝐵𝑖,𝑛−1(𝑡),

where Δ𝑃0 = 𝑃1 − 𝑃0 = 𝐯, Δ𝑃𝑖 = 𝑃𝑖+1 − 𝑃𝑖 = R(𝜃1 +⋯ + 𝜃𝑖)𝐯, 𝑖 = 1, … , 𝑛 − 1. Consequently, the second order derivative of the Bézier 
curve is

𝑃 ′′(𝑡) = 𝑛(𝑛− 1)
𝑛−2∑
𝑖=0

Δ2𝑃𝑖𝐵𝑖,𝑛−2(𝑡),

where Δ2𝑃0 = Δ𝑃1 − Δ𝑃0 = R(𝜃1)𝐯 − 𝐯, Δ2𝑃𝑖 =Δ𝑃𝑖+1 − Δ𝑃𝑖 = R(𝜃1 +⋯ + 𝜃𝑖+1)𝐯 −R(𝜃1 +⋯ + 𝜃𝑖)𝐯, 𝑖 = 1, 2, … , 𝑛 − 2.

To compute curvature and curvature derivative of the curve 𝑃 (𝑡), we will have to compute 𝑈 (𝑡) = 𝑃 ′(𝑡) ∧ 𝑃 ′′(𝑡) and 𝑉 (𝑡) =‖𝑃 ′(𝑡)‖2, where “∧” represents the scalar cross product of two planar vectors and ‖ ⋅ ‖ represents the Euclidean norm of a vector. 
Assume ‖𝐯‖ = 𝑙. From the derivatives of the Bézier curve, it yields that

𝑈 (𝑡) = 𝑛2(𝑛− 1)𝑙2
{

sin𝜃1𝐵0,2𝑛−3(𝑡) +
[

𝑛− 2
2𝑛− 3

sin(𝜃1 + 𝜃2) +
1

2𝑛− 3
sin𝜃1

]
𝐵1,2𝑛−3(𝑡) +⋯

+
[

𝑛− 2
2𝑛− 3

sin(𝜃𝑛−2 + 𝜃𝑛−1) +
1

2𝑛− 3
sin𝜃𝑛−1

]
𝐵2𝑛−4,2𝑛−3(𝑡) + sin𝜃𝑛−1𝐵2𝑛−3,2𝑛−3(𝑡)

}
and [ ]
3

𝑉 (𝑡) = 𝑛2𝑙2 𝐵0,2𝑛−2(𝑡) + cos𝜃1𝐵1,2𝑛−2(𝑡) +⋯+ cos𝜃𝑛−1𝐵2𝑛−3,2𝑛−2(𝑡) +𝐵2𝑛−2,2𝑛−2(𝑡) .



Computer Aided Geometric Design 112 (2024) 102361X. Yang

Now, the curvature of the curve is computed by

𝑘(𝑡) = 𝑃 ′(𝑡) ∧ 𝑃 ′′(𝑡)

(‖𝑃 ′(𝑡)‖2) 32 = 𝑈 (𝑡)

𝑉 (𝑡)
3
2

(4)

and the derivative of curvature is obtained as

𝑘′(𝑡) =
𝑈 ′(𝑡)𝑉 (𝑡) − 3

2𝑈 (𝑡)𝑉 ′(𝑡)

𝑉 (𝑡)
5
2

. (5)

Particularly, by choosing 𝑡 = 0 or 𝑡 = 1, the curvatures and the curvature derivatives at the boundaries of the Bézier curve are obtained 
as

𝑘(0) = 𝑛− 1
𝑛

sin𝜃1
𝑙

, 𝑘(1) = 𝑛− 1
𝑛

sin𝜃𝑛−1
𝑙

and

𝑘′(0) = 𝑛− 1
𝑛𝑙

[(𝑛+ 1) sin𝜃1 + (𝑛− 2) sin(𝜃1 + 𝜃2) − 3(𝑛− 1) sin𝜃1 cos𝜃1],

𝑘′(1) = 𝑛− 1
𝑛𝑙

[−(𝑛+ 1) sin𝜃𝑛−1 − (𝑛− 2) sin(𝜃𝑛−2 + 𝜃𝑛−1) + 3(𝑛− 1) sin𝜃𝑛−1 cos𝜃𝑛−1].

It is known that the curvature derivative 𝑘′(𝑡) ≥ 0 or 𝑘′(𝑡) ≤ 0, 𝑡 ∈ [0, 1], and the curvature difference 𝑘(1) − 𝑘(0) > 0 or 𝑘(1) −
𝑘(0) < 0 when the curvature plot is monotone increasing or monotone decreasing, respectively. Consequently, if 𝑘′(0) or 𝑘′(1)
has an opposite sign with 𝑘(1) − 𝑘(0), the Bézier curve is not a spiral. To construct a Bézier curve with monotone curvature, we 
assume all vertex angles of the control polygon are acute angles. Under this assumption, we know that the sign of 𝑘(1) − 𝑘(0) =
𝑛−1
𝑛𝑙

(sin𝜃𝑛−1 − sin𝜃1) is equal to the sign of 𝜃𝑛−1 − 𝜃1, or equivalently, the sign of Δ𝜃. As our main goal is to construct Bézier or 
B-spline curves that have approximately linear curvature by using Euler polygons, we assume further that the curvature derivative of 
a Bézier spiral satisfies 𝑘′(𝑡) ≠ 0, 𝑡 ∈ [0, 1], which implies that 𝑘′(𝑡) and 𝑘(1) − 𝑘(0) have the same sign. However, the sign of function 
𝑘′(𝑡), 0 ≤ 𝑡 ≤ 1, is not easily judged. It is based on the sign of a curvature monotone variation function of degree 4𝑛 − 6 for degree 𝑛
Bézier curves generally (Wang et al., 2004). Based on the expressions of 𝑘′(0) and 𝑘′(1), we present here a simple necessary condition 
for checking the curvature monotonicity of the Bézier curve with Euler control polygon.

Proposition 3.1. Assume 𝑃 (𝑡) =
∑𝑛

𝑖=0 𝑃𝑖𝐵𝑖,𝑛(𝑡), 0 ≤ 𝑡 ≤ 1, is a Bézier curve of degree 𝑛 and the control points form an Euler polygon. 
Assume 𝜃𝑖 = 𝜃1 + (𝑖 − 1)Δ𝜃, 𝑖 = 1, 2, … , 𝑛 − 1, are the vertex angles of the polygon and satisfy |𝜃𝑖| < 𝜋

2 , 𝑖 = 1, 2, … , 𝑛 − 1. Let 𝑠0 =
(𝑛 + 1) sin𝜃1 + (𝑛 − 2) sin(𝜃1 + 𝜃2) − 3(𝑛 − 1) sin𝜃1 cos𝜃1 and 𝑠1 = −(𝑛 + 1) sin𝜃𝑛−1 − (𝑛 − 2) sin(𝜃𝑛−2 + 𝜃𝑛−1) + 3(𝑛 − 1) sin𝜃𝑛−1 cos𝜃𝑛−1. 
If the Bézier curve 𝑃 (𝑡) is a spiral with curvature derivative 𝑘′(𝑡) ≠ 0, 𝑡 ∈ [0, 1], then Δ𝜃, 𝑠0 and 𝑠1 have the same sign.

Remark. Based on Proposition 3.1 we know that a Bézier curve with Euler control polygon is not a spiral when Δ𝜃, 𝑠0 and 𝑠1 have 
different signs. If Δ𝜃, 𝑠0 and 𝑠1 have the same sign, the obtained Bézier curves are always spirals, as long as we have experimented. 
Actually, by dense sampling of curvatures or curvature derivatives on the domain, it is verified that 𝑘′(𝑡) > 0 or 𝑘′(𝑡) < 0, 0 ≤ 𝑡 ≤ 1, 
always holds when Δ𝜃, 𝑠0 and 𝑠1 have the same positive sign or the same negative sign, respectively. However, a rigorous proof of 
this assertion is missing at present. We call the Bézier curves satisfying Proposition 3.1 Euler Bézier spirals.

