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DYNAMIC EVALUATION OF FREE-FORM CURVES
AND SURFACES∗

XUNNIAN YANG† AND JIALIN HONG‡

Abstract. Free-form curves and surfaces represented by control points together with well-defined
basis functions are widely used in computer aided geometric design. Efficient evaluation of points
and derivatives of free-form curves and surfaces plays an important role in interactive rendering or
CNC machining. In this paper we show that free-form curves with properly defined basis functions
are the solutions of linear differential systems. By employing typical numerical methods for solving
the differential systems, points and derivatives of free-form curves and surfaces can be computed in
a dynamical way. Compared with traditional methods for evaluating free-form curves and surfaces
there are two advantages of the proposed technique. First, the proposed method is universal and
efficient for evaluating a large class of free-form curves and surfaces. Second, the evaluation needs
only arithmetic operations even when the free-form curves and surfaces are defined using some
transcendental functions.
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1. Introduction. Free-form curves and surfaces constructed by blending con-
trol points with a set of basis functions have been widely used in the fields of geo-
metric modeling, computer graphics, and computer aided manufacturing [6]. Besides
polynomial based basis functions, the blending functions can also be transcendental
functions. The nonpolynomial basis functions can be used to represent some typical
curves without rational forms [37] or represent machining trajectories with low fre-
quencies [9]. The basis functions other than polynomials used in the fields of geometric
modeling and manufacturing include the exponential function [24], the trigonometric
functions [3, 32, 29, 14], the hyperbolic functions [19], or their mixtures with polyno-
mial functions [2, 34].

Efficient sampling and evaluation of points and derivatives of free-form curves and
surfaces play important roles in fast rendering or high speed machining. Many meth-
ods have been developed for evaluating free-form curves and surfaces with polynomial
bases. Points on polynomial or rational Bézier curves and surfaces can be evaluated
robustly by the de Casteljau algorithm or the rational de Casteljau algorithm with
simple arithmetic operations [6, 4]. Due to their fractal nature, Bézier curves can even
be rendered by iterating from an arbitrary initial shape [10]. By converting the basis
functions into power bases, Bézier or NURBS (Nonuniform rational B-spline) curves
and surfaces can be rendered efficiently by employing forward differencing [18, 20, 8].
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However, the differencing method cannot be extended to general types of free-form
curves and surfaces. If the bases are defined by some transcendental functions the
points and derivatives of the free-form curves and surfaces have to be evaluated by
using specially designed procedures or devices [15, 25].

Several popular basis functions for constructing free-form curves and surfaces are
chosen as the elements of null spaces of certain constant coefficient differential opera-
tors [12, 16]. Based on the nice properties of the differential operators, blossoming or
recursive evaluation algorithms can be derived for the basis functions. In this paper
we show that free-form curves represented by control points and a large class of basis
functions are the solutions of linear differential systems when the spaces spanned by
the basis functions are closed with respect to a differential operation. By employing
typical numerical methods such as the Taylor method or the implicit midpoint scheme
to solve the differential systems, the points and derivatives of free-form curves can
be calculated exactly or approximately with high accuracies. It is also shown that a
tensor-product surface can be generated by evaluating a set of isoparametric curves
through solving linear differential systems. By representing free-form curves as the
solutions of linear differential systems, free-form curves defined in various function
spaces can be evaluated in the same way. Since the linear differential systems can
be solved using only elementary arithmetic operations, free-form curves and surfaces
defined by polynomials as well as transcendental basis functions can be evaluated or
rendered on general computing machines.

The rest of this paper is structured as follows. In section 2 we show that a wide
class of free-form curves used in computer aided geometric design are the solution
curves of linear differential systems. A dynamic approach to evaluating free-form
curves and surfaces is introduced in section 3 by employing popular numerical methods
to solve the differential systems. Several interesting examples and comparisons with
some existing methods of curve generation are given in section 4. Section 5 concludes
the paper with a brief summary of our work.

2. Representing free-form curves as the solutions of linear differential
systems. In this section we show that free-form curves that are constructed by blend-
ing control points with basis functions are the solutions of linear differential systems
when the spaces spanned by the basis functions are closed with respect to a differen-
tial operation. Rational curves are also the solutions of differential systems when the
points are represented by homogeneous coordinates.

2.1. Construction of linear differential systems for representing free-
form curves in Rn+1. A control point based free-form curve in Rd can be repre-
sented by

(1) X(t) =

n∑
i=0

Xiφi(t), t ∈ [α, β],

where Xi ∈ Rd, i = 0, 1, . . . , n, are the control points and φi(t), i = 0, 1, . . . , n, are the
blending or the basis functions. In particular, if the functions φi(t) in (1) are chosen
as the Bernstein basis functions, i.e., φi(t) = Bi,n(t) = n!

i!(n−i)! t
i(1 − t)n−i, t ∈ [0, 1],

i = 0, 1, . . . , n, the free-form curve X(t) is just the well-known Bézier curve [7]. To
represent circles, cylinders, or more general types of curves and surfaces with periodic
property in nonrational form, the blending functions are constructed by trigonometric
functions [30] or a combination of trigonometric functions and polynomials [37, 3,
21]. If hyperbolic curves are generated, the blending functions include the hyperbolic
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Table 1
Free-form curves and linear spaces spanned by their basis functions.

Free-form curves The space of basis functions (Ω)
Bézier curves [1, 7] span{B0,n(t), B1,n(t), . . . , Bn,n(t)}

C-curves [37] span{1, t, cos t, sin t}
Trigonometric curves [31] span{1, cos t, sin t, . . . , cosnt, sinnt}

Hyperbolic curves [33] span{1, cosh t, sinh t, . . . , coshnt, sinhnt}
Involute compatible [22] span{1, t, cos t, sin t, t cos t, t sin t}

Algebraic-trigonometric [3] span{1, t, . . . , tn−2, cos t, sin t}
Algebraic-hyperbolic [17] span{1, t, . . . , tn−2, cosh t, sinh t}

Hyperbolic-trigonometric [2] span{1, cosh t, sinh t, cos t, sin t}
AHT Bézier curves [36] span{1, t, . . . , tn−5, cosh t, sinh t, cos t, sin t}
Intrinsically defined [35] span{1, cos t, sin t, t cos t, t sin t, . . . , tn cos t, tn sin t}

functions [17, 36, 2]. Several typical blending functions constructed by polynomials,
transcendental functions, or their mixtures are summarized in Table 1.

