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a b s t r a c t

Estimating principal curvatures and principal directions of a smooth surface represented by a triangu-
lar mesh is an important step in many CAD or graphics related tasks. This paper presents a new method
for curvature tensor estimation on a triangular mesh by replacing flat triangles with triangular paramet-
ric patches. An improved local interpolation scheme of cubic triangular Bézier patches to vertices and
vertex normals of triangle meshes is developed. Piecewise parametric surfaces that have C0 continuity
across boundary curves of adjacent patches and G1 continuity at the joint vertices are obtained by the
interpolation scheme. A closed form expression of Taubin integral – a 3× 3 symmetric matrix in integral
formulation – is derived based on the piecewise parametric surfaces. Principal curvatures and principal
directions are then computed from the Taubin integral. The proposed method does not need to param-
eterize data points or solve a linear system which is usually required by other surface fitting methods.
Compared to several state-of-the-art curvature estimation methods, the proposed method can generate
more accurate results for general surface meshes. The experiments have demonstrated its accuracy, ro-
bustness and effectiveness.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Principal curvatures (or equivalently mean and Gaussian cur-
vatures) and principal directions are fundamental differential in-
variants in differential geometry. They are often referred to as the
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tensor of curvature and can be used to characterize the local
shape of a surface. In CAD and computer graphics, curvatures are
frequently used for shape processing [1], segmentation [2] and
surface interrogation [3,4], and principal direction vectors are
essential quantities for surface remeshing [5], non-photorealistic
rendering [6,7] or texture mapping [8]. In computer vision and
medical image analysis, these differential invariants are exten-
sively used for recognition, registration, and free-form shape anal-
ysis [9,10]. Mathematically, the tensor of curvature is defined for
twice differentiable surfaces. In practice geometric data are often
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available as polygonal (typically triangular) meshes. Therefore
when we discuss the curvatures on triangular meshes, we mean
the curvatures of smooth surfaces that themeshes represent. Since
in general we do not have the analytic representation of the under-
lying smooth surfaces, the true surface curvature information can-
not be computed directly. In this paper, we present a novelmethod
for accurately estimating the tensor of curvature of a subjacent, un-
known, smooth surface from a triangular mesh.

1.1. Previous work

Many methods have been developed for estimating curvatures
or curvature tensors on triangular meshes accurately or robustly.
See for example Refs. [11,12,9,13,14] and references therein.When
both principal curvatures and principal directions are estimated,
the known techniques can roughly be classified into three cate-
gories.

(1) The first category estimates principal curvatures and
principal directions by first estimating normal curvatures along a
few sampled curves or directions [15–18]. By using Euler’s theorem
and Meusnier’s theorem, a set of equations describing the relation
between the principal curvatures and the pre-estimated normal
curvatures is built. Then theprincipal curvatures anddirections can
be found by solving the equations using a least squares approach.
The advantage of approaches of this category is efficiency and
simplicity. However, the estimation accuracy is usually not very
high and depends heavily on the sampling frequency, mesh
resolution and mesh accuracy. The approaches may also suffer
from robustness problems due to insufficient sampling rates.

(2) The second category is known as local surface fitting meth-
ods. The methods compute a simple analytical surface that locally
approximates the mesh around a vertex and the principal cur-
vatures and directions can then be computed by applying classic
differential geometry methods to the obtained analytical surface
[19–22]. Usually, 1, 2, or even 3-ring neighborhood of the mesh at
a vertex is chosen as the local region and a lower order polyno-
mial surface is typically used to fit to the points and/or normals of
the chosen neighborhood. When the input data are accurate, local
surface fitting often produces good estimation. However, surface
fitting methods depend on which neighborhood to fit. This kind of
methodmay suffer heavy computational cost or numerical stability
problem because a linear system has to be solved for each vertex.

(3) The third category is discrete methods. Discrete methods
attempt to calculate the curvature tensor directly from the local
region of a mesh. Rusinkiewicz [23] proposed to compute curva-
ture tensors using finite difference and least squares fitting. Cohen-
Steiner and Morvan [24] proposed to compute average curvature
tensor based on normal cycle theory. Another famous approach in
this category is Taubin’s integral method that computes the cur-
vature tensor via eigen-analysis of a 3 × 3 symmetric matrix [25].
The 3 × 3 symmetric matrix, which we call Taubin integral, is de-
fined by an integral of a normal-curvature-weighted second order
symmetric tangent tensor. Given a triangular mesh, the Taubin in-
tegral for each vertex is approximated by a weighted tensor sum
over the neighborhood around the vertex. Some variants or exten-
sions have also been proposed to compute the tensor matrix from
the input data [26–28]. In general, discrete methods are very effi-
cient and somewhat robust. However, the accuracy of estimation
is adversely affected by obtuse triangles in the mesh and valences
other than four or six [12].

The performance of a particular curvature estimation method
may be affected by many factors such as the presence of noise, va-
lences of the mesh, mesh resolution, and normal vectors [12,9].
Nevertheless, the most important concerns about a curvature
tensor estimation algorithm are its accuracy, robustness and ef-
ficiency. While many techniques have been developed to im-
prove the robustness of curvature tensor estimation against data
noise [23,29,30], they may generate inaccurate or blurred curva-
tures for graphics application. In other applications such as visual-
ization of geometric details, edge detection, surface interrogation,
etc., the accuracy of curvature tensor estimation plays an impor-
tant role.

1.2. Our approach

Our work is inspired by Taubin’s integral method. Taubin’s
method has a linear complexity, both in time and in space, as a
function of the number of vertices of the mesh. All the computa-
tions are simple and direct with closed form expressions and the
estimation results are reasonably accurate. However, it is noticed
that in Taubin’s approach, the calculation of integral is discretized
based on the vertex valence and approximated based on the geom-
etry of a triangular mesh. Since the input triangular mesh is only a
linear approximation of a subjacent, unknown, smooth surface, we
believe that for a triangular mesh with normal vectors at vertices,
each triangle can be replaced by a surface patch that can better ap-
proximate the underlying surface and the computation based on
the appropriately chosen patch can yield more accurate curvature
tensor estimation. This motivates us to estimate curvature tensors
on triangularmeshes by computing continuous Taubin integral and
interpolating piecewise smooth surfaces to the meshes.