Proposition 3.2. Assume 𝑛0 ≥ 3 is an integer and Γ𝑛 = 𝑃 𝑛
0 𝑃 𝑛

1 … 𝑃 𝑛
𝑛

, 𝑛 = 𝑛0, 𝑛0 +1, …, are a sequence of Euler polygons. If the polygons Γ𝑛, 
𝑛 = 𝑛0, 𝑛0 + 1, …, converge to a segment of Euler spiral when 𝑛 approaches infinity, then the Bézier curves 𝑃𝑛(𝑡) =

∑𝑛

𝑖=0 𝑃 𝑛
𝑖
𝐵𝑖,𝑛(𝑡), 𝑡 ∈ [0, 1], 

𝑛 = 𝑛0, 𝑛0 + 1, …, converge to the same Euler spiral segment.

Proof. Assume each Euler polygon Γ𝑛 is represented as a piecewise linear function Γ𝑛(t) with vertices 𝑃 𝑛
𝑖
= Γ𝑛(

𝑖

𝑛
), 𝑖 = 0, 1, … , 𝑛, and 

lim𝑛→∞ Γ𝑛(𝑡) = 𝐫(𝑡), 𝑡 ∈ [0, 1], where 𝐫(𝑡) is a segment of Euler spiral, then the vertices of Γ𝑛 can be represented as 𝑃 𝑛
𝑖
= 𝐫( 𝑖

𝑛
) + 𝜀𝑛

𝑖
, 

where the residuals 𝜀𝑛
𝑖
s satisfy lim𝑛→∞max0≤𝑖≤𝑛 ‖𝜀𝑛

𝑖
‖ = 0. Consequently, the Bézier curve 𝑃𝑛(𝑡) can be reformulated as

𝑃𝑛(𝑡) =
𝑛∑

𝑖=0

[
𝐫
(

𝑖

𝑛

)
+ 𝜀𝑛

𝑖

]
𝐵𝑖,𝑛(𝑡) =

𝑛∑
𝑖=0

𝐫
(

𝑖

𝑛

)
𝐵𝑖,𝑛(𝑡) +

𝑛∑
𝑖=0

𝜀𝑛
𝑖
𝐵𝑖,𝑛(𝑡).

Based on Bernstein’s approximation theorem, we know that lim𝑛→∞
∑𝑛

𝑖=0 𝐫(
𝑖

𝑛
)𝐵𝑖,𝑛(𝑡) = 𝐫(𝑡), 𝑡 ∈ [0, 1]. Under the condition that 

lim𝑛→∞max0≤𝑖≤𝑛 ‖𝜀𝑛
𝑖
‖ = 0, we have lim𝑛→0

∑𝑛

𝑖=0 𝜀𝑛
𝑖
𝐵𝑖,𝑛(𝑡) = 0, 𝑡 ∈ [0, 1]. Combining these two limits together, we have lim𝑛→∞ 𝑃𝑛(𝑡) =

𝐫(𝑡), 𝑡 ∈ [0, 1]. This proves the proposition. □

From Proposition 3.2 we know that a Bézier curve with Euler control polygon can approximate an Euler spiral well when the 
control polygon approximates the Euler spiral with a high accuracy. In case a Bézier curve with Euler control polygon is not a spiral, 
one can increase the number of control points and recompute the Euler control polygon with fixed boundary points and boundary 
4

tangents. This process can be iterated, until an Euler Bézier spiral has been obtained. In next section, an algorithm for constructing 
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Fig. 2. (a) An Euler Bézier spiral of degree 10 and its curvature plot; (b) an Euler Bézier spiral of degree 30 and its curvature plot.

𝐺1 interpolating Euler Bézier spirals by elevating degrees and recomputing Euler control polygons from rough initial Bézier curves 
will be given.

Fig. 2(a) illustrates an Euler Bézier curve of degree 10. With control polygon satisfying necessary conditions stated in Proposi-

tion 3.1, the obtained Bézier curve is a spiral. The curvature plot of the curve demonstrates this observation. If we construct an Euler 
Bézier curve with even a higher degree and fixed boundary points and boundary tangents, the curve can lie closer to the control 
polygon and the curvature plot can be approximately linear. See Fig. 2(b) for an Euler Bézier spiral of degree 30 and its curvature 
plot.

3.2. Euler B-spline spirals

Just like Euler Bézier spirals, B-spline curves constructed with Euler polygons can also be spirals. Assume 𝑃0, 𝑃1, …, 𝑃𝑛 are the 
vertices of an Euler polygon and 𝜃𝑖 = 𝜃1 + (𝑖 −1)Δ𝜃, 𝑖 = 1, 2, … , 𝑛 −1, are the signed vertex angles of the polygon. A uniform B-spline 
curve of order 𝑘 (degree 𝑘 − 1) is obtained as 𝑃 (𝑡) =

∑𝑛

𝑖=0 𝑃𝑖𝑁𝑖,𝑘(𝑡), where 𝑁𝑖,𝑘(𝑡), 𝑖 = 0, 1, … , 𝑛, are the B-spline basis functions 
defined on knot vector 𝜏 = {𝑡0, 𝑡0 + 1, … , 𝑡0 + 𝑛 + 𝑘}, with 𝑡0 ∈ℝ. Though all B-spline curves of degree greater than or equal to 3 can 
be spirals, we derive here conditions under which cubic B-spline curves are spirals. This is because cubic B-spline curves are popular 
in practice. As seen later, control points of cubic Euler B-spline spirals can be derived in an efficient way to interpolate prescribed 
𝐺1 boundary data.

Since B-spline curves are piecewise polynomials, we first derive conditions for curvature monotonicity of one piece of cubic B-

spline curve. After then, the conditions for checking curvature monotonicity of a whole cubic B-spline curve will be given. W.l.o.g, we 
assume a piece of cubic B-spline curve is given by 𝑃 (𝑡) =

∑3
𝑗=0 𝑃𝑗𝑁𝑗,4(𝑡), 𝑡 ∈ [0, 1], where 𝑁0,4(𝑡) =

1
6 (1 − 𝑡)3, 𝑁1,4(𝑡) =

1
6 (3𝑡

3 −6𝑡2 +4), 
𝑁2,4(𝑡) =

1
6 (−3𝑡

3+3𝑡2+3𝑡 +1) and 𝑁3,4(𝑡) =
1
6 𝑡3. For ease of computation of curvatures and curvature derivatives at the boundaries we 

reformulate the B-spline curve as a cubic Bézier curve 𝑃 (𝑡) =
∑3

𝑗=0 𝑄𝑗𝐵𝑗,3(𝑡), where 𝑄0 = 𝑃1 +
1
6 (𝑃0 −𝑃1 +𝑃2 −𝑃1), 𝑄1 =

2
3𝑃1 +

1
3𝑃2, 

𝑄2 =
1
3𝑃1 +

2
3𝑃2 and 𝑄3 = 𝑃2 +

1
6 (𝑃1 −𝑃2 +𝑃3 −𝑃2). Fig. 3 illustrates a piece of cubic B-spline curve with Euler control polygon and 

the converted Bézier curve.