Using linear combinations of the initial algebraic or transcendental functions, a
system of normalized totally positive (NTP) bases can be constructed for a known
function space. A change of basis does not change the vector space spanned by the
original bases and the free-form curves defined by NTP bases follow the shapes of their
control polygons very well [26, 28]. Besides the description of free-form curves using
control polygons, a fair planar curve can be represented using ordinary bases when it
is designed based on an intrinsic expression of planar curves [35]. From Table 1 we
can easily check that the space Ω spanned by each set of basis functions is closed with
respect to differentiation by d/dt. We show that the free-form curves constructed by
these basis functions are the solutions of differential systems, and then new methods
will be developed for evaluating the free-form curves and surfaces based on the new
representation.

Theorem 1. Suppose that φi(t), i = 0, 1, . . . , n, are a set of basis functions for
a linear space Ω and φ′i(t) ∈ Ω for i = 0, 1, . . . , n. Let Xi = (x0i, x1i, . . . , xni)

T ,
i = 0, 1, . . . , n, be a set of points in Rn+1. If the matrix MX = (X0, X1, . . . , Xn) is
nonsingular, the curve X(t) =

∑n
i=0Xiφi(t), t ∈ [α, β], is one solution curve of a

linear differential system.

Proof. To prove the theorem we first rewrite the free-form curve as

X(t) = (X0, X1, . . . , Xn)


φ0(t)
φ1(t)

...
φn(t)

 .

Under the assumption that the matrix MX = (X0, X1, . . . , Xn) is nonsingular, the
basis vector can be reformulated as


φ0(t)
φ1(t)

...
φn(t)

 = (X0, X1, . . . , Xn)−1X(t).
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On the other hand, because φ′i(t) ∈ Ω we have

φ′i(t) = (ci0, ci1, . . . , cin)


φ0(t)
φ1(t)

...
φn(t)


for i = 0, 1, . . . , n. Hence, the derivative of X(t) is

X ′(t) = (X0, X1, . . . , Xn)


φ′0(t)
φ′1(t)

...
φ′n(t)



= (X0, X1, . . . , Xn)


c00 c01 · · · c0n
c10 c11 · · · c1n
...

...
. . .

...
cn0 cn1 · · · cnn




φ0(t)
φ1(t)

...
φn(t)

 .

By substituting (X0, X1, . . . , Xn)−1X(t) for the basis vector, we obtain a linear dif-
ferential system

X ′(t) = AX(t),

where

(2) A = (X0, X1, . . . , Xn)


c00 c01 · · · c0n
c10 c11 · · · c1n
...

...
. . .

...
cn0 cn1 · · · cnn

 (X0, X1, . . . , Xn)−1.

This proves the theorem.

From Theorem 1 we know that a free-form curve X(t) =
∑n
i=0Xiφi(t) passing

through a point Xorig ∈ Rn+1 at t = α is just the solution curve of the differential
system

(3)

{
X ′(t) = AX(t), t ∈ [α, β],
X(α) = Xorig,

where the coefficient matrix A is given by (2).

2.2. Construction of linear differential systems for representing free-
form curves in R2 or R3. For practical modeling free-form curves are often defined
on a plane or in three-dimensional (3D) space. Except for a few special cases, the
number of control points of a planar or a spatial free-form curve is usually greater than
the dimension of the space in which the curve is defined. To construct a differential
system for representing these free-form curves, we take a similar technique as in [10],
lifting the control points and the curves as well to a space of higher dimension. When
a lifted curve has been evaluated, the points of the original curve are computed by
orthogonal projection of the sampled points onto the plane or the 3D space.

We illustrate the method by constructing differential systems for representing
free-form curves in R3. Differential systems for representing planar curves can be
constructed in a similar way.
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Suppose that Pi = (xi, yi, zi)
T , i = 0, 1, . . . , n, are a sequence of control points in

3D space and a free-form curve is defined by

P (t) =

n∑
i=0

Piφi(t), t ∈ [α, β].

It is known that the matrix MP = (P0, P1, . . . , Pn) is not a square matrix for n ≥ 3
and the coefficient matrix of the differential system (3) can no longer be derived by
(2). Nevertheless, the free-form curve can still be represented as the solution curve
of a differential system by lifting the control points to Rn+1 when the original matrix
MP has a rank of 3.

Without loss of generality we assume that the 3 × 3 matrix composed of points
Pn−2, Pn−1, and Pn has full rank. We lift the control points from R3 to Rn+1 by
choosing X0 = (x0, y0, z0, 1, 0, . . . , 0)T , X1 = (x1, y1, z1, 0, 1, . . . , 0)T , . . . , Xn−3 =
(xn−3, yn−3, zn−3, 0, 0, . . . , 1)T , and Xi = (xi, yi, zi, 0, 0, . . . , 0)T for i = n−2, n−1, n.
Thus, X(t) =

∑n
i=0Xiφi(t) is a curve in Rn+1. Let

(4) MX =



x0 x1 · · · xn−3 xn−2 xn−1 xn
y0 y1 · · · yn−3 yn−2 yn−1 yn
z0 z1 · · · zn−3 zn−2 zn−1 zn
1 0 · · · 0 0 0 0
0 1 · · · 0 0 0 0
...

...
. . .

...
...

...
...

0 0 · · · 1 0 0 0


.