The main contributions of the paper are as follows.
• A closed form expression is derived for the Taubin integral at

the joint point of a set of parametric surface patches that may
not be G2 continuous but only have a common tangent plane
at the point. The closed form Taubin integral at any point in a
single surface patch is also obtained.

• An explicit, local scheme is presented for constructing piece-
wise cubic triangular Bézier patches to interpolate vertices and
vertex normals of a trianglemesh. The free coefficients for every
Bézier patch are carefully estimated for achieving high accuracy
estimation of curvature tensors at vertices.

• A weighted sum of Taubin integrals is proposed, which leads
to a robust scheme for curvature tensor estimation on meshes
with data noise, and a unified algorithm is proposed to estimate
curvature tensors for triangular meshes with accurate or noisy
data.

1.3. Overview

Section 2 reviews pertinent background of surface curvatures.
Section 3 derives a closed form formula for computing the Taubin
integral at a point where the surface is formed by joining several
parametric patches. Section 4 describes how to construct appro-
priate parametric surfaces interpolating triangles with given nor-
mal vectors at vertices. Section 5 outlines the algorithm steps for
computing principal curvatures and principal directions for a given
triangular mesh. The experimental examples and comparisons are
given in Section 6. Section 7 concludes the paper.

2. Surface curvature review

Curvatures and the tensor of curvature are well studied in clas-
sical differential geometry (see for example Ref. [31]). The curva-
ture tensor is closely related to the surface normal and normal
curvature evaluation.

Assume that p is a point on a twice differentiable parameter-
ized surface X(u, v). The normal vector of the surface at point p
can be obtained by n =

Xu×Xv

∥Xu×Xv∥
, where Xu and Xv are the par-

tial derivatives of X(u, v) with respect to u and v, respectively. Let
r(s) = X(u(s), v(s)) be an arc length parameterized curve on the
surface, which passes through point p. The unit tangent vector of
r(s) at point p can be computed by

T =
dr(s)
ds

= Xu
du
ds

+ Xv

dv
ds

. (1)
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From Eq. (1), we can obtain the squared length of an infinitesimal
arc of curve r(s) near point p:

ds2 = Edu2
+ 2Fdudv + Gdv2

where E = Xu · Xu, F = Xu · Xv and G = Xv · Xv .
With the surface normal and arc length defined, one may then

compute the normal curvature kn(T ) of the surface at point p
along direction T as the curvature of a section curve which is the
intersection of the original surface X(u, v) and a plane through p
spanned by vectors n and T . Let L = n · Xuu,M = n · Xuv and
N = n ·Xvv , the normal curvature along direction T is computed by

kn(T ) =
Ldu2

+ 2Mdudv + Ndv2

Edu2 + 2Fdudv + Gdv2
. (2)

Except for umbilics atwhich the normal curvatures in all directions
are equal, there exist two orthogonal directions T1 and T2 along
which the normal curvatures achieve the maximum value k1 and
the minimum value k2, respectively. These two directions and cur-
vatures are the principal directions and principal curvatures of the
surface at the point. They can be computed by theWeingartenmap
in classical differential geometry.

Alternatively, Taubin [25] proposed to compute principal cur-
vatures and principal directions using eigen-analysis of an integral
matrix. Let Tφ be some unit length tangent vector at p of the sur-
face where φ is the angle between Tφ and a fixed direction on the
tangent plane. Taubin defined the 3 × 3 symmetric matrix Mp by
the integral formula of

Mp =
1
2π

 π

−π

kn(Tφ)TφT t
φdφ, (3)

where the upper t means the transpose of a vector. As Tφ is perpen-
dicular to the normal vector n,n is an eigenvector ofMp associated
with the eigenvalue 0. Furthermore, it is proved in [25] that the
other two eigenvectors ofMp are the principal direction vectors T1
and T2 of the surface at point p and their corresponding eigenval-
uesm1

p andm2
p are linear combinations of the principal curvatures:

m1
p =

3
8k1+

1
8k2 andm2

p =
1
8k1+

3
8k2. Thus the principal curvatures

k1 and k2 can be computed from the eigenvalues: k1 = 3m1
p − m2

p

and k2 = 3m2
p − m1

p .

3. Closed form expression for the Taubin integral

Note that the Taubin integral is given in integral formulation
and the previous work computes it using discretization and ap-
proximation. In this section we derive a closed form formula for
the evaluation of the Taubin integralMp of (3) at a pointwhere sev-
eral patches with independent parameterization join with a com-
mon tangent plane to approximate the subjacent surface. If all the
patches are curvature continuous with the subjacent surface at the
point, the curvature tensor derived from Mp is exactly the one of
the subjacent surface. Otherwise,Mp will produce an approximate
curvature tensor for the subjacent surface.

Suppose n parametric surface patches are assembled with po-
sition continuity between every two adjacent patches and a com-
mon tangent plane at a joint point p, as illustrated in Fig. 1. Denote
the normal vector to the tangent plane by n and the tangent di-
rections of the boundary lines of the surface patches at point p by
T̄i (i = 0, 1, . . . , n). Assume that the angle between vector T̄i and
a fixed direction on the tangent plane is φi, and the patch bounded
by T̄i−1 and T̄i is the ith surface patch Xi(u, v). Then the Taubin in-
tegral at p can be computed by accumulating the integral for each
surrounding surface patch:

Mp =

n
i=1

M i
p =

n
i=1

1
2π

 φi

φi−1

kn(Tφ)TφT t
φdφ. (4)
Fig. 1. Several patches surround a joint point with a common tangent plane.