Denote 𝑃1 − 𝑃0 = 𝐯, 𝑃2 − 𝑃1 = R(𝜃1)𝐯 and 𝑃3 − 𝑃2 = R(𝜃1 + 𝜃2)𝐯. The first order derivative of the Bézier curve is obtained as

𝑃 ′(𝑡) = 3
2∑
Δ𝑄 𝐵 (𝑡),
5

𝑗=0
𝑗 𝑗,2
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Fig. 3. Conversion of a piece of cubic B-spline curve to a Bézier curve.

where Δ𝑄0 = 𝑄1 −𝑄0 =
1
6𝐯 +

1
6R(𝜃1)𝐯, Δ𝑄1 = 𝑄2 −𝑄1 =

1
3R(𝜃1)𝐯 and Δ𝑄2 = 𝑄3 −𝑄2 =

1
6R(𝜃1)𝐯 +

1
6R(𝜃1 + 𝜃2)𝐯. Further more, the 

second order derivative of the curve is computed by

𝑃 ′′(𝑡) = 6Δ2𝑄0𝐵0,1(𝑡) + 6Δ2𝑄1𝐵1,1(𝑡),

where Δ2𝑄0 =
1
6 [R(𝜃1)𝐯 − 𝐯] and Δ2𝑄1 =

1
6 [R(𝜃1 + 𝜃2)𝐯 −R(𝜃1)𝐯]. Based on the computed derivatives, and let 𝑙 = ‖𝐯‖, we have

𝑈 (𝑡) = 𝑃 ′(𝑡) ∧ 𝑃 ′′(𝑡)

= 𝑙2

{
sin𝜃1𝐵0,3(𝑡) +

[1
2
sin𝜃1 +

1
6
sin(𝜃1 + 𝜃2) +

1
6
sin𝜃2

]
𝐵1,3(𝑡)

+
[1
6
sin𝜃1 +

1
6
sin(𝜃1 + 𝜃2) +

1
2
sin𝜃2

]
𝐵2,3(𝑡) + sin𝜃2𝐵3,3(𝑡)

}
and

𝑉 (𝑡) =
[
𝑃 ′(𝑡)

]2
= 𝑙2

[1
2
(1 + cos𝜃1)𝐵0,4(𝑡) +

1
2
(1 + cos𝜃1)𝐵1,4(𝑡) +⋯+ 1

2
(1 + cos𝜃2)𝐵3,4(𝑡) +

1
2
(1 + cos𝜃2)𝐵4,4(𝑡)

]
.

Substituting above 𝑈 (𝑡) and 𝑉 (𝑡) into Equation (4) and Equation (5), the curvatures and the curvature derivatives at the ends of the 
cubic B-spline segment are obtained as

𝑘(0) =
2 sin 𝜃1

2

𝑙 cos2 𝜃1
2

, 𝑘(1) =
2 sin 𝜃2

2

𝑙 cos2 𝜃2
2

(6)

and

𝑘′(0) = 1
𝑙 cos2 𝜃1

2

[
−3sin

𝜃1
2

+ sin
(

𝜃1
2

+ 𝜃2

)]
, 𝑘′(1) = 1

𝑙 cos2 𝜃2
2

[
3 sin

𝜃2
2

− sin
(

𝜃1 +
𝜃2
2

)]
. (7)

Assume the two vertex angles of the control polygon of a piece of cubic B-spline curve satisfy |𝜃1| < 𝜋

2 and |𝜃2| < 𝜋

2 . Let 𝑓 (𝜃) =
2sin𝜃

𝑙 cos2 𝜃
. It yields that 𝑓 ′(𝜃) = 2

𝑙

1+sin2 𝜃

cos3 𝜃
> 0 for 𝜃 ∈ (− 𝜋

2 , 𝜋2 ). Since 𝑓 (𝜃) is monotone increasing, from Equation (6), we know that 
𝑘(1) − 𝑘(0) = 𝑓 ( 𝜃2

2 ) − 𝑓 ( 𝜃1
2 ) and 𝜃2 − 𝜃1 have the same sign. Then, a necessary condition for judging the curvature monotonicity of 

one piece of cubic B-spline curve is obtained as follows.

Proposition 3.3. Assume 𝑃 (𝑡) =
∑3

𝑗=0 𝑃𝑗𝑁𝑗,4(𝑡), 0 ≤ 𝑡 ≤ 1, is a piece of cubic B-spline curve and the control points form an Euler polygon. 
Assume the two vertex angles satisfy |𝜃1| < 𝜋

2 , |𝜃2| < 𝜋

2 and 𝜃1 ≠ 𝜃2. Let ℎ0 = −3 sin 𝜃1
2 + sin( 𝜃1

2 + 𝜃2) and ℎ1 = 3 sin 𝜃2
2 − sin(𝜃1 +

𝜃2
2 ). If 

the cubic B-spline segment 𝑃 (𝑡) is a spiral with curvature derivative 𝑘′(𝑡) ≠ 0, 0 ≤ 𝑡 ≤ 1, then 𝜃2 − 𝜃1, ℎ0 and ℎ1 have the same sign.

Practically, a cubic B-spline segment 𝑃 (𝑡) as defined in Proposition 3.3 is always a spiral when the signs of 𝜃2 − 𝜃1, ℎ0 and ℎ1 are 
the same. Then the necessary condition in Proposition 3.3 can be employed to judge whether or not a piece of cubic B-spline curve 
with Euler control polygon is a spiral. In case the control polygon of the cubic B-spline segment is inflectional, the signs of curvature 
derivatives at the ends of the curve segment can be obtained directly from the relationship between two vertex angles.

Proposition 3.4. Assume 𝑃 (𝑡) is a piece of cubic B-spline curve stated in Proposition 3.3. If the two vertex angles of the control polygon 
satisfy − 𝜋

2 < 𝜃1 < 0 < 𝜃2 <
𝜋

2 , then 𝑘′(0) > 0 and 𝑘′(1) > 0. Similarly, if − 𝜋

2 < 𝜃2 < 0 < 𝜃1 <
𝜋

2 , then 𝑘′(0) < 0 and 𝑘′(1) < 0.

Proof. We prove the inequalities 𝑘′(0) > 0 and 𝑘′(1) > 0. The inequalities 𝑘′(0) < 0 and 𝑘′(1) < 0 can be proved similarly.

Under the assumption that − 𝜋

2 < 𝜃1 < 0 < 𝜃2 <
𝜋

2 , we have − 𝜋

4 <
𝜃1
2 <

𝜃1
2 + 𝜃2 < 𝜃2 <

𝜋

2 and − 𝜋

2 < 𝜃1 < 𝜃1 +
𝜃2
2 <

𝜃2
2 <

𝜋

4 . It yields 
6

that
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sin
(

𝜃1
2

+ 𝜃2

)
> sin

(
𝜃1
2

)
> 3 sin

(
𝜃1
2

)
and

3 sin
(

𝜃2
2

)
> sin

(
𝜃2
2

)
> sin

(
𝜃1 +

𝜃2
2

)
.

From Equation (7) we have 𝑘′(0) > 0 and 𝑘′(1) > 0. This completes the proof. □

Based on Proposition 3.4 we know that a piece of cubic B-spline curve with inflectional Euler control polygon is a spiral when 
the two angles at the intermediate vertices are acute angles.

For a cubic B-spline curve with more than 4 control points, the curve is consisting of two or more pieces of cubic curves. If every 
piece of the cubic B-spline curve is a spiral and curvature derivatives of all spirals have the same sign, the B-spline curve is referred as 
a cubic B-spline spiral. Particularly, if the control polygon of a cubic B-spline curve is an Euler polygon, whether or not the B-spline 
curve is a spiral should just be judged by checking the curvature monotonicity of the first and the last segments of the cubic B-spline 
curve.

Proposition 3.5. Assume 𝑛 >= 4 is an integer and planar polygon 𝑃0𝑃1… 𝑃𝑛 is an Euler polygon with vertex angles satisfying 𝜃𝑘 = 𝜃1 +
(𝑘 −1)Δ𝜃, |𝜃𝑘| < 𝜋

2 , 𝑘 = 1, 2, … , 𝑛 −1. Assume 𝐶𝑖(𝑢) = 𝑃𝑖−1𝑁0,4(𝑢) +𝑃𝑖𝑁1,4(𝑢) +𝑃𝑖+1𝑁2,4(𝑢) +𝑃𝑖+2𝑁3,4(𝑢), 0 ≤ 𝑢 ≤ 1, 𝑖 = 1, 2, … , 𝑛 −2, 
are pieces of cubic B-spline curves defined by the Euler polygon. Denote the curvatures of the B-spline segments as 𝑘𝑖(𝑢), 𝑖 = 1, 2, … , 𝑛 − 2. 
Let 𝐹0(𝜃) = −3 sin 𝜃

2 + sin( 3𝜃2 + Δ𝜃) and 𝐹1(𝜃) = 3 sin 𝜃

2 − sin( 3𝜃2 − Δ𝜃). The signs of curvature derivatives can be judged as follows.