Since the matrix (Pn−2, Pn−1, Pn) is nonsingular, the matrix MX is also regular.
Denote the matrix MX as a block matrix(

PI PII
In−2 0

)
,

where In−2 is the identity matrix of order n − 2, PI and PII are the corresponding
submatrices of MX . The inverse of the matrix MX is

M−1
X =

(
0 In−2

P−1
II −P−1

II PI

)
.

According to Theorem 1, X(t) is the solution curve of a differential system as given
by (2) and (3) where the matrix (X0, X1, . . . , Xn) is now defined by (4). Since the
solution curve of the differential system lies in Rn+1, the original curve P (t) can be
restored by choosing the first three coordinates of X(t).

From a geometric point of view, if a line that passes through two distinct points
on the xy-plane does not pass through the origin, the 2 × 2 matrix composed of the
coordinates of the two points is not singular. Similarly, if three points in 3D space
do not lie on the same line and the plane spanned by the three points does not pass
through the origin, the 3× 3 matrix composed of the coordinates of the three points
has full rank. For a free-form curve P (t) defined on the xy-plane or in 3D space, we
have the following proposition.

Proposition 2. Suppose that the linear space Ω = span{φ0(t), φ1(t), . . . , φn(t)}
is closed with respect to a differential operation and P (t) =

∑n
i=0 Piφi(t) is either a
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curve lying on the xy-plane or a curve in 3D space. If a line that passes through two
distinct control points on the xy-plane or a plane spanned by three control points in
the 3D space does not pass through the origin, the lifted curve in Rn+1 is the solution
curve of a differential system.

Besides orthogonal projection, a free-form curve in R2 or R3 can also be gener-
ated by a projective transformation of a normal curve which lies in a space of higher
dimension [11]. Let Ei, i = 0, 1, . . . , n, be the ith column vector of an identity ma-
trix of order n + 1; a normal curve in Rn+1 is given by ϕ(t) =

∑n
i=0Eiφi(t) =

(φ0(t), φ1(t), . . . , φn(t))T . The free-form curve P (t) =
∑n
i=0 Piφi(t), t ∈ [α, β], is then

generated by the projective transformation P (t) = (P0, P1, . . . , Pn)ϕ(t). Based on
Theorem 1, ϕ(t) is the solution curve of a linear differential system. When ϕ(t) and
its derivatives are evaluated by solving a differential system, points and derivatives
on P (t) will be generated by the projective transformation. Even though it is guar-
anteed that a differential system can be constructed to represent a normal curve, the
orthogonal projection method is still preferred for evaluating free-form curves since
there is no need to compute a projective transformation.

2.3. Construction of linear differential systems for representing ratio-
nal curves. Besides their nonrational counterparts, rational curves and surfaces are
still mandatory for shape representation and geometric modeling [5]. Some typical
curves can even be represented exactly by using rational transcendental functions [14].
Suppose that the real weights ωi, i = 0, 1, . . . , n, of rank 1 are associated with the
control points Pi ∈ Rd, i = 0, 1, . . . , n. A rational curve in Rd is defined by

(5) R(t) =

∑n
i=0 ωiPiφi(t)∑n
i=0 ωiφi(t)

, t ∈ [α, β],

where φi(t) are basis functions that are defined by polynomials or by a mixture of
polynomials and transcendental functions. If the denominator does not vanish for any
t ∈ [α, β] the rational curve R(t) is valid over the parameter domain.

A rational curve can also be defined by control points together with a set of

rational basis functions, i.e., R(t) =
∑n
i=0 Piφ̄i(t), where φ̄i(t) = ωiφi(t)∑n

j=0 ωjφj(t)
, i =

0, 1, . . . , n. Unless all denominators of functions φ̄i(t) are equal to a constant, the
space spanned by the rational basis functions is not closed with respect to a differential
operation. Then, the rational curve R(t) is not the solution of any explicit differential
system. Nevertheless, a differential system can still be constructed for representing the
original rational curve by employing homogeneous coordinates. Let P̃i = (ωiP

T
i , ωi)

T ,

i = 0, 1, . . . , n; a nonrational curve in Rd+1 is defined as R̃(t) =
∑n
i=0 P̃iφi(t). Thus,

the rational curve R(t) is the projection of R̃(t) onto hyperplane ω = 1 [6]. When

points on the curve R̃(t) have been evaluated, the points on the rational curve R(t)
can be generated by projecting the points from Rd+1 onto hyperplane ω = 1.

Since a rational curve with two or three control points is just a line or a planar
curve which can be generated by even simpler methods, we consider the construction
of differential systems for representing planar rational curves that have at least three
control points or representing spatial rational curves that have at least four control
points.

Proposition 3. Suppose that the linear space Ω = span{φ0(t), φ1(t), . . . , φn(t)}
is closed with respect to a differential operation and R(t) =

∑n
i=0 ωiPiφi(t)∑n
i=0 ωiφi(t)

, t ∈ [α, β],

is a valid rational curve lying on the xy-plane or in 3D space, where ωi 6= 0 are the
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weights and Pi = (xi, yi)
T or Pi = (xi, yi, zi)

T are the control points. If all of the
control points do not lie on the same line on the xy-plane or all control points do not
lie on the same plane in the 3D space, the preimage of the rational curve R(t) is the
solution curve of a differential system.

Proof. We prove the proposition for the planar case; the differential systems for
representing rational curves in 3D space can be constructed in a similar way.

Suppose that a rational curve R(t) lies on the xy-plane; the homogeneous coor-
dinates of the control points are (ωixi, ωiyi, ωi)

T , i = 0, 1, . . . , n. Assume that n ≥ 2
and the last three control points do not lie on the same line on the xy-plane, which
implies that the vectors Pn − Pn−2 and Pn−1 − Pn−2 are not parallel. Then the
determinant∣∣∣∣∣∣
ωn−2xn−2 ωn−1xn−1 ωnxn
ωn−2yn−2 ωn−1yn−1 ωnyn
ωn−2 ωn−1 ωn

∣∣∣∣∣∣ = ωn−2ωn−1ωn

∣∣∣∣ xn−1 − xn−2 xn − xn−2

yn−1 − yn−2 yn − yn−2

∣∣∣∣ 6= 0.