Next we consider how to compute each M i
p in Eq. (4). We con-

vert the computation from the tangent space to the parameter do-
main of the surface. Without loss of generality, we assume that the
parametric domain of the ith surface patch Xi(u, v) is local rectan-
gular at origin and p = Xi(0, 0). Noting that (du, dv) only repre-
sents a direction on the parametric domain, we can replace it by
(cos θ, sin θ) where θ is the angle between vector (du, dv) and the
u-axis on the parameter domain. Thus the normal curvature kn(T )
at point p can be computed by

kn(T ) =
Li cos2 θ + 2Mi cos θ sin θ + Ni sin2 θ

Ei cos2 θ + 2Fi cos θ sin θ + Gi sin2 θ
(5)

where Ei = Xiu · Xiu, Fi = Xiu · Xiv,Gi = Xiv · Xiv, Li = n · Xiuu,Mi =

n · Xiuv and Ni = n · Xivv . For notational simplicity, in the following
we may drop subscript ‘‘i’’ within Li,Mi,Ni, Ei, Fi and Gi which are
computed for the ith surface patch at the joint vertex.

From Eq. (1), the matrix of TφT t
φ can be formulated as

TφT t
φ = Ri

1


du
ds

2

+ 2Ri
2
du
ds

dv
ds

+ Ri
3


dv
ds

2

,

where
Ri
1 = XiuX t

iu,

Ri
2 =

1
2
(XiuX t

iv + XivX t
iu),

Ri
3 = XivX t

iv.

(6)

In a similar way as we deal with the normal curvature, TφT t
φ can be

rewritten as

TφT t
φ =

Ri
1 cos

2 θ + 2Ri
2 cos θ sin θ + Ri

3 sin
2 θ

E cos2 θ + 2F cos θ sin θ + G sin2 θ
. (7)

As to the angle differential dφ, it can be expressed by angle θ and
its differential too. Assume that TφI and TφII are two unit vectors on
the tangent plane that pass through point p and the vectors in the
parameter domain corresponding to TφI and TφII are (cos θI , sin θI)
and (cos θII , sin θII), respectively. Then, from Eq. (1), we have

TφI = Xiu
cos θI

dsI
+ Xiv

sin θI

dsI

TφII = Xiu
cos θII

dsII
+ Xiv

sin θII

dsII
,

where dsI = (E cos2 θI + 2F cos θI sin θI + G sin2 θI)
1
2 and dsII =

(E cos2 θII + 2F cos θII sin θII +G sin2 θII)
1
2 . From the expressions of

TφI and TφII , we have

TφI × TφII =
sin(θII − θI)

dsIdsII
(Xiu × Xiv).
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Without loss of generality,we assume that the direction of TφI ×TφII
is identical to the surface normal n at point p. Then TφI × TφII =

sin(φII − φI)n. Since Xiu × Xiv = ∥Xiu × Xiv∥n, we obtain

sin△φ = ∥Xiu × Xiv∥
sin△θ

dsIdsII
,

where △φ = φII − φI and △θ = θII − θI . When △φ and △θ are
small enough, we have

dφ =
∥Xiu × Xiv∥

E cos2 θ + 2F cos θ sin θ + G sin2 θ
dθ. (8)

Substituting (5), (7), and (8) intoM i
p of (4), and letting

Di =
1
2π

∥Xiu × Xiv∥ =
1
2π


EG − F 2

and

K(θ) =
L cos2 θ + 2M cos θ sin θ + N sin2 θ

(E cos2 θ + 2F cos θ sin θ + G sin2 θ)3
,

give

M i
p =

1
2π

 φi

φi−1

kn(Tφ)TφT t
φdφ

= Di

 π
2

0
K(θ)(cos2 θRi

1 + 2 cos θ sin θRi
2 + sin2 θRi

3)dθ

= C i
1R

i
1 + C i

2R
i
2 + C i

3R
i
3 (9)

where

C i
1 = Di

 π
2

0
K(θ) cos2 θdθ,

C i
2 = Di

 π
2

0
K(θ)2 cos θ sin θdθ,

C i
3 = Di

 π
2

0
K(θ) sin2 θdθ.

The above integrals can be computed directly (see the Appendix
for detailed derivation). Let e =

E√
EG−F2

, f =
F√

EG−F2
and g =

G√
EG−F2

, then the coefficients C i
j (j = 1, 2, 3) are



C i
1 =

aI3 + bJ3 + NI2
2π(EG − F 2)

,

C i
2 =

−(af + b)I3 + (a − bf )J3 + (b − Nf )I2 + NJ2
πG

√
EG − F 2

,

C i
3 =

a′I3 + b′J3 + LI2
2π(EG − F 2)

(10)

where

a = Lg2
− 2Mfg + N(f 2 − 1), b = 2(Mg − Nf ),

a′
= L(f 2 − 1) − 2Mfe + Ne2, b′

= 2(Me − Lf ),
I2 =

π
4 −

1
2 arctan f −

f
2(1+f 2)

, I3 =
3
4 I2 −

f
4(1+f 2)2

,

J2 =
1

2(1+f 2)
, J3 =

1
4(1+f 2)2

.

To sum up, the Taubin integral can be explicitly computed by

Mp =

n
i=1


C i
1R

i
1 + C i

2R
i
2 + C i

3R
i
3


(11)

where C i
j and Ri

j are given by (10) and (6), respectively.
3.1. Taubin integral for one parametric surface

In a similarway to compute the Taubin integral at the joint point
of several surface patches, the above derivation can be adapted to
derive a closed form expression for the Taubin integral of a para-
metric surface. Now there is only one parametric surface X(u, v).
Assume that p is a point on the surface. To compute the Taubin in-
tegral of the surface at p, unlike the matrix M i

p in Eq. (9) which is
an integral on interval [φi−1, φi], the integral now should be com-
puted on interval [0, 2π ]. Thus

MX
p =

1
2π

 2π

0
kn(Tφ)TφT t

φdφ

=

√
EG − F 2

2π

 2π

0
K(θ)

×(cos2 θR1 + 2 cos θ sin θR2 + sin2 θR3)dθ
= C1R1 + C2R2 + C3R3 (12)

where R1 = XuX t
u, R2 =

1
2 (XuX t

v + XvX t
u), R3 = XvX t

v and

C1 =
3LG2

− 6MFG + N(EG + 2F 2)

8(EG − F 2)2
,

C2 =
−3LFG + 2M(EG + 2F 2) − 3NEF

4(EG − F 2)2
,

C3 =
L(EG + 2F 2) − 6MEF + 3NE2

8(EG − F 2)2
.