(1) If Δ𝜃 > 0, 𝐹0(𝜃1) > 0, 𝐹1(𝜃2) > 0, 𝐹0(𝜃𝑛−2) > 0 and 𝐹1(𝜃𝑛−1) > 0, then 𝑘′
𝑖
(0) > 0, 𝑘′

𝑖
(1) > 0, 𝑖 = 1, 2, … , 𝑛 − 2.

(2) If Δ𝜃 < 0, 𝐹0(𝜃1) < 0, 𝐹1(𝜃2) < 0, 𝐹0(𝜃𝑛−2) < 0 and 𝐹1(𝜃𝑛−1) < 0, then 𝑘′
𝑖
(0) < 0, 𝑘′

𝑖
(1) < 0, 𝑖 = 1, 2, … , 𝑛 − 2.

Proof. We prove the B-spline spirals with monotone increasing curvature profiles, the B-spline spirals with monotone decreasing 
curvature profiles can be proved in the same way.

Based on Equation (7), we know that the curvature derivatives at the ends of the cubic B-spline segments are

𝑘′
𝑖
(0) = 1

𝑙 cos2 𝜃𝑖

2

𝐹0(𝜃𝑖), 𝑘′
𝑖
(1) = 1

𝑙 cos2 𝜃𝑖+1
2

𝐹1(𝜃𝑖+1), 𝑖 = 1,2,… , 𝑛− 2. (8)

From their definition, the derivatives of 𝐹0(𝜃) and 𝐹1(𝜃) are obtained as

𝐹 ′
0(𝜃) = −3

2
cos 𝜃

2
+ 3

2
cos

(3𝜃
2

+Δ𝜃

)
= −3sin

(
𝜃 + Δ𝜃

2

)
sin

(
𝜃

2
+ Δ𝜃

2

)
,

𝐹 ′
1(𝜃) =

3
2
cos 𝜃

2
− 3

2
cos

(3𝜃
2

−Δ𝜃

)
= 3sin

(
𝜃 − Δ𝜃

2

)
sin

(
𝜃

2
− Δ𝜃

2

)
.

If 𝐹0(𝜃1) > 0, 𝐹1(𝜃2) > 0, 𝐹0(𝜃𝑛−2) > 0 and 𝐹1(𝜃𝑛−1) > 0, it yields that 𝑘′1(0) > 0, 𝑘′1(1) > 0, 𝑘′
𝑛−2(0) > 0 and 𝑘′

𝑛−2(1) > 0. To prove 
that 𝑘′

𝑖
(0) > 0, 𝑘′

𝑖
(1) > 0, 𝑖 = 2, 3, … , 𝑛 − 3, we should prove that 𝐹0(𝜃𝑖) > 0 and 𝐹1(𝜃𝑖+1) > 0, 𝑖 = 2, 3, … , 𝑛 − 3. We show that the 

inequalities hold in following two subcases.

(a) The vertex angles satisfy 0 < 𝜃1 < 𝜃2 < ⋯ < 𝜃𝑛−1 <
𝜋

2 or − 𝜋

2 < 𝜃1 < 𝜃2 < ⋯ < 𝜃𝑛−1 < 0.

In this case all vertex angles have the same sign. From the expressions of 𝐹 ′
0(𝜃) and 𝐹 ′

1(𝜃), we know that 𝐹 ′
0(𝜃) < 0 when 

𝜃 ∈ [𝜃1, 𝜃𝑛−2] and 𝐹 ′
1(𝜃) > 0 when 𝜃 ∈ [𝜃2, 𝜃𝑛−1]. Since 𝐹0(𝜃𝑛−2) > 0 and 𝐹0(𝜃) is monotone decreasing, we have 𝐹0(𝜃1) > 𝐹0(𝜃2) >

⋯ > 𝐹0(𝜃𝑛−2) > 0. Because 𝐹1(𝜃2) > 0 and 𝐹1(𝜃) is monotone increasing, we have 0 < 𝐹1(𝜃2) < 𝐹1(𝜃3) < ⋯ < 𝐹1(𝜃𝑛−1). From Equation 
(8) we know that 𝑘′

𝑖
(0) > 0, 𝑘′

𝑖
(1) > 0 when 𝑖 = 2, 3, … , 𝑛 − 3.

(b) The vertex angles satisfy − 𝜋

2 < 𝜃1 < ⋯ < 𝜃𝑖0
< 0 < 𝜃𝑖0+1 < ⋯ < 𝜃𝑛−1 <

𝜋

2 .

Based on Proposition 3.4 we know that 𝑘′
𝑖0
(0) > 0 and 𝑘′

𝑖0
(1) > 0. It follows that 𝐹0(𝜃𝑖0

) > 0 and 𝐹1(𝜃𝑖0+1) > 0. To prove the 
proposition, we should prove that 𝐹0(𝜃𝑖) > 0, 𝑖 = 1, 2, … , 𝑖0 − 1, 𝑖0 + 1, … , 𝑛 − 2, and 𝐹1(𝜃𝑖) > 0, 𝑖 = 2, 3, … , 𝑖0, 𝑖0 + 2, … , 𝑛 − 1. By 
direct computation, we know that 𝐹 ′

0(−Δ𝜃) = 0 and 𝐹 ′′
0 (−Δ𝜃) = 3

2 sin
Δ𝜃

2 > 0. It follows that 𝐹 ′
0(𝜃) < 0 when 𝜃 ∈ [𝜃1, −Δ𝜃). Since 

𝜃𝑖0−1 = 𝜃𝑖0
− Δ𝜃 < −Δ𝜃, we have

𝐹0(𝜃1) > 𝐹0(𝜃2) > ⋯ > 𝐹0(𝜃𝑖0−1) > 𝐹0(−Δ𝜃) = 2 sin Δ𝜃

2
> 0.

On the other hand, since 𝐹 ′
0(𝜃) < 0 when 𝜃 ∈ [𝜃𝑖0+1, 𝜃𝑛−2], we have

𝐹0(𝜃𝑖0+1) > 𝐹0(𝜃𝑖0+2) > ⋯ > 𝐹0(𝜃𝑛−2) > 0
7

when 𝑘′
𝑛−2(0) > 0 and 𝐹0(𝜃𝑛−2) > 0.
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Fig. 4. A cubic Euler B-spline spiral and its curvature plot.

From the expression 𝐹 ′
1(𝜃) = 3 sin(𝜃 − Δ𝜃

2 ) sin( 𝜃

2 − Δ𝜃

2 ), we know that 𝐹 ′
1(𝜃) > 0 when 𝜃 ∈ [𝜃2, 𝜃𝑖0

]. Therefore, we have

0 < 𝐹1(𝜃2) < 𝐹1(𝜃3) < ⋯ < 𝐹1(𝜃𝑖0
)

when 𝑘′1(1) > 0 and 𝐹1(𝜃2) > 0. By direct computation, we know that 𝐹 ′
1(Δ𝜃) = 0 and 𝐹 ′′

1 (Δ𝜃) = 3
2 sin

Δ𝜃

2 > 0. It follows that 𝐹 ′
1(𝜃) > 0

when 𝜃 ∈ (Δ𝜃, 𝜃𝑛−1]. Since 𝜃𝑖0+2 = 𝜃𝑖0+1 + Δ𝜃 > Δ𝜃, we have

𝐹1(𝜃𝑛−1) > ⋯ > 𝐹1(𝜃𝑖0+3) > 𝐹1(𝜃𝑖0+2) > 𝐹1(Δ𝜃) = 2 sin Δ𝜃

2
> 0.