By lifting the points (ωixi, ωiyi, ωi)
T to a space of dimension n+ 1, the matrix com-

posed of the lifted control points is

ω0x0 ω1x1 · · · ωn−3xn−3 ωn−2xn−2 ωn−1xn−1 ωnxn
ω0y0 ω1y1 · · · ωn−3yn−3 ωn−2yn−2 ωn−1yn−1 ωnyn
ω0 ω1 · · · ωn−3 ωn−2 ωn−1 ωn
1 0 · · · 0 0 0 0
0 1 · · · 0 0 0 0
...

...
. . .

...
...

...
...

0 0 · · · 1 0 0 0


.

Denote the column vectors of the above matrix from left to right as Xi, i = 0, 1, . . . , n.
The lifted free-form curve in Rn+1 isX(t) =

∑n
i=0Xiφi(t). Since the matrix composed

of the lifted control points is nonsingular, a differential system for which the lifted
free-form curve X(t) is a solution can be constructed by the same technique as in
section 2.2.

Popular rational spline curves such as NURBS curves can always be decomposed
into piecewise rational curves using the knot insertion technique [27]. After knot
insertion, each piece of a rational curve is represented as the solution curve of an
individual differential system.

3. Evaluating free-form curves and surfaces by solving linear differen-
tial systems. In this section we pay attention to techniques for generating free-form
curves by numerically solving linear differential systems. Free-form surface generation
by computing points and derivatives of series of free-form curves will also be discussed.

3.1. Dynamic evaluation of free-form curves. The solution of differential
system (3) can be formulated as X(t) = eA(t−α)Xorig. However, the solution curve
can be evaluated explicitly only when the exponential of the coefficient matrix has
an explicit expression. Though many methods have been given in the literature to
tackle this problem, the exponentials of matrices are not always computed by sim-
ple elementary functions [23]. Even if the coefficient matrix A is diagonalizable, the
elements of the exponential matrix are still represented by transcendental functions
which eventually need special procedures to compute. Instead of computing exponen-
tials of matrices, in this paper we evaluate free-form curves and surfaces by employing
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efficient numerical methods to solve the linear differential systems. The numerical
methods need only arithmetic operations and can give high accuracy or even exact
results for general types of linear differential systems.

The first method we use to solve the differential system (3) is the Taylor method.
This method can give exact solutions when the solution curves of the differential
system are polynomial curves and the technique usually gives high-accuracy results
for other types of solution curves. Assume K points are evaluated on the interval
[α, β] except for the initial point Xorig; the time step can be chosen as ∆t = β−α

K .
Starting from the initial point Y0 = Xorig, all other points Yi, i = 1, 2, . . . ,K, are
computed sequentially.

Suppose that X(ti) is a point on the curve and let h = ∆t. The point X(ti + h)
is computed by the Taylor method as

X(ti + h) = X(ti) + hX ′(ti) +
h2

2!
X ′′(ti) + · · ·+ hs

s!
X(s)(ti) + o(hs)

= X(ti) + hAX(ti) +
h2A2

2!
X(ti) + · · ·+ hsAs

s!
X(ti) + o(hs)

= MhX(ti) + o(hs),

where Mh = I+hA+ h2A2

2! +· · ·+ hsAs

s! and I is the identity matrix of order n+1. Since
the coefficient matrix Mh is independent of any specially chosen point, the numerical
solution of (3) is

(6) Yi = MhYi−1, i = 1, 2, . . . ,K.

From the above derivation we know that if X(t) is a polynomial curve of degree n,
the discrete points generated by (6) lie on the original curve exactly when s ≥ n.

Another simple but efficient method we can use to solve the differential system
(3) is the implicit midpoint scheme [13]. Suppose that X(ti) and X(ti + ∆t) are two
neighboring points on the curve. The differential system (3) is discretized as

X(ti + ∆t)−X(ti)

∆t
= A

X(ti + ∆t) +X(ti)

2
.

If X(ti) is known, X(ti + ∆t) can then be estimated by solving this discrete system.
We generalize the implicit midpoint scheme for computing the discrete solutions of
the differential system (3). Let ∆t = β−α

K be the time step and Yi, i = 0, 1, . . . ,K, be
the sequence of points to be estimated with time step ∆t. Starting from the initial
point Y0 = Xorig, the remaining points are computed by solving the equation

(7)
Yi − Yi−1

h(∆t)
= A

Yi + Yi−1

2
,

where h(∆t) is a function that satisfies h(0) = 0 and h′(0) > 0. By solving for Yi
from (7) we obtain the iteration formula

(8) Yi =

(
I − h(∆t)

2
A

)−1(
I +

h(∆t)

2
A

)
Yi−1, i = 1, 2, . . . ,K,

for the discrete solutions. Equation (8) reduces to the implicit midpoint scheme
by choosing h(∆t) = ∆t. Next we show that points of a quadratic curve at selected
parameters can be evaluated exactly by solving a differential system using the iteration
formula (8).
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Proposition 4. Suppose that Xi = (x0i, x1i, x2i)
T , i = 0, 1, 2, are points that

satisfy det(X0, X1, X2) 6= 0 and a quadratic curve is defined by X(t) =
∑2
i=0XiBi,2(t),

where Bi,2(t) are the Bernstein basis functions. By choosing h(∆t) = ∆t, the points
sampled on the curve with time step ∆t can be computed sequentially by solving a
linear differential system using (8).

Proof. Similar to the derivation of (2) or (9), the quadratic curve X(t) =
∑2
i=0Xi

Bi,2(t) is just the solution curve of the differential system{
X ′(t) = AX(t), t ∈ [0, 1],
X(0) = X0,

where

A = (X0, X1, X2)

 −2 −1 0
2 0 −2
0 1 2

 (X0, X1, X2)−1.