By the integral matrix in Eq. (12) and Taubin’s formula for eigen
decomposition of the matrix, principal curvatures and principal
directions of a parametric surface can be obtained in a new way
other than the classical Weingarten transformation.

4. Piecewise surface interpolation

Interpolation of a triangular mesh by piecewise polynomial
patches has been studied extensively. Walton and Meek [32] and
Hahmann and Bonneau [33] proposed to interpolate meshes by G1

smooth patches. Vlachos et al. [34] used G0 surface patches and
continuous normal patches for visually smooth rendering of sur-
faces. However, these methods may not be applicable for our pur-
pose as they usually need a lot of computational costs or suffer low
approximation accuracy for meshes sampled on a known surface.
For an accurate and efficient curvature tensor estimation purpose,
we interpolate surfaces to a triangular mesh satisfying the follow-
ing requirements.

(a) The normal curvatures of any interpolating surface at mesh
vertices should be as accurate as possible.

(b) The interpolating surfaces should not deviate from the triangu-
larmesh toomuchwhen the triangle vertices lie on some sharp
edges.

(c) Each surface patch should be constructed independently and
explicitly just based on vertices and vertex normals of a trian-
gle.
We follow the idea of the curved PN triangles method [34] and

construct a cubic triangular Bézier patch for each triangle with
given corner normals. Cubic triangular Bézier patches are the low-
est degree surface patches that permit inflections along boundary
curves and interpolate vertices and normals of a given triangle.
While the original curved PN triangles method mainly focuses on
contour smoothing of a triangular mesh, it in general does not sat-
isfy requirement (a) stated above. We propose a new cubic Bézier
surface interpolation method that satisfies all the three require-
ments very well. Fig. 2 is an example showing different results of
piecewise surface interpolation by the curved PN triangles method
and our proposed method.
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Fig. 2. Interpolation of a mesh by cubic triangular Bézier patches: (a) input triangular mesh; (b) the curved PN triangles method; (c) the proposed method.
Fig. 3. The control net of a cubic triangular Bézier patch.

A cubic triangular Bézier patch is represented by

X(u, v) =


i+j+k=3

bijk
3!

i!j!k!
uivj(1 − u − v)k (13)

where u ≥ 0, v ≥ 0, 1 − u − v ≥ 0, and bijk are the control points
(cf. [35]). The control points are connected to form a control net, as
illustrated in Fig. 3. Similar to the curved PN triangles method, we
classify the control points into three groups:

1. vertex control points: b003, b300, b030;
2. boundary control points: b120, b210, b012, b021, b102, b201;
3. center control point: b111.

Given an input triangle △p1p2p3 together with the unit normals
n1,n2 and n3 at three respective corner vertices, we determine the
vertex control points first, followedby the boundary control points,
and finally the center control point.

• Vertex control points. Based on the properties of triangular
Bézier patches, the three vertex control points are obtained imme-
diately:

b003 = p1, b300 = p2, b030 = p3.

• Boundary control points. Let us consider boundary control
points b102 and b201 corresponding to edge p1p2. The other bound-
ary control points can be dealt with similarly. The four control
points b003(= p1), b102, b201, and b300(= p2) define a cubic Bézier
curve that is one boundary of the triangular Bézier patch X(u, v).
Since we require that a triangular patch be constructed indepen-
dently from a triangle and two adjacent triangular patches share
a common boundary curve, points b102 and b201 should be con-
structed only based on p1,n1, and p2, n2. Thus the problem now
becomes a point–normal interpolation problem [36]. That is, given
two points p1, p2 and two unit normal vectors n1,n2 at these two
points, we want to find a spatial cubic Bézier curve that interpo-
lates p1, p2 and is also tangential to their tangent planes at the re-
spective points.

Obviously, point b102 should be on the tangent plane of the tri-
angular patch at p1 with normaln1, and point b201 should be on the
tangent plane at p2 with normaln2. It is thus suggested to compute
Fig. 4. Computing the control points for a boundary curve.

b102 and b201 by finding two ‘‘good’’ locations on edge p1p2 and
projecting them onto the two tangent planes, respectively. Specif-
ically, the two locations are represented by (1 − s1)p1 + s1p2 and
s2p1+(1−s2)p2 with some parameters s1 and s2, and thenwe have

b102 = (1 − s1)p1 + s1p2 − ω1n1

b201 = s2p1 + (1 − s2)p2 − ω2n2
(14)

whereω1 = s1(p2−p1)·n1 andω2 = s2(p1−p2)·n2. In the curved
PN triangles method [34], both s1 and s2 were set to 1

3 , but this set-
ting cannot make the constructed curve reproduce the curvature
of the circular arc even if the boundary data can define a circular
arc. In the followingwe discuss how to appropriately choose s1 and
s2 by taking consideration of the inflection case of the curve or the
circular arc precision at the ends.

For two points p1 and p2 with respective unit normal vectors
n1 and n2, it is always possible to find a cylinder (not necessarily
circular cylinder) that meets the interpolation constraints. In fact,
a cylinder can be formed by all the straight lines going through
points on X(u, 0) along a generatrix direction n0. The generatrix
direction n0 can be computed by n0 =

n1×n2
∥n1×n2∥

when n1 × n2 ≠ 0

or n0 =
n1×(p2−p1)

∥n1×(p2−p1)∥
when n1 × n2 = 0. It can be verified that

the normal vector of the cylinder at point p1 is n1. Since both of
the interpolating surface X(u, v) and the cylinder pass through
curve X(u, 0) and have the same normal vector at p1, the normal
curvatures of these two surfaces along the tangent direction of
X(u, 0) at p1 are the same based on Meusnier’s theorem. We
determine s1 and s2 based on the shape or precision of a directrix
which lies in a plane with normal n0.