This proves the proposition. □

Based on Proposition 3.5, we should just check the signs of Δ𝜃, 𝐹0(𝜃1), 𝐹1(𝜃2), 𝐹0(𝜃𝑛−2) and 𝐹1(𝜃𝑛−1) to judge the curvature 
monotonocity of a cubic B-spline curve with Euler control polygon. If these five terms have different signs, the B-spline curve is not a 
spiral. On the other hand, if the mentioned terms have the same sign, the B-spline curve usually has monotone curvature plot. Fig. 4

illustrates a cubic B-spline curve constructed with 35 control points. When the control points form an Euler polygon and all vertex 
angles satisfy the conditions stated in Proposition 3.5, the obtained B-spline curve is an Euler B-spline spiral that consists of 32 pieces 
of cubic spirals.

4. 𝑮𝟏 interpolation by Euler Bézier/B-spline spirals

This section presents algorithms for constructing Euler Bézier spirals or Euler B-spline spirals that interpolate given 𝐺1 Hermite 
data at the boundaries.

4.1. 𝐺1 interpolation by Euler Bézier spirals

Assume 𝑃𝑎 and 𝑃𝑏 are two distinctive points on a plane, and 𝑇𝑎 and 𝑇𝑏 are two unit tangents associated with the points. The 
goal of 𝐺1 interpolation by an Euler Bézier spiral is to find a Bézier curve 𝑃 (𝑡) =

∑𝑛

𝑖=0 𝑃𝑖𝐵𝑖,𝑛(𝑡), 𝑡 ∈ [0, 1], such that the Bézier curve 
satisfies the conditions stated in Proposition 3.1 and interpolates the 𝐺1 Hermite data at the boundaries.

The strategy to construct an Euler Bézier spiral interpolating given 𝐺1 Hermite data consists of following key algorithm steps:

(a) Construct an initial Bézier curve matching the 𝐺1 Hermite data at the boundaries.

(b) Smooth the control polygon of the 𝐺1 interpolating Bézier curve as an Euler polygon.

(c) Elevate the degree of the Bézier curve and re-smooth the control polygon of the curve when the necessary condition for an Euler 
Bézier spiral is not satisfied.

We explain the details of the algorithm steps. Starting from given boundary data, one can construct an initial Bézier curve of 
degree 𝑛 just by choosing 𝑃0 = 𝑃𝑎, 𝑃𝑛 = 𝑃𝑏, 𝑃1 = 𝑃0 + 𝜆𝑇𝑎, 𝑃𝑛−1 = 𝑃𝑛 −𝜇𝑇𝑏 for some positive numbers 𝜆, 𝜇. Thus the obtained Bézier 
curve interpolates the given boundary points and matches the given tangent vectors at the ends. Since there may exist multiple 
spirals interpolating the same set of 𝐺1 Hermite data, the remaining control points of the initial Bézier curve can be chosen to form a 
polygon with an expected shape. As will be seen in next section, different initial Bézier curves may lead to different final interpolating 
Bézier spirals.

If the control polygon of a 𝐺1 interpolating Bézier curve is not an Euler polygon, it should be refined or smoothed. The control 
polygon can be smoothed iteratively, with boundary points and tangents fixed, until an Euler polygon has been obtained or a 
maximum iteration number has been reached. For each round of smoothing, we first compute the signed vertex angles 𝜃𝑖, 𝑖 =
1, 2, … , 𝑛 − 1, for the polygon. After then, the angles are refined by linear averaging as
8

𝜃̂𝑖 =
1
3
(𝜃𝑖−1 + 𝜃𝑖 + 𝜃𝑖+1), 𝑖 = 2,3,… , 𝑛− 2. (9)
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Fig. 5. Smooth the control polygon for a Bézier curve.

Algorithm 1: 𝐺1 interpolation by Euler Bézier spiral.

/ / subroutine for checking an Euler Bézier spiral ;

bool EulerBezierSpiralCheck(P(t)):

𝑛 ← degree of Bézier curve 𝑃 (𝑡);
if (the lengths of control polygon edges are not equal) then return FALSE;

Compute vertex angles 𝜃𝑖, 𝑖 = 1, 2, … , 𝑛 − 1 ;

if (max1≤𝑖≤𝑛−1{|𝜃𝑖|} > 𝜋

2
) then return FALSE;

if (𝑛 > 3) then compute 𝜃𝐷𝐷 by Eq. (12); else 𝜃𝐷𝐷 = 0;

if (𝜃𝐷𝐷 > 10−6) then return FALSE;

Compute Δ𝜃, 𝑠0 , 𝑠1 by Eq. (13);

if Δ𝜃, 𝑠0 , 𝑠1 have the same sign then

return TRUE;

else

return FALSE;

end

/ / subroutine for smoothing the control polygon of a Bézier curve ;

void SmoothingBezierControlPolygon(P(t)):

𝑛 ← degree of Bézier curve 𝑃 (𝑡);
if (𝑛 <= 3) then return;

Compute vertex angles 𝜃𝑖, 𝑖 = 1, 2, … , 𝑛 − 1;

if (max1≤𝑖≤𝑛−1{|𝜃𝑖|} > 𝜋

2
) then max_count←2; else max_count←10000;

s_count ← 1; 𝜃𝐷𝐷 ← 10.0; 𝑙𝑎𝑣𝑒 ← 0; 𝑙𝑏𝑜𝑢𝑛𝑑 ← 2‖𝑃𝑛 − 𝑃0‖;

while (s_count<max_count)&(𝜃𝐷𝐷 > 10−6)&(𝑙𝑎𝑣𝑒 < 𝑙𝑏𝑜𝑢𝑛𝑑 ) do

for 𝑖 = 2 to 𝑛 − 2 do

Compute filtered vertex angle 𝜃̂𝑖 by Eq. (9);

Compute refined control point 𝑃𝑖 by Eq. (10);

end

Compute average edge length 𝑙𝑎𝑣𝑒;

Compute refined vertices 𝑃1 and 𝑃𝑛−1 by Eq. (11) ;

Recompute vertex angles 𝜃𝑖, 𝑖 = 1, 2, … , 𝑛 − 1, and refine 𝜃𝐷𝐷 by Eq. (12);

s_count++;

end

/ / the main procedure ;

void EulerBezierSpiralInterpolation(max_vtx_num):
input : Boundary points 𝑃𝑎 , 𝑃𝑏 and boundary tangents 𝑇𝑎 , 𝑇𝑏

output : An Euler Bézier spiral 𝑃 (𝑡) interpolating the boundary data

Construct a 𝐺1 interpolating Bézier curve 𝑃 (𝑡) of degree ≥ 3 ;

v_num ← number of control points of 𝑃 (𝑡);
while (v_num<max_vtx_num)&(EulerBezierSpiralCheck(P(t))==FALSE) do

Elevate degree of 𝑃 (𝑡) by Equation (14);

SmoothingBezierControlPolygon(𝑃 (𝑡));
v_num++;

end

Output (P(t));

Linear filtering can guarantee the linearity of the final angles when the smoothing process converges. The vertices 𝑃𝑖, 𝑖 = 2, 3, … , 𝑛 −2, 
are then refined to match the filtered angles. Particularly, vertex 𝑃𝑖 will be refined to a new position 𝑃𝑖 such that ‖𝑃𝑖 − 𝑃𝑖−1‖ =‖𝑃𝑖+1 − 𝑃𝑖‖ and the angle between vector 𝑃𝑖 − 𝑃𝑖−1 and vector 𝑃𝑖+1 − 𝑃𝑖 is 𝜃̂𝑖; see Fig. 5(b). As 𝑃𝑖 lies on the perpendicular bisector 
to line segment 𝑃𝑖−1𝑃𝑖+1 and the angle between line 𝑃𝑖−1𝑃𝑖 and line 𝑃𝑖−1𝑃𝑖+1 is 𝜃̂𝑖