Let t1 and t2 be two distinct parameters in [0, 1] and consider the sample points X(t1)
and X(t2). To prove that the sample points satisfy (7) or (8), we show that

X(t2)−X(t1)

t2 − t1
= A

X(t2) +X(t1)

2
.

By substituting X(t1) =
∑2
i=0XiBi,2(t1) and X(t2) =

∑2
i=0XiBi,2(t2) into the

above equation, both sides of the equation are equal to (X0, X1, X2)(−(2 − t1 − t2),
2(1− t1− t2), t1 + t2)T . This proves that the point X(t+∆t) can be computed exactly
by (8) from a known point X(t).

Besides evaluating quadratic curves, the generalized midpoint scheme can also be
used to exactly compute points either on circles or on spheres.

Proposition 5. Suppose that the coefficient matrix A of (3) is a 3 × 3 skew-
symmetric matrix. Then the solution curve X(t) of the differential system is a circle.
If h(∆t) = 2 tan(∆t

2 ), the points computed by (8) are Yi = X(α+i∆t), i = 0, 1, . . . ,K.

Proof. Without loss of generality, we assume that the skew-symmetric matrix is

A =

 0 −nz ny
nz 0 −nx
−ny nx 0

 ,

where nx, ny, and nz are the components of a unit vector n in 3D space. Based
on Rodrigues’ rotation formula1 the differential system (3) can be reformulated as
X ′(t) = AX(t) = n×X(t). This differential equation implies that the derivative of the

curve X(t) is perpendicular to the vector n and the curve X(t) = X(α) +
∫ t
α
X ′(ξ)dξ

lies on the plane that passes through the point X(α) with normal n. On the other
hand, X(t) ·X ′(t) can be computed by XT (t)X ′(t) = XT (t)AX(t) or [X ′(t)]TX(t) =
XT (t)ATX(t) = −XT (t)AX(t). Therefore, we have X(t) · X ′(t) = 1

2 [X2(t)]′ = 0,
which gives X2(t) ≡ X2

orig. Since X(t) lies on a plane and a sphere simultaneously,
X(t) is a circle. Suppose that the radius of the circle is r, the Euclidean norm of X(t)
is R, and the angle between n and X(t) is θ. Then r = R sin θ.

1http://en.wikipedia.org/wiki/Rodrigues%27 rotation formula.

http://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
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Replacing X(t) by X ′(t) within X(t) · X ′(t) = 0, we have X ′(t) · X ′′(t) = 0
and [X ′(t)]2 = ‖X ′(t)‖2 ≡ const. This shows that the curve X(t) has uniform
parametrization and t is proportional to the arc length or the central angle of the
circle. Since the length of the derivative X ′(t) is computed by ‖X ′(t)‖ = ‖n×X(t)‖ =
R sin θ = r, the parameter t is just the central angle of the circle. Assuming X(t) and
X(t+ ∆t) are two distinct points on the circle, the unit vector corresponding to the

chord from X(t) to X(t+ ∆t) is X(t+∆t)−X(t)

2r sin ∆t
2

. Because ‖X ′(t)‖ = ‖X ′(t+ ∆t)‖ = r

and the angle between X ′(t) and X ′(t + ∆t) is ∆t, the unit vector corresponding to

the average of tangents X ′(t) and X ′(t + ∆t) is X′(t)+X′(t+∆t)

2r cos ∆t
2

. Since the two unit

vectors are the same, we have

X(t+ ∆t)−X(t)

2r sin ∆t
2

=
X ′(t) +X ′(t+ ∆t)

2r cos ∆t
2

.

This equation can be simplified to

X(t+ ∆t)−X(t)

2 tan ∆t
2

= A
X(t) +X(t+ ∆t)

2
.

By choosing h(∆t) = 2 tan ∆t
2 , the points computed by (8) are just the points sampled

on the curve X(t) with fixed time step ∆t.

From Proposition 5 if we know the generalized time step h(∆t), the points on
a circle can be computed sequentially just by elementary arithmetic operations. In
particular, h(∆t) = 2 tan ∆t

2 can be evaluated to within any high precision by Taylor
expansion, which needs only arithmetic operations.

When a sequence of points have been evaluated by either of the mentioned nu-
merical methods, the derivatives of the curve at the evaluated points can be computed
immediately based on the differential system. In particular, AlYi, l = 1, 2, . . . , are
the lth derivatives of the curve at point Yi.

The time complexity for evaluating a free-form curve by solving a linear differ-
ential system using either the Taylor method or the implicit midpoint scheme can
be analyzed as follows. Assuming the coefficient matrix A of (3) is of order n + 1,
the coefficient matrices of (6) or (8) are of order n + 1, too. If the time step for
solving a linear differential system is fixed, the coefficient matrices of (6) or (8) are
unchanged when a sequence of points are evaluated. By computing the coefficient
matrices in advance, evaluation of each point Yi needs (n + 1)2 multiplications and
n(n+ 1) additions by either of the two numerical schemes.

3.2. Dynamic generation of free-form surfaces. Based on the techniques
of dynamic generation of free-form curves, a tensor-product surface can be generated
by evaluating a series of isoparametric curves or a grid of points.

Suppose Ci(v), i = 0, 1, . . . , n, are a sequence of curves defined by

Ci(v) =

m∑
j=0

XijGj(v),

where Xij are the control points and Gj(v), c ≤ v ≤ d, are the blending or the basis
functions. Assuming Fi(u), a ≤ u ≤ b, i = 0, 1, . . . , n, are another set of blending or
basis functions, a tensor-product surface can then be defined by

X(u, v) =
∑n
i=0 Ci(v)Fi(u)

=
∑n
i=0

∑m
j=0XijFi(u)Gj(v).
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Before generating the free-form surface X(u, v), we first evaluate all curves Ci(v)
with the same parameter step. Let ∆v = d−c

L and vl = c + l∆v. The points Ci(vl),
0 ≤ l ≤ L, can be evaluated for every curve Ci(v) by employing the curve genera-
tion techniques stated in section 3.1. When the points Ci(vl), i = 0, 1, . . . , n, l =
0, 1, . . . , L, have been computed, isoparametric curves X(u, vl) =

∑n
i=0 Ci(vl)Fi(u),

0 ≤ l ≤ L, are then defined explicitly. These isoparametric curves can be evaluated
numerically by employing the differential system representation.