Let π0 be the plane that passes through point p1 with normal
n0. After projecting vector p2 − p1 onto plane π0, we obtain a unit
vector v =

p2−p1−νn0
∥p2−p1−νn0∥

, where ν = (p2−p1)·n0. With reference to
Fig. 4, the angle between v and the tangent plane at p1 with normal
n1 is denoted byα and the angle between−v and the tangent plane
at p2 with normal n2 by β . The signs of α and β reflect whether
the edge p1p2 is lying below or above the tangent plane at p1 and
the tangent plane at p2. For example, if edge p1p2 lies below the
tangent plane at p1 with normal n1, we have α > 0; otherwise,
α < 0. The angles α and β are computed by

sinα = −v · n1, sinβ = v · n2.
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Fig. 5. Computing the boundary control points for an interpolating Bézier patch
when a mesh vertex lies on a sharp corner.

If sinα sinβ < 0, the projection of a cubic Bézier curve meeting
the constraints will have inflections. If the projection curve is
inflectional, we choose parameters s1 = s2 =

1
3 ; otherwise, the

parameters are chosen to achieve local circular precision at ends.
Let η = min{|α + β|/2, π/3}; we choose s1 = s2 = s0, where

s0 =
1
3


1 +

3
cos2 η

− 1


,

when sinα sinβ ≥ 0 holds. We assume |α + β|/2 ≤ π/3 for
general edges and it is guaranteed that s0 < 1 when η ≤ π/3. If
α and β are equal and be less than π

3 , the curvatures at two ends
of the projection curve are equal to the curvature of a circular arc
that interpolates the two ends and end tangents of the projection
curve. If α or β approaches π

2 , vertex p1 or p2 is probably lying on
a sharp edge or corner, and a bounded value for s1 or s2 can help to
generate an interpolating surface close to the mesh. It also yields
large values of curvature at the vertices lying on sharp edges or
corners.

We also observe that it might be more appropriate to set s1
and/or s2 to be negative sometimes. From Eq. (14), we can find that
the tangent vector of the cubic Bézier curve defined by b003, b102,
b201 and b300 at p1 is 3s1T1proj with T1proj = p2 − p1 − [(p2 − p1) ·

n1]n1. Letnf0 andnf1 be the unit normal vectors of the two triangles
sharing edge p1p2. We define the normal vector of the edge to be

ne =
nf0 + nf1

∥nf0 + nf1∥
.

If the angle between ne and n1 is obtuse (i.e., n1 ·ne < 0), vertex p1
is probably lying on a sharp corner, and the projections of neigh-
boring triangles onto the tangent plane passing through point p1
may not surround p1; see, for example Fig. 5. To guarantee that
the projections of the interpolating Bézier patches surround the
vertex p1, the tangent vector of the Bézier curve corresponding
to edge p1p2 at p1 should have opposite direction as T1proj when
n1 · ne < 0, and thus s1 should be chosen a negative number (for
example, s1 = −

1
3 ). The sign of s2 can be determined similarly.

Combining all the above discussions, we arrive at our setting
scheme for parameters si (i = 1, 2):

si =


s0, if (ni · ne ≥ 0)&(sinα sinβ ≥ 0)

+
1
3
, if (ni · ne ≥ 0)&(sinα sinβ < 0)

−
1
3
, if (ni · ne < 0).

(15)

• Center control point. For each boundary curve of a triangular
patch, we specify a vector as an approximate normal of the patch
at the midpoint of the curve. Similar to the curved PN triangles
method, to capture possible inflection, we compute the vector that
is the average of the two end-normals reflected across the plane
perpendicular to the edge. While the curved PN triangles method
uses this vector as the middle control point for the quadratic nor-
mal map, we use the vector directly as an approximate normal,
which is shown to work better in our experiments. If we let H1,H2
and H3 denote such vectors for the three boundary curves of the
triangular Bézier patch, they can be computed [34]:

H1 = h1/∥h1∥, h1 = n2 + n3 − γ23(p3 − p2)

H2 = h2/∥h2∥, h2 = n3 + n1 − γ31(p1 − p3)

H3 = h3/∥h3∥, h3 = n1 + n2 − γ12(p2 − p1)

where γij =
2(pj−pi)·(ni+nj)
(pj−pi)·(pj−pi)

. We note that normal vectors at edges
can also be computed by the method presented in [37], which can
yield similar results.

We determine the center control point b111 heuristically by
assuming

b111 = B + hnt (16)

where B =
1
6 (b012 + b021 + b120 + b210 + b201 + b102) and nt

is the unit normal of triangle △p1p2p3. Let D1,D2 and D3 be the
cross derivatives of the Bézier surface at themidpoints of the three
triangle edges in directions perpendicular to the triangle edges. If
D1 ·H1 = D2 ·H2 = D3 ·H3 = 0 hold for every interpolating Bézier
patch, any two adjacent triangular Bézier patches have the same
tangent plane at the midpoint of their common boundary. Since
there is only one unknown scalar parameter h within the three
equations, we compute h by solving equation D1 · H1 + D2 · H2 +

D3 · H3 = 0. With some calculations, we obtain

h =
−2(E1 · H1 + E2 · H2 + E3 · H3)

nt · (H1 + H2 + H3)

where

E1 =
b201 + 2B + b021

4
−

b300 + 3b210 + 3b120 + b030

8
,

E2 =
b102 + 2B + b120

4
−

b030 + 3b021 + 3b012 + b003

8
,

E3 =
b012 + 2B + b210

4
−

b003 + 3b102 + 3b201 + b300

8
.

In practice, this solution still makes those interpolating Bézier
patches approximately have continuous tangent planes across
common boundaries.

5. The algorithm

This section describes our algorithm for curvature tensor esti-
mation on triangular meshes by piecewise surface interpolation.
The algorithm estimates the curvature tensors at mesh vertices by
the closed form Taubin integral given in Section 3 and the carefully
constructed surfaces described in Section 4. This usually gives quite
accurate curvature tensors when the sampled points and normals
are accurate. However, the estimationmay suffer from noise when
the mesh vertices or normals are not accurate.