2 , the new position of vertex 𝑃𝑖 is computed by

𝑃 + 𝑃 𝜃̂ ( ) 𝑃 − 𝑃
9

𝑃𝑖 =
𝑖−1 𝑖+1

2
− tan 𝑖

2
R 𝜋

2
𝑖+1 𝑖−1

2
. (10)
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To guarantee that the refined Bézier curves still interpolate the given boundary points and have prescribed tangents at the ends, the 
boundary vertices 𝑃0 and 𝑃𝑛 are fixed. Meanwhile, the new position of 𝑃1 or 𝑃𝑛−1 lies on the tangent line that passes through point 
𝑃0 with tangent direction 𝑇𝑎 or the tangent line that passes through point 𝑃𝑛 with opposite direction of 𝑇𝑏; see Figs. 5(a) and 5(c). 
As our goal is to construct an Euler polygon with equal length edges, the new positions of 𝑃1 and 𝑃𝑛−1 are computed by

𝑃1 = 𝑃0 + 𝑙𝑎𝑣𝑒𝑇𝑎,

𝑃𝑛−1 = 𝑃𝑛 − 𝑙𝑎𝑣𝑒𝑇𝑏,
(11)

where 𝑙𝑎𝑣𝑒 is the average edge length of current control polygon.

After each round of vertex smoothing, we recompute the vertex angles for the refined control polygon. To check whether or not 
the control polygon is an Euler polygon, we compute the second order differences of the vertex angles. Let

𝜃𝐷𝐷 = max
2≤𝑖≤𝑛−2

{|2𝜃𝑖 − 𝜃𝑖−1 − 𝜃𝑖+1|}. (12)

If 𝜃𝐷𝐷 < 10−6, the second order differences of the angles are regarded as vanishing and the vertex angles form an arithmetic sequence. 
Meanwhile, the polygon edges have almost the same length when the vertex angles vary linearly. At this time, the control polygon 
of the Bézier curve is regarded as an Euler polygon and the smoothing process will be stopped. Otherwise, the control polygon will 
be smoothed once again. Usually, the smoothing process converges well and stops after a finite number of iterations in practice. 
In case the iteration number excels a large number, e.g. 10000, the smoothing process will be stopped. Practically, the control 
polygon of an initial interpolating curve may only consist of a small number of vertices and some vertex angles may be obtuse 
angles. This kind of interpolating curves can rarely be refined into spirals without adding more control points. To accelerate the 
smoothing process and improve robustness, the maximum smoothing iteration number can be chosen a small number such as 2 or 5 
when max1≤𝑖≤𝑛−1{|𝜃𝑖|} > 𝜋

2 holds. To keep the updated vertices from deviating too much from initial control polygons, the lengths 
of polygon edges should be bounded. If the average edge length of current polygon is greater than a predefined bound such as 
2‖𝑃𝑛 − 𝑃0‖, the smoothing process will be stopped.

The curvature monotonicity of a Bézier curve with Euler control polygon can be checked based on Proposition 3.1. Assume 
the control points of the Bézier curve are still denoted as 𝑃𝑖 , 𝑖 = 0, 1, … , 𝑛, and the vertex angles of the control polygon are 𝜃𝑖 , 
𝑖 = 1, 2, … , 𝑛 − 1. We compute

Δ𝜃 = (𝜃𝑛−1 − 𝜃1)∕(𝑛− 2),
𝑠0 = (𝑛+ 1) sin𝜃1 + (𝑛− 2) sin(𝜃1 + 𝜃2) − 3(𝑛− 1) sin𝜃1 cos𝜃1,
𝑠1 = −(𝑛+ 1) sin𝜃𝑛−1 − (𝑛− 2) sin(𝜃𝑛−2 + 𝜃𝑛−1) + 3(𝑛− 1) sin𝜃𝑛−1 cos𝜃𝑛−1.

(13)

If the obtained Δ𝜃, 𝑠0 and 𝑠1 have different signs, the Bézier curve is not a spiral. We then increase the number of control points of 
the Bézier curve by degree elevation (Farin, 2001). The new control points are obtained as

𝑃𝑖 =
𝑖

𝑛+ 1
𝑃𝑖−1 +

(
1 − 𝑖

𝑛+ 1

)
𝑃𝑖, 𝑖 = 0,1,… , 𝑛+ 1. (14)

After then, the control polygon of the reformulated Bézier curve is smoothed again. This process can be iterated, until the computed 
Δ𝜃, 𝑠0 and 𝑠1 have the same sign or a maximum vertex number has been reached. More algorithm details are summarized in 
Algorithm 1.

4.2. 𝐺1 interpolation by cubic Euler B-spline spirals

The strategy for interpolating 𝐺1 boundary data by cubic Euler B-spline spirals is analogous with that for 𝐺1 interpolation by 
Euler Bézier spirals. Given boundary points 𝑃𝑎 and 𝑃𝑏, together with boundary tangents 𝑇𝑎 and 𝑇𝑏, the key steps to construct an 
interpolating cubic Euler B-spline spiral are as follows:

(a) Construct an initial uniform cubic B-spline curve.

(b) Smooth the control polygon of the B-spline curve such that the polygon becomes an Euler polygon and the obtained B-spline 
curve interpolates the 𝐺1 boundary data.

(c) Increase the number of control points of the B-spline curve and re-smooth the control polygon when the necessary condition for 
an Euler B-spline spiral is not satisfied.

Similar to the algorithm for 𝐺1 interpolation by Euler Bézier spirals, the main procedure for 𝐺1 interpolation by cubic Euler 
B-spline spirals is given in Algorithm 2. The subroutine for checking cubic Euler B-spline spirals and the subroutine for smoothing 
the control polygon of a B-spline curve are omitted here. These two subroutines can be obtained by minor modifications of subroutine 
for checking an Euler Bézier spiral or subroutine for smoothing the control polygon of a Bézier curve, which are already given in 
Algorithm 1.

Given 𝐺1 boundary data, the initial cubic B-spline curve can be constructed freely. It may not necessarily interpolate the given 
boundary points and boundary tangents. Practically, we can just choose the control polygon of the initial B-spline curve as the 
control polygon of an interpolating Bézier curve. Though a uniform cubic B-spline curve constructed from the control polygon of an 
10

interpolating Bézier curve does not interpolate the prescribed points at the ends, it does define the basic shape of a final interpolating 
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Algorithm 2: 𝐺1 interpolation by cubic Euler B-spline spiral.

/ / the main procedure ;

void EulerBsplineSpiralInterpolation(max_vtx_num):
input : Boundary points 𝑃𝑎 , 𝑃𝑏 and boundary tangents 𝑇𝑎 , 𝑇𝑏

output : A cubic Euler B-spline spiral 𝑃 (𝑡) interpolating the boundary data

Construct an initial B-spline curve 𝑃 (𝑡) with 4 or more control points ;
v_num ← number of control points of 𝑃 (𝑡);
while (v_num<max_vtx_num)&(EulerBsplineSpiralCheck(P(t))==FALSE) do

Refine and increase the control points for 𝑃 (𝑡) by Equation (14);

SmoothingBsplineControlPolygon(𝑃 (𝑡));
v_num++;

end

Output (P(t));

Fig. 6. Refine the boundary control points such that the refined cubic B-spline curve interpolates the 𝐺1 boundary data.

B-spline curve. Since there may exist multiple B-spline spirals interpolating the same set of boundary points and boundary tangents, 
the control polygon of an initial B-spline curve can be chosen having similar shape just like the expected interpolating spiral.