The partial derivative ∂X(u,vl)
∂u can be evaluated based just on the differential

representation of the isoparametric curve and the evaluated point of X(u, vl). If the

derivative ∂X(u,vl)
∂v should be evaluated at the selected points, C ′i(vl) will first be

computed along with the evaluation of Ci(vl). The derivative ∂X(u,vl)
∂v can then be

computed by evaluating the curve
∑n
i=0 C

′
i(vl)Fi(u).

4. Examples and comparisons. The proposed algorithm for evaluating free-
form curves and surfaces was implemented using C++ on a laptop with an Intel
Core i7-4910MQ CPU@2.90 GHz 2.89 GHz and 8G RAM. Comparisons between the
proposed method and some existing algorithms will be given.

Example 1. The first example is about dynamic evaluation of Bézier curves.
Suppose that X(t) =

∑n
i=0XiBi,n(t) is a Bézier curve in Rn+1. The derivative of the

curve can be computed by X ′(t) =
∑n
i=0XiB

′
i,n(t). Furthermore, the derivative of

the basis vector can be formulated as

B′0,n(t)
B′1,n(t)
B′2,n(t)

...
B′n−1,n(t)
B′n,n(t)


=



−n −1 0 · · · 0 0
n −n+ 2 −2 · · · 0 0
0 n− 1 −n+ 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · n− 2 −n
0 0 0 · · · 1 n





B0,n(t)
B1,n(t)
B2,n(t)

...
Bn−1,n(t)
Bn,n(t)


.

Denote the matrix before the basis vector as Cn. Let MX = (X0, X1, . . . , Xn) and
A = MXCnM

−1
X . The Bézier curve is the solution of the linear differential system

(9)

{
X ′(t) = AX(t), t ∈ [0, 1],
X(0) = X0.

For a planar Bézier curve of degree at least 2 or a spatial Bézier curve of degree
at least 3 the control points should be lifted to Rn+1 using the technique discussed in
section 2.2.

From section 3.1 we know that evaluating a point on a Bézier curve of degree
n with a fixed time step needs (n + 1)2 multiplications and n(n + 1) additions by
the proposed dynamic approach. Evaluating a point on a Bézier curve of degree n
in Rd by the traditional de Casteljau algorithm needs n(n + 1)d multiplications and
n(n+1)d/2 additions. Therefore, evaluating points on Bézier curves of degree greater
than or equal to 2 the dynamic approach usually needs much less time than the
traditional de Casteljau algorithm. Table 2 illustrates the time costs for generating
Bézier curves of degree 3, 5, 8, or 16 in 3D space by our proposed method using (6) or
by the de Casteljau algorithm. From the table we can see that the time costs for both
methods are approximately proportional to the numbers of points. The time costs for
computing the coefficient matrices of linear differential systems are also given in the
table. As the time costs for computing the matrices are very small, they can even be
ignored when a large number of points are evaluated by the dynamic approach.
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Table 2
Time costs for generating Bézier curves of degree 3, 5, 8, or 16 (seconds).

Method Points Degree = 3 Degree = 5 Degree = 8 Degree = 16

de Casteljau 1× 106 0.328 0.406 0.578 1.406

Dynamic 1× 106 0.078 0.109 0.250 0.796

de Casteljau 2× 106 0.656 0.813 1.188 2.812

Dynamic 2× 106 0.125 0.219 0.453 1.562
coef-matrix 1.090E-6 2.190E-6 5.620E-6 3.021E-5

Example 2. Similar to Bézier curves, free-form curves defined by trigonometric
or hyperbolic functions can be described by control points together with normalized
B-basis [31, 33] or cyclic basis [30]. We show here the dynamic generation of Bézier-
like curves defined by trigonometric functions. Other control point based curves can
be generated in the same way. As discussed in [31], for all fixed values of the shape
parameter β ∈ (0, π) the unique nonnegative normalized B-basis of order n (degree
2n) of the vector space

T0,β
2n = span{1, sinu, cosu, . . . , sin(nu), cos(nu) : u ∈ [0, β]}

is {T βi,2n(u) = tβi,2n sini
(
u
2

)
sin2n−i(β−u2 ), u ∈ [0, β]}2ni=0, where {tβi,2n}2ni=0 denote the

nonnegative normalizing coefficients

tβi,2n = tβ2n−i,2n =
1

sin2n
(
β
2

) b i2 c∑
r=0

(
n

i− r

)(
i− r
r

)(
2 cos

(
β

2

))i−2r

, i = 0, 1, . . . , n.

For notational simplicity, in the following we use ti to represent the normalizing
coefficients when they are used to construct a linear differential system.

Suppose that a Bézier-like curve is defined by X(u) =
∑2n
i=0XiT

β
i,2n(u), u ∈ [0, β],

where Xi, i = 0, 1, . . . , 2n, are the given or the lifted control points in R2n+1. Let
MX = (X0, X1, . . . , X2n) and Φ(u) = (T β0,2n(u), T β1,2n(u), . . . , T β2n,2n(u))T . The curve
can then be reformulated as X(u) = MXΦ(u). Based on [31], the derivative of the

basis vector is dΦ(u)
du = CβnΦ(u), where

Cβn =



− n
tan β

2

− t0t1
2n

2 sin β
2

0 · · · 0 0
t1
t0

1
2 sin β

2

− n−1
tan β

2

− t1t2
2n−1
2 sin β

2

· · · 0 0

0 t2
t1

2
2 sin β

2

− n−2
tan β

2

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · n−1
tan β

2

− t2n−1

t2n
1

2 sin β
2

0 0 0 · · · t2n
t2n−1

2n
2 sin β

2

n
tan β

2


.