To enhance the robustness of estimation for a mesh contain-
ing noise, we propose to compute the curvature tensor at a ver-
tex by incorporating the Taubin integrals at the center of triangular
patches incident to the vertex. Specifically, as in Section 3, we as-
sume that p is the joint vertex of surface patches Xi(u, v) with p =

Xi(0, 0) for i = 1, 2, . . . , n. Let Mp be the integral matrix (11) and
MXi

pi be the integral matrix (12) of surface Xi(u, v) at point pi =

Xi(ui, vi) with ui = vi = 1/3. We define a weighted sum of Taubin
integrals at vertex p as

Mp = (1 − ρ)Mp + ρ

n
i=1

ωiMXi
pi , (17)

where 0 ≤ ρ ≤ 1 is a parameter specified by users, and ωi are
the weights satisfying ωi ≥ 0 and

n
i=1 ωi = 1. In general ωi

are chosen to be proportional to the areas of triangles incident to
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Fig. 6. Curvature tensor estimation using different surface interpolation schemes: (a) the triangular mesh and the exact principal directions; (b) mean curvature error plot
and the principal directions by the PN triangles method; (c) mean curvature error plot and the principal directions using the proposed surface interpolation scheme.
the joint vertex. To further improve the accuracy of (17), we follow
the technique in [23] to rotate the tangent plane to surface Xi(u, v)
through pi and compute updated Xu and Xv for matrices R1, R2 and
R3 in MXi

pi .
For a triangular mesh consisting of vertex setV = {vi}, edge set

E = {(vi, vj)} and face set F = {(vi, vj, vk)}, and a user specified
parameter ρ, we estimate curvature tensors at mesh vertices as
follows:

1. for each vertex vi compute the unit normal vector ni at the
vertex as a weighted sum of normals to the surrounding facets
with weights given in [38];

2. for each edge (vi, vj) with unit normal vectors at two end
vertices, construct a cubic curve by Eqs. (14) and (15);

3. for each triangle (vi, vj, vk) construct a cubic interpolating tri-
angular Bézier patch by copying the control points of three cubic
curves interpolating the edges and computing the center con-
trol point by Eq. (16);

4. for each vertex vi
• if ρ < 1, compute the sum of Taubin integrals of surrounding

Bézier patches at the vertex using Eqs. (9) and (11);
• if ρ > 0, compute Taubin integrals at centers of surrounding

Bézier patches using Eq. (12) and a weighted sum of Taubin
integrals using Eq. (17);

• compute the principal curvatures and principal directions
from the Taubin integral using closed form expressions, just
as Taubin’s approach [25].

Note that the combination of the closed form Taubin integral
and the curved PN triangles can also estimate curvature tensors
for triangular meshes. Fig. 6(a) shows a triangulated torus model
with 1800 randomly sampled points and exact curvature tensors
at the points. When we interpolate the torus using PN triangles
and compute curvature tensors for every vertex by computing the
Taubin integral, the average and maximum errors of mean curva-
tures are 0.099527 and 0.464881, respectively; see Fig. 6(b) for the
plot of mean curvature errors. The mean andmaximum deviations
of principal directions by the PN trianglesmethod are 0.749599 and
8.909531 degrees, respectively. By our proposed surface interpola-
tion scheme, the average andmaximum errors of mean curvatures
reduce to 0.008991 and 0.083860 while the mean and maximum
deviations of principal directions become 0.221218 and 1.741704
degrees, respectively; see Fig. 6(c) for the plot of mean curvature
errors using this new surface interpolation scheme.

6. Experimental results

This section evaluates our proposed algorithm with several
models.We first test the accuracy of the proposed curvature tensor
estimation method using two models generated from two analyti-
cal surfaces. Then we apply the proposed method to a subdivision
surface and a denoisedmesh to test its use in checking the smooth-
ness of discrete models. Finally we apply the proposed method
for visualizing the detail or estimating smooth curvatures of a real
scan-reconstructed mesh.

We compare the proposedmethodwith several state-of-the-art
methods which use continuous surface patches or discrete tech-
niques for curvature tensor estimation in CAD or graphics. The ver-
tex normal (VN) triangle based method [14] is the latest one that
computes curvatures using curved triangles. The cubic fitting algo-
rithm [19] is a representative for analytic fitting methods, which
can achieve very high accuracy. The discrete methods which are
widely used in graphics include Taubin’s method [25], the finite
difference method proposed by Rusinkiewicz [23] and the tensor
averagingmethod [24]. They are very competitive in speed for cur-
vature tensor estimation. All these algorithms were implemented
using C++ on a PC with Intel(R) Core(TM)2 CPU, T9900@3.06 GHz
3.07 GHz and 4G RAM.

The two analytical surfaces are defined as follows. The first
surface is a ring-shaped surface:x(u, v) = (1.5 + 0.3 cos(v)) cos(u)
y(u, v) = (1.5 + 0.3 cos(v)) sin(u)
z(u, v) = 0.6 sin(v)

where (u, v) ∈ [0, 2π ] × [0, 2π ]. The ring-shaped surface is gen-
erated by sweeping an ellipse along a circle. The second surface is a
surface patch which was introduced by Goldfeather and Interrante
in [19]. The equations of the G&I surface arex(u, v) = f (u) cos(v)
y(u, v) = f (u) sin(v)
z(u, v) = u + 0.2 sin(2x) + 0.15 cos(3xy)

where f (u) = −2u4
+ 2u2

+ u/6 + 0.3 and (u, v) ∈ [−0.9, 1] ×

[0, 2π ]. These two surfaces serve as the ground truth. Both are free
of umbilics and thus the principal curvature and principal direc-
tions can be computed accurately for each point on the surfaces.
We tessellate each surface into a low resolution mesh and a high
resolution mesh with different numbers of sampled points on the
surface. Meanwhile, the exact curvature tensors of the surface at
all sampled points are evaluated for comparison. Fig. 7(a) illus-
trates two meshes tessellated from the ring-shaped surface, and
the two meshes have 1800 or 7200 vertices, respectively. Fig. 7(b)
illustrates the twomeshes of the G&I surface which have 2550 and
10100 vertices, respectively.