The goal of the subroutine for smoothing the control polygon of a B-spline curve is to make the control polygon of the curve as 
an Euler polygon and the obtained cubic B-spline curve interpolates the given points and tangents at the ends. Assume the control 
points of a current cubic B-spline curve are 𝑃𝑖, 𝑖 = 0, 1, … , 𝑛. The control points are smoothed using the same technique as that for 
smoothing the control polygon of an Euler Bézier spiral except the first two and the last two points. By computing the vertex angles 
𝜃𝑖, 𝑖 = 1, 2, … , 𝑛 − 1, for the control polygon, the interior control points 𝑃𝑖, 𝑖 = 2, 3, … , 𝑛 − 2, are refined by Equation (10) using the 
filtered angles computed by Equation (9). From the first segment of B-spline curve 𝐶1(𝑢) =

∑3
𝑗=0 𝑃𝑗𝑁𝑗,4(𝑢), 𝑢 ∈ [0, 1], we know that 

𝐶 ′
1(0) =

1
2 (𝑃2 −𝑃0) and 𝐶1(0) =

1
6𝑃0 +

2
3𝑃1 +

1
6𝑃2. To guarantee that the tangent direction of the refined B-spline curve at the starting 

point is parallel to vector 𝑇𝑎, the refined boundary control point 𝑃0 should satisfy 𝑃2 − 𝑃0‖𝑇𝑎. Let 𝑙𝑎 = (𝑃2 − 𝑃𝑎) ⋅ 𝑇𝑎. The boundary 
point 𝑃0 is refined by

𝑃0 =
{

𝑃2 − 2𝑙𝑎𝑇𝑎, if 𝑙𝑎 > 0
𝑃𝑎 + 𝑙𝑎𝑇𝑎, otherwise

This choice of 𝑃0 can guarantee ‖𝑃𝑎 − 𝑃0‖ = ‖𝑃𝑎 − 𝑃2‖ when 𝑙𝑎 > 0 and keep the end tangent of the obtained B-spline curve from 
having opposite direction with 𝑇𝑎 when 𝑙𝑎 < 0. Let 𝑁𝑎 = R( 𝜋

2 )𝑇𝑎. Based on the assumption that ‖𝑃1 − 𝑃0‖ = ‖𝑃2 − 𝑃1‖, we assume 
that 𝑃1 = 𝑃𝑎 + ℎ𝑎𝑁𝑎; see Fig. 6(a). When the cubic B-spline curve interpolates 𝑃𝑎 at the end, it yields

𝑃𝑎 =
1
6

𝑃0 +
2
3

𝑃1 +
1
6

𝑃2.

From this equation we have

𝑃𝑎 −
1
2
(𝑃0 + 𝑃2) = 2ℎ𝑎𝑁𝑎.

Dot either side of the equation by 𝑁𝑎, we have ℎ𝑎 =
1
2 [𝑃𝑎 −

1
2 (𝑃0 + 𝑃2)] ⋅𝑁𝑎.

In the same way as the refinement of first two control points, the last two control points are also refined based on the 𝐺1

interpolation at the end; see Fig. 6(b). Let 𝑙𝑏 = (𝑃𝑛−2 − 𝑃𝑏) ⋅ 𝑇𝑏. Point 𝑃𝑛 is first refined as

𝑃𝑛 =
{

𝑃𝑛−2 − 2𝑙𝑏𝑇𝑏, if 𝑙𝑏 < 0
𝑃𝑏 + 𝑙𝑏𝑇𝑏, otherwise

Let 𝑁𝑏 = R( 𝜋

2 )𝑇𝑏. Point 𝑃𝑛−1 is then refined as

𝑃𝑛−1 = 𝑃𝑏 + ℎ𝑏𝑁𝑏,
11

where ℎ𝑏 =
1
2 [𝑃𝑏 −

1
2 (𝑃𝑛−2 + 𝑃𝑛)] ⋅𝑁𝑏.
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Fig. 7. Interpolation of a pair of 𝐺1 Hermite data that lie on a line and have opposite tangent directions by various curves: (a) a degree 10 Bézier curve with Euler 
control polygon; (b) an Euler Bézier spiral of degree 48; (c) a cubic Euler B-spline spiral with 43 control points. In this and following examples the circles ‘◦’ denote 
the control points of the interpolating Bézier or B-spline curves while the solid dots ‘∙’ denote the vertices of initial control polygons that match the given boundary 
data. The cyan lines indicate the curvature combs of the interpolating curves. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

If 𝑙𝑎 > 0 and 𝑙𝑏 < 0, the refined B-spline curve interpolates 𝑃𝑎, 𝑃𝑏 and has tangents 𝑇𝑎, 𝑇𝑏 at the two end points; otherwise, the 
B-spline curve may not interpolate the given boundary data. If the control polygon of an interpolating B-spline curve is not an Euler 
polygon or the obtained curve does not interpolate the prescribed end points and end tangents, the polygon will be smoothed again. 
This process stops until an interpolating B-spline curve with Euler control polygon is obtained or a maximum iteration number has 
been reached. Similar to 𝐺1 interpolation by Euler Bézier spirals, the iteration will be stopped when the average edge length of 
current polygon is greater than a predefined bound, e.g. 2‖𝑃𝑏 − 𝑃𝑎‖. Practically, the smoothing process converges well and a 𝐺1

interpolating cubic B-spline curve with Euler control polygon can be obtained after dozens or hundreds times of polygon smoothing.

The check of curvature monotonicity of a 𝐺1 interpolating cubic B-spline curve with Euler control polygon is similar with that 
for a Bézier curve. Instead of Proposition 3.1, we verify the signs of curvature derivatives based on Proposition 3.5. Particularly, 
we should check the signs of Δ𝜃, 𝐹0(𝜃1), 𝐹1(𝜃2), 𝐹0(𝜃𝑛−2) and 𝐹1(𝜃𝑛−1) as defined in Proposition 3.5. If these five terms have the 
same sign, the interpolating B-spline curve is regarded as an Euler B-spline spiral; otherwise, the B-spline curve is not a spiral. If a 
B-spline curve is checked as a non-spiral curve, the control points are refined by Equation (14). In our experiments, even if the vertex 
angles satisfy conditions stated in Proposition 3.5 but |𝜃1| > 0.1𝜋 or |𝜃𝑛−1| > 0.1𝜋, we still refine and add more control points for the 
B-spline curve. When the control points have been increased, the control polygon will be re-smoothed by the subroutine for polygon 
smoothing. This process continues until an Euler B-spline spiral with bounded vertex angles is obtained or a maximum iteration 
number has been reached. Euler B-spline spirals with bounded vertex angles are usually much fairer than B-spline spirals just with 
monotone curvature profiles.

Fig. 7 illustrates examples of 𝐺1 interpolation by the proposed algorithms. Given two points together with two opposite unit 
tangents on a line, a polygon consisting of 8 vertices is first constructed to interpolate the 𝐺1 boundary data; see Fig. 7(a). Though 
the initial control polygon has several obtuse vertex angles with different signs, a degree 10 Bézier curve with Euler control polygon 
is obtained after 3 rounds of degree elevation and polygon smoothing by employing Algorithm 1. It is checked that the vertex angle 
difference Δ𝜃 of the control polygon of the interpolating Bézier curve has the same sign with the curvature derivative 𝑘′(0) but an 
opposite sign with 𝑘′(1). Since the necessary condition stated in Proposition 3.1 is not satisfied, the obtained Bézier curve is not a 
spiral. As the control polygon is an Euler polygon, the Bézier curve still has a pleasing looking shape. In Fig. 7(b) we first interpolate 
the 𝐺1 Hermite data by a modified initial polygon. By employing Algorithm 1 and choosing a large bound for the vertex number, 
the procedure stops and an interpolating Euler Bézier spiral of degree 48 is obtained when the computed Δ𝜃, 𝑘′(0) and 𝑘′(1) have 
the same sign. Starting from the same initial control polygon as in Fig. 7(b), a 𝐺1 interpolating cubic Euler B-spline spiral with 43 
control points is obtained by employing Algorithm 2; see Fig. 7(c) for the interpolating curve. By computing curvatures at densely 
sampled points on the interpolating Bézier or B-spline curves, we see that the obtained Euler Bézier spiral and Euler B-spline spiral 
12

do have monotone curvature plots even though they are constructed based on some necessary conditions.
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Fig. 8. Interpolation of 𝐺1 Hermite data by (a) Euler Bézier spirals, or (b) cubic Euler B-spline spirals. For clarity purpose, only the curvature combs for the last 
interpolating Euler Bézier spiral or the last interpolating Euler B-spline spiral have been plotted.