Thus, the linear differential system that represents the curve X(u) is

(10)

{
X ′(u) = AX(u), u ∈ [0, β],
X(0) = X0,

where A = MXC
β
nM

−1
X .

From the construction of the linear differential system (10) we can see that if the
values of sin β

2 , cos β2 , and tan β
2 are known, all entries of the tridiagonal matrix Cβn
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and the coefficient matrix A will be computed by elementary arithmetic operations.
In our experiments we compute the values of sin β

2 , cos β2 , and tan β
2 by loading the

mathematical library functions, and it takes 6.250 × 10−6 or 3.140 × 10−5 seconds
to compute the coefficient matrix for a differential system that represents a free-form
curve of degree 8 or degree 16. When a differential system is established, we no longer
need any computation of transcendental functions for generating a trigonometric curve
and the time complexity for solving a differential system is the same as that for
generating a Bézier curve of the same degree. We note that any point on the curve
X(u) =

∑2n
i=0XiT

β
i,2n(u) can also be evaluated by a Horner algorithm which has a

linear time complexity in general, but transcendental functions have to be evaluated
to generate a point.

Example 3. In the third example we generate a planar curve defined by a given
curvature radius function. Unlike curves defined by normalized B-bases, an intrin-
sically defined planar curve can have an unlimited parameter domain [35]. Suppose
that ρ(t) represents the curvature radius of a planar curve and θ is the angle between
the tangent direction of the curve and the positive direction of x-axis. The Cartesian
coordinates of the intrinsically defined curve are given by

r(θ) =

(
x(θ)
y(θ)

)
=

( ∫ θ
0
ρ(t) cos tdt∫ θ

0
ρ(t) sin tdt

)
.(11)

In particular, we choose ρ(t) = at3 + bt2 + ct+ d. The curve is

r(θ) =

(
6a− c
−2b+ d

)
+

(
−2b+ d
−6a+ c

)
sin θ +

(
−6a+ c
2b− d

)
cos θ

+

(
−6a+ c

2b

)
θ sin θ +

(
2b

6a− c

)
θ cos θ +

(
b

3a

)
θ2 sin θ

+

(
3a
−b

)
θ2 cos θ +

(
a
0

)
θ3 sin θ +

(
0
−a

)
θ3 cos θ.

Using the same technique as discussed in section 2.2, we lift the curve from R2 to R9.
Denote the lifted curve asX(θ) with new coefficient vectorsXi ∈ R9, i = 0, 1, . . . , 8; we
construct a matrix of order 9 as MX = (X0, X1, . . . , X8). Furthermore, a differential
of the basis vector with respect to the parameter θ is

d

dθ



1
sin θ
cos θ
θ sin θ
θ cos θ
θ2 sin θ
θ2 cos θ
θ3 sin θ
θ3 cos θ


=



0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 −1 0 0 0 0 0
0 0 0 2 0 0 1 0 0
0 0 0 0 2 −1 0 0 0
0 0 0 0 0 3 0 0 1
0 0 0 0 0 0 3 −1 0





1
sin θ
cos θ
θ sin θ
θ cos θ
θ2 sin θ
θ2 cos θ
θ3 sin θ
θ3 cos θ


.

Denote the coefficient matrix of above equation as Cρ and let A = MXCρM
−1
X . A

linear differential system for representing the curve X(θ) is

(12)

{
X ′(θ) = AX(θ), θ ∈ [0,+∞),
X(0) = X0 +X2.
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Fig. 1. Dynamic generation of an intrinsically defined planar curve with ρ(t) = 0.001t3 −
0.06t2 + 1.5t+ 0.4, t ∈ [0, 8π].

We choose a = 0.001, b = −0.06, c = 1.5, and d = 0.4 for defining the integral
curve and generate a curve segment with θ ∈ [0, 8π]. When the differential system (12)
is established, we employ the Taylor method (with s = 5) to solve the differential
system. Figure 1 illustrates a sequence of points computed by the proposed method
with time step ∆θ = 8π

500 . To measure the accuracy of the proposed method, we
compute the Euclidean distance between the last point generated by the proposed
method and the point r(8π) which is computed by loading the mathematical library
functions. The deviation distance for the last point is 1.766× 10−7, 5.552× 10−9, or
1.709 × 10−10 when the time step is chosen as ∆θ = 8π

500 , ∆θ = 8π
1000 , or ∆θ = 8π

2000 .
Since the coefficient matrix of differential system (12) has the same order as that of
differential system (9), which represents a Bézier curve of degree 8, the time costs
for computing the coefficient matrix or generating the integral curve by solving the
differential system are almost the same with that for generating a Bézier curve of
degree 8. We note that for this example evaluating points on the integral curve
by loading the mathematical library functions and using a lookup table takes about
one-third of time costs needed by our proposed evaluation method. Nevertheless,
the new approach benefits from using only arithmetic operations during the whole
evaluation process. As no special library functions are needed for solving the linear
differential system, our proposed method can be used to evaluate intrinsically defined
curves on general computing machines.

Example 4. The fourth example is about generating a circle in 3D space. Sup-
pose that n, U , and V are unit vectors in R3 that are perpendicular to each other. A
circle centered at O = d0n with radius r > 0 is given by X(t) = O+rU cos t+rV sin t,
t ∈ [0, 2π]. Since the space Ω = span{1, cos t, sin t} is closed under differentiation with
respect to t, the differential system of which the circle is the solution curve is

(13)

{
X ′(t) = AX(t), t ∈ [0, 2π],
X(0) = d0n + rU.