We test the accuracy of our proposed algorithm and other five
methods using low resolution tessellated meshes and high resolu-
tion tessellated meshes shown in Fig. 7 with exact sampled points
and normals. To test the robustness of thesemethods, we add noise
to the four meshes by moving each vertex along its normal di-
rection by a random distance within 2% and 5% of the mean edge
length. The vertex normals for the noisymeshes are then computed
as the weighted sum of the 1-ring facet normals using the method
presented in [38]. The accuracy of the estimated curvature tensors
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Fig. 7. Surface tessellation with low or high resolutions: (a) tessellation of a ring-shaped surface; (b) tessellation of the G&I surface.
Table 1
RMS errors of the estimated curvatures for the ring model.

Method Ring (LR) (#vertices=1800) Ring (HR) (#vertices=7200) Ring (HR) (2% noise) Ring (HR) (5% noise)

Proposed (ρ = 0) 0.044276 0.017946 1.241357 3.127922
Proposed (ρ = 1) 0.159244 0.069801 0.239621 0.536465
VN triangle 0.172309 0.062181 0.245828 0.575565
Cubic fitting 0.135025 0.031862 0.222330 0.371346
Finite difference 0.162506 0.070257 0.165780 0.308891
Tensor averaging 0.759555 0.748065 0.823753 1.163509
Taubin’s method 0.997030 0.827438 0.928336 1.307278
Table 2
RMS errors of the estimated curvatures for the G&I surface.

Method G&I (LR) (#vertices=2550) G&I (HR) (#vertices=10100) G&I (HR) (2% noise) G&I (HR) (5% noise)

Proposed (ρ = 0) 0.064131 0.025054 2.327218 6.206422
Proposed (ρ = 1) 0.189813 0.080634 0.349591 0.875071
VN triangle 0.224454 0.082247 0.350479 1.067194
Cubic fitting 0.122904 0.029810 0.231335 0.535465
Finite difference 0.178445 0.074829 0.228927 0.513157
Tensor averaging 0.907732 0.901229 1.064728 1.742106
Taubin’s method 0.864383 0.882754 1.193384 2.277044
by each method is measured by the root mean square (RMS) error,
which is the square root of the average of square errors of all major
and minor curvatures against the ground truth.

From Tables 1 and 2 we can see that our proposed method
with ρ = 0 can achieve the highest accuracy for the two surfaces
among all the six methods. Moreover, similar to the cubic fitting
method, the finite difference method and the VN triangle method,
our method with either ρ = 0 or ρ = 1 can raise the accuracy
when the mesh resolution increases. However, our method with
ρ = 0 is sensitive to noise. This is not surprising because a sur-
face mesh with noisy vertices or disturbed normals may represent
a different underlying surface. An accurate method should then be
sensitive to the change of the vertices or the normals of the mesh.
On the other hand, the cubic fitting method, the finite difference
method and our method with ρ = 1 are robust against noise due
to the use of the least squares fitting or averaging strategy though
the accuracy of the results may not be the highest.

We next show the use of the proposed method for smooth-
ness check of surfaces. We apply the curvature tensor estimation
methods to a Doo–Sabin subdivision mesh (see Fig. 8(a)). An ini-
tial polygonal mesh is subdivided six times by Doo–Sabin subdivi-
sion, and then each face in the refined mesh is split into triangles
such that the vertices have random valences. Note that this trian-
gulated mesh is very close to the limit surface of Doo–Sabin subdi-
vision though the vertices of themesh do not necessarily lie on the
limit surface. Thus accurately estimated curvature tensors of the
triangulatedmesh are assumed to have similar behavior as those of
the limit surface. A Doo–Sabin subdivision surface is a generalized
biquadratic B-spline surface, and it is composed of a set of paramet-
ric surface patches which have tangent plane continuity across the
joint edges or the extraordinary points [39]. Fig. 9(a) and (b) display
themean curvatures and theGaussian curvatures estimated by our
Fig. 8. A subdivision mesh and a denoised mesh: (a) a triangulated mesh by
Doo–Sabin subdivision; (b) a smooth mesh by bilateral denoising.

proposed method with ρ = 0, respectively. In these two figures,
the joint lines and individual surface patches are clearly visible.
Fig. 9(h) shows that the Gaussian curvatures estimated by Taubin’s
method are also sensitive to the boundaries of surface patches.
However, the accuracy of Taubin’s method is influenced by vertex
valences. Fig. 9(d), (e), (f), (g) and (c) show the plots of Gaussian
curvatures estimated by the VN triangle method, the cubic fitting
method, the finite differencemethod, the tensor averagingmethod
and our method with ρ = 1, where the curvatures around the
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Fig. 9. Curvature estimation for a Doo–Sabin subdivision surface: (a) mean curvature by the proposed method (ρ = 0); (b) Gaussian curvature by the proposed method
(ρ = 0); (c) Gaussian curvature by the proposed method (ρ = 1); (d) Gaussian curvature by the VN triangle method; (e) Gaussian curvature by the cubic fitting method;
(f) Gaussian curvature by the finite difference approach; (g) Gaussian curvature by the tensor averaging method; (h) Gaussian curvature by Taubin’s method. Readers can
zoom in the figures to see even clearer details.
patch edges are seen to be blurred due to the process of the least
squares fitting or averaging.

Fig. 8(b) is another visually smooth surface mesh obtained by
bilateral mesh denoising [40]. To check the smoothness of the de-
noised mesh, we compute the mean curvature and Gaussian cur-
vature of the mesh by our proposed method with ρ = 0. From
the curvature plots in Fig. 10(a) and (b) we learn that the mesh
is not as smooth as it looks. It still contains some stairs or arti-
facts even after bilateral denoising. The curvatures estimated by
the proposed method with ρ = 1, the VN triangle method, the cu-
bic fitting method, the finite difference method all look smooth;
see Fig. 10(c)–(f), respectively. These methods have hidden the ar-
tifacts of the surface mesh. The plots of the mean curvatures esti-
mated by the tensor averaging approach and Taubin’s method are
given in Fig. 10(g) and (h), which illustrate some curvature dis-
continuity of the denoised surface. However, the artifacts are not
clear enough due to the limited accuracy of curvature estimation
by these methods.