5. Experimental examples

In this section we present several interesting examples to show the results of geometric Hermite interpolation by Euler Bézier 
spirals or Euler B-spline spirals.

Firstly, we interpolate prescribed geometric Hermite data by Euler Bézier spirals or Euler B-spline spirals with default choices of 
initial control polygons. For two given boundary points 𝑃𝑎 = (−1, 0)𝑇 and 𝑃𝑏 = (1, 0)𝑇 , the boundary tangents are chosen as 𝑇𝑎 =
(−1, 0)𝑇 and 𝑇𝑏 = (cos(−0.75𝜋 + 𝑘𝜋

10 ), sin(−0.75𝜋 + 𝑘𝜋

10 ))
𝑇 , 𝑘 = 0, 1, … , 11. For each pair of geometric Hermite data (𝑃𝑎, 𝑇𝑎), (𝑃𝑏, 𝑇𝑏), 

the control points of an initial cubic interpolating Bézier curve are given by 𝑃0 = 𝑃𝑎, 𝑃1 = 𝑃0 + 0.35𝑙𝑒𝑇𝑎, 𝑃2 = 𝑃𝑏 −0.35𝑙𝑒𝑇𝑏, 𝑃3 = 𝑃𝑏, 
where 𝑙𝑒 = ‖𝑃𝑏 − 𝑃𝑎‖. By employing Algorithm 1, Euler Bézier spirals of degree 122, 58, 46, 41, 40, 41, 43, 46, 46, 43, 41, 40 
are obtained to interpolate the given Hermite data, respectively. See Fig. 8(a) for the boundary data and the interpolating Euler 
Bézier spirals. Keeping 𝑃𝑎 and 𝑃𝑏 unchanged, we then choose 𝑇𝑎 = (cos(0.75𝜋), sin(0.75𝜋))𝑇 and 𝑇𝑏 = (cos(−𝜋 + 𝑘𝜋

6 ), sin(−𝜋 + 𝑘𝜋

6 ))𝑇 , 
𝑘 = 0, 1, … , 11. By the same technique as Euler Bézier spirals, initial control polygons each consists of four vertices are computed 
based on the geometric Hermite data. Employing Algorithm 2, cubic Euler B-spline spirals consisting of 77, 87, 62, 29, 25, 27, 31, 35, 
38, 42, 44, 53 control points are obtained to interpolate the geometric Hermite data, respectively. See Fig. 8(b) for the interpolating 
curves.

Secondly, we interpolate 𝐺1 boundary data by Euler Bézier spirals. Assume the boundary points are 𝑃𝑎 = (0, 0)𝑇 and 𝑃𝑏 =
(1.25, 0)𝑇 and the unit tangents at the two points are 𝑇𝑎 = (−1, 0)𝑇 and 𝑇𝑏 = (0, −1)𝑇 , respectively. To interpolate the given boundary 
data by an Euler Bézier spiral, a convex control polygon that consists of 7 control points is first constructed to match the boundary 
data. Starting from the initial control polygon, a convex Euler Bézier spiral of degree 43 is obtained by employing Algorithm 1; see 
Fig. 9(a) for the interpolating Bézier spiral. By keeping the end points and end tangents unchanged, the initial control polygon has 
been modified as an inflectional polygon; see Fig. 9(b). As a result, an Euler Bézier spiral of degree 66 is obtained to interpolate the 
prescribed boundary data. Differently from the convex Euler Bézier spiral illustrated in Fig. 9(a), the interpolating Euler Bézier spiral 
in Fig. 9(b) has an inflection point.

Thirdly, we interpolate 𝐺1 boundary data by cubic Euler B-spline spirals. We choose the boundary points 𝑃𝑎 = (−1, 0)𝑇 and 
𝑃𝑏 = (1, −0.5)𝑇 , and choose the tangents at the two boundary points as 𝑇𝑎 = 𝑇𝑏 = (−

√
2∕2, −

√
2∕2)𝑇 . Same as 𝐺1 interpolation 

by Euler Bézier spirals, rough initial control polygons are first constructed to interpolate the given boundary data. Since the two 
boundary tangents are the same, it is expected that the interpolating spirals are inflectional. Starting from the 𝐺1 boundary data, 
13

two initial control polygons with 4 or 9 control points are constructed to match the boundary data. By employing Algorithm 2, two 
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Fig. 9. Interpolation of 𝐺1 boundary data by Euler Bézier spirals: (a) the interpolating Euler Bézier spiral of degree 43; (b) the interpolating Euler Bézier spiral of 
degree 66.

cubic Euler B-spline spirals with 42 or 105 control points are obtained to interpolate the prescribed boundary data; see Fig. 10 for 
the initial control polygons and final interpolating B-spline curves.

Lastly, we construct a rotational surface by rotating an interpolating cubic Euler B-spline spiral. Assume the 𝐺1 boundary are 
defined by a polygon consisting of vertices (−0.4, −1.5)𝑇 , (−0.8, −1.5)𝑇 , (−0.3, 0.6)𝑇 and (−0.6, 1.5)𝑇 on the 𝑥𝑧-plane. By using 
the same technique as the last example, a cubic Euler B-spline spiral consisting of 24 control points is obtained to interpolate the 
boundary points and boundary tangents that are defined by the initial rough polygon. See Fig. 11(a) for the interpolating B-spline 
curve. By rotating the Euler B-spline spiral along the 𝑧-axis, we obtain a rotational surface as illustrated in Fig. 11(b). The isophote 
lines in Fig. 11(b) and Gaussian curvature plot in Fig. 11(c) show the smoothness and fairness of the rotational surface.

6. Conclusions and future work

In this paper we have proposed to define Euler Bézier spirals and Euler B-spline spirals by using Euler polygons that have equal 
length edges and linear varying vertex angles. Euler Bézier spirals and Euler B-spline spirals can have approximately linear varying 
curvature plots when the vertex angles of control polygons satisfy some simple necessary conditions. Interpolation of prescribed 𝐺1

boundary data by the proposed curve models can be implemented in a simple but efficient way. Due to their quality and simplicity, 
Euler Bézier spirals and Euler B-spline spirals can be applied in NURBS based CAD systems as well as somewhere conventional Euler 
spirals have been applied.

At present, the curvature monotonicity of all computed Euler Bézier spirals and Euler B-spline spirals have been successfully 
verified by dense sampling of curvature functions. Even so, a rigorous proof of the curvature monotonicity under the proposed 
14

necessary conditions for the construction of Euler Bézier spirals or Euler B-spline spirals is still an open problem which should be 
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Fig. 10. Interpolation of 𝐺1 boundary data by Euler B-spline spirals: (a) the interpolating cubic Euler B-spline spiral with 42 control points; (b) the interpolating cubic 
Euler B-spline spiral with 105 control points. The boundary points and boundary tangents are given by the boundary legs of the initial red polygons.

studied further in the future. As another future work, definitions and applications of Euler rational Bézier spirals and Euler rational 
B-spline spirals in 2D or 3D space also deserve further study.
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Fig. 11. (a) The 𝐺1 interpolating cubic Euler B-spline spiral on the 𝑥𝑧-plane; (b) the surface obtained by rotating the Euler B-spline spiral along the 𝑧-axis and the 
isophote lines of the surface; (c) Gaussian curvature plot of the rotating surface, where red, green or blue colors represent positive, zero or negative curvatures of the 
surface.
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