In particular, the coefficient matrix is

A = (d0n, rU, rV )

 0 0 0
0 0 −1
0 1 0

 (d0n, rU, rV )−1
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when d0 6= 0 or A = V UT − UV T otherwise. It is easily verified that the coefficient
matrix is skew-symmetric for both cases.

To guarantee that the evaluated points lie on the circle exactly, we employ the
generalized implicit midpoint scheme discussed in section 3 to solve the differential
system (13). To compute K points uniformly on the circle we choose ∆t = 2π

K and
1
2h(∆t) = tan(∆t

2 ). The value of 1
2h(∆t) is further evaluated by the Taylor expansion

of tan(∆t
2 ) as ∆t

2 + ∆t3

24 + ∆t5

240 + 17∆t7

40320 . Substituting this value of 1
2h(∆t) into (8),

we generate all K sampled points on the circle from the given beginning point. Note
that all these points are computed just by elementary arithmetic operations.

Concretely, we choose d0 = 0.5 and r = 1.0 for defining a circle by (13) and
the number of the evaluated points K varies between 100 and 1000. A set of points
have then been generated by applying the generalized implicit midpoint scheme or the
Taylor method to solve the differential system (13). For comparison, we also evaluate
the same set of points from the circle by direct computation of the functions sin t and
cos t. Since Y0 and YK are theoretically identical, we use the distance between Y0 and
YK as an accuracy measure of various evaluation methods. From the experiments
we know that the evaluation accuracy by the generalized implicit midpoint scheme
or by the direct computation of the transcendental functions does not depend much
on the sampling step; the norms ‖YK − Y0‖ by these two methods are around 10−13

for various choices of K. Nevertheless, the generalized implicit mid-point scheme is
much faster than direct evaluation of the transcendental functions. It takes 0.265
seconds to compute 107 points by the proposed method, while the direct approach
needs 0.703 seconds. When we solve the differential system (13) by the Taylor method
(with s = 7), the accuracy evidently depends on the time step. The absolute distance
between Y0 and YK is 1.557 × 10−7 when K = 100 and the distance reduces to
1.554× 10−11 when K = 1000.

Example 5. The last example is about evaluating the Zhukovsky profile (also
known as the airfoil profile), which is represented by a closed rational trigonometric
curve [14]. Let z = x+ iy be a complex number. The Zhukovsky profile is generated
by the conformal mapping z+ 1

z of a circle that is centered at (Cx, Cy)T with radius r
such that it passes through the point (1, 0)T and contains the point (−1, 0)T . Suppose
that 

a1 = r2Cx,
b1 = r2Cy,
c1 = r(3C2

x + C2
y + r2 + 1),

d1 = 2rCxCy,
e1 = Cx(C2

x + C2
y + 2r2 + 1),


a2 = −r2Cy,
b2 = r2Cx,
c2 = 2rCxCy,
d2 = r(C2

x + 3C2
y + r2 − 1),

e2 = Cy(C2
x + C2

y + 2r2 − 1),

and 
c3 = 2rCx,
d3 = 2rCy,
e3 = C2

x + C2
y + r2.

The Cartesian coordinates of the Zhukovsky profile are computed by the rational
functions

(14)

{
x(t) = x1(t)

x3(t) ,

y(t) = x2(t)
x3(t) ,
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where  x1(t) = a1 cos 2t+ b1 sin 2t+ c1 cos t+ d1 sin t+ e1,
x2(t) = a2 cos 2t+ b2 sin 2t+ c2 cos t+ d2 sin t+ e2, t ∈ [0, 2π].
x3(t) = c3 cos t+ d3 sin t+ e3,

Since the space Ω = span{1, cos t, sin t, cos 2t, sin 2t} is closed under differentiation
with respect to t, the homogeneous coordinates x1(t), x2(t), x3(t) of the curve form
the solutions of a differential system. By lifting the homogeneous coordinates of the
curve to R5, the curve can be represented by

X(t) =


x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

 =


a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

0 0 c3 d3 e3

1 0 0 0 0
0 1 0 0 0




cos 2t
sin 2t
cos t
sin t

1

 .

Denote the coefficient matrix of the above equation as MX and let

A = MX


0 −2 0 0 0
2 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0

M−1
X .

The linear differential system that represents the lifted curve X(t) is

(15)



X ′(t) = AX(t), t ∈ [0, 2π],

X(0) =


a1 + c1 + e1

a2 + c2 + e2

c3 + e3

1
0

 .

As in [14] we choose r = 1.1, Cy = 0.1, and Cx = 1.0 −
√

1.12 − 0.12. The
differential system (15) is solved numerically using the Taylor method. By choosing
the coordinates x1, x2, and x3 and applying (14) we generate the Zhukovsky profile.
As points (x(0), y(0))T and (x(2π), y(2π))T are theoretically identical, we measure
the accuracy of the numerical results using the distance between the starting point
and the last point when a closed curve is generated. The evaluation accuracy using
the Taylor algorithm (s = 6) is 1.564 × 10−3, 1.581 × 10−9, or 3.164 × 10−13 when
the time step is chosen as ∆t = 2π

10 , ∆t = 2π
100 , or ∆t = 2π

1000 . Figure 2(a) illustrates
the plotted curve with 100 evaluated points and Figure 2(b) shows a surface that is
generated by a series of isoparametric curves.

5. Conclusions. This paper has shown that free-form curves with properly de-
fined basis functions are the solution curves of linear differential systems. Points
and derivatives of the free-form curves can then be evaluated by employing typical
numerical methods to solve the differential systems. Not only can the numerical algo-
rithms achieve high accuracy or even exact results for point and derivative evaluation,
but the new method also benefits from computational efficiency and uses only simple
arithmetic operations for generating free-form curves and surfaces that are defined by
algebraic as well as transcendental functions.
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(a)

(b)

Fig. 2. Dynamic generation of airfoil profile and airfoil surface: (a) the profile together with
the evaluated points; and (b) the airfoil surface generated from a series of isoparametric curves.
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