Our proposed curvature tensor estimation algorithm provides a
tradeoff between accuracy and robustness, which is controlled by
parameter ρ. A small value of ρ yields accurate but noise sensitive
curvature tensors while a large value of ρ helps to estimate
curvature tensors robustly against noise. Fig. 11(a) illustrates a
triangular mesh reconstructed from real scanned data. From the
figure we can see that the original surface contains lowmagnitude
noise. The accuratemean curvature plot in Fig. 11(b) corresponding
toρ = 0 clearly depicts the noise distribution on the surface.When
the parameter value is changed to ρ = 0.5 and ρ = 1.0, the
curvature plots become smoother and smoother; see Fig. 11(c) and
(d) for the results. It is also observed that the principal directions
become smoother when the value of parameter ρ increases.

Finally, we compare the computational efficiency of our pro-
posed algorithm and all other methods by reporting the running
time for all the test models in Table 3. From the table, it can be
seen that Taubin’s method is the fastest and the cubic fitting algo-
rithm is the slowest. Our proposedmethod has similar time cost as
the finite difference algorithm. Due to its high accuracy and consid-
erable efficiency, our proposed method can be used for curvature
tensor computation for triangularmeshes that have a large number
of vertices.

7. Conclusions and discussion

This paper has derived the closed formTaubin integral for piece-
wise smooth surfaces or a single parametric surface, which leads to
a new way for curvature tensor estimation for triangular meshes.
The paper has also presented an improved local surface interpo-
lation scheme for triangular meshes. Compared to other surface
fitting methods, the proposed surface interpolation scheme does
not need to solve any linear systems. Our proposed curvature ten-
sor estimation method usually generates more accurate results for
general surface meshes than the state-of-the-art methods. Also
by using weighted sums of Taubin integrals, the proposed algo-
rithm can robustly estimate curvature tensors for noisy meshes.
The tradeoff between accuracy and robustness of curvature tensor
estimation is controlled using a single parameter.
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Fig. 10. Curvature estimation for a denoised surface: (a) mean curvature by the proposed method (ρ = 0); (b) Gaussian curvature by the proposed method (ρ = 0); (c)
mean curvature by the proposed method (ρ = 1); (d) mean curvature by the VN triangle method; (e) mean curvature by the cubic fitting method; (f) mean curvature by the
finite difference approach; (g) mean curvature by the tensor averaging method; (h) mean curvature by Taubin’s method.
Table 3
Time costs for the test models (in seconds).

Model #vertex Taubin’s method Cubic fitting VN triangle Finite difference Tensor averaging Proposed (ρ = 0) Proposed (ρ = 1)

Ring 7200 0.047 0.765 0.406 0.140 0.109 0.171 0.296
goldfeather 10100 0.063 1.030 0.562 0.203 0.156 0.234 0.390
L-shape 57344 0.374 5.538 3.261 1.170 0.951 1.420 2.512
Rocker arm 40177 0.250 3.916 2.278 0.811 0.671 0.983 1.763
Armadillo 165954 1.139 15.491 8.721 3.791 3.011 4.056 6.739
Accurate curvature tensor estimation can be applied when the
input vertices or normals are accurate or have low magnitude
noise. Our proposedmethod can be used to visualize the joint lines
between surface patches or the distribution of noise. Although the
paper only discusses triangular meshes, the extension of the pro-
posedmethod to general polygonalmeshes is straightforward. One
can replace piecewise triangular Bézier surface interpolation to
other types of surface interpolation, and the curvature tensors at
selected points can be computed by the closed form Taubin inte-
gral and the consequent eigen-analysis of the integral matrix.
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Appendix. Calculations of C i
1, C

i
2 and C i

3

To compute C i
1, we use substitution t = tan θ and obtain

C i
1 = Di

 π
2

0

L cos2 θ + M sin 2θ + N sin2 θ

(E cos2 θ + F sin 2θ + G sin2 θ)3
cos2 θdθ

= Di

 π
2

0

L + 2M tan θ + N tan2 θ

(E + 2F tan θ + G tan2 θ)3
d tan θ

= Di


∞

0

L + 2Mt + Nt2

(E + 2Ft + Gt2)3
dt.
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Fig. 11. Plots of mean curvatures and major principal directions of a scan-reconstructed surface by the proposed method: (a) the original surface; (b) ρ = 0; (c) ρ = 0.5;
(d) ρ = 1.
We then rewrite E + 2Ft + Gt2 =
EG−F2

G [1 + ( G√
EG−F2

t +

F√
EG−F2

)2] =
G
g2

[1+(gt+f )2]. By using substitution τ = gt+f , C i
1

can be further expressed as

C i
1 =

Dig3

G3


∞

f

Lg2
+ 2Mg(τ − f ) + N(τ − f )2

(1 + τ 2)3
dτ

=
Dig3

G3
[Lg2

− 2Mfg + N(f 2 − 1)]


∞

f

1
(1 + τ 2)3

dτ

+
Dig3

G3
(2Mg − 2Nf )


∞

f

τ

(1 + τ 2)3
dτ

+
Dig3

G3
N


∞

f

1
(1 + τ 2)2

dτ .

Let In =


∞

f
1

(1+τ2)n
dτ and Jn =


∞

f
τ

(1+τ2)n
dτ . In and Jn can be

computed recursively or explicitly: I1 =
π
2 − arctan f , In+1 =

2n−1
2n In −

f
2n(1+f 2)n

for n > 0, and Jn =
1

2(n−1)
1

(1+f 2)n−1 for n > 1.

Thus after simplification, the formula for C i
1 given in Section 3 can

be obtained.
In a similar way, the formula for C i

2 can be derived with the
substitution t = tan θ .

For C i
3, we replace θ by π

2 − ϕ. Then

C i
3 = Di

 π
2

0

L cos2 θ + M sin 2θ + N sin2 θ

(E cos2 θ + F sin 2θ + G sin2 θ)3
sin2 θdθ

= Di

 π
2

0

N cos2 ϕ + M sin 2ϕ + L sin2 ϕ

(G cos2 ϕ + F sin 2ϕ + E sin2 ϕ)3
cos2 ϕdϕ.

Therefore the formula for C i
3 can be obtained from the one for C i

1
by interchanging L and N, E and G.
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