
Vis Comput
DOI 10.1007/s00371-009-0393-6

O R I G I NA L A RT I C L E

A simple method for interpolating meshes of arbitrary topology
by Catmull–Clark surfaces

Chongyang Deng · Xunnian Yang

© Springer-Verlag 2009

Abstract Interpolating an arbitrary topology mesh by a
smooth surface plays important role in geometric modeling
and computer graphics. In this paper we present an efficient
new algorithm for constructing Catmull–Clark surface that
interpolates a given mesh. The control mesh of the inter-
polating surface is obtained by one Catmull–Clark subdivi-
sion of the given mesh with modified geometric rule. Two
methods—push-back operation based method and normal-
based method—are presented for the new geometric rule.
The interpolation method has the following features: (1) Ef-
ficiency: we obtain a generalized cubic B-spline surface to
interpolate any given mesh in a robust and simple manner.
(2) Simplicity: we use only simple geometric rule to con-
struct control mesh for the interpolating subdivision surface.
(3) Locality: the perturbation of a given vertex only influ-
ences the surface shape near this vertex. (4) Freedom: for
each edge and face, there is one degree of freedom to ad-
just the shape of the limit surface. These features make in-
terpolation using Catmull–Clark surfaces very simple and
thus make the method itself suitable for interactive free-form
shape design.
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1 Introduction

Due to the fact that surface modeling by iterated subdivision
has lots of advantages, such as numerical stability, code sim-
plicity, easy to handle arbitrary topology, now we can regu-
larly see that subdivision surfaces used in movie production
appear as a first class citizen in commercial modelers and in
a core technology in game engines [30].

In subdivision process, for each vertex of original mesh,
a sequence of control points corresponding to different sub-
division levels, is defined. The scheme is said to be an inter-
polating scheme if all points in the sequence are the same.
Otherwise, it is an approximating one. The most popular
approximating schemes include Catmull–Clark scheme [2],
which is based on the tensor product bi-cubic spline and is
designed for quadrilateral mesh; Loop scheme [17], which
is based on the three-directional box spline and is designed
for triangular mesh. These two schemes produce surfaces
that are C2 continuous everywhere except at extraordinary
vertices, where they are C1 continuous. The well-known in-
terpolating schemes are Butterfly scheme, which was first
proposed by Dyn et al. [5] and then improved by Zorin et al.
[31]; Kobbelt scheme [8], which was also improved with
bounded curvature by combining mask decomposition and
Fourier transformation techniques by Li et al. [13]. These
two schemes extend the 4-point subdivision for curve to tri-
angular mesh and quadrilateral mesh, respectively, and their
limit surfaces are C1 continuous. Beside the stationary sub-
division schemes, smooth and fair interpolation surfaces can
also be computed implicitly or by non-stationary subdivi-
sion schemes. Kobbelt and Schröder [9] have presented a
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variational subdivision scheme for curve and surface inter-
polation under the objective of the fairness of final surfaces.
However, the computation for their algorithms are costly.

For a given point set or a polyhedral mesh, it is al-
ways necessary to fit or interpolate the known points or
vertices by a subdivision surface. When a dense point set
or a mesh with dense vertices has been fitted by a sub-
division surface properly, the surface data will be reduced
greatly and the compact representation of surface makes
it easier for use like rendering, remeshing, etc. Recently,
data fitting by subdivision surface has been studied exten-
sively. Litke et al. [14] proposed to fit a Catmull–Clark sub-
division surface through a fast local adaptation procedure
based on quasi-interpolation. Ma and Zhao [19] reported a
parameterization-based approach for fitting Catmull–Clark
subdivision surfaces. Suzuki et al. presented a fast Loop sub-
division surface fitting method that can capture the overall
shape of the scanned geometry [26]. Ma et al. [18] presented
an approach for fitting a Loop subdivision surface by solving
the least squares problem, and Cheng et al. [3] proposed to
fit a subdivision surface to a set of unorganized points based
on the framework of squared distance minimization. By us-
ing a robust and fast algorithm for exact closest point search
on Loop surfaces to parameterize the samples, Marinov and
Kobbelt [22] made a well-established scattered data fitting
technique to subdivision surfaces. For meshes with few ver-
tices, interpolation is an attractive feature in many cases.
For example, in an interactive free-form surface design en-
vironment, the original control points defining the surface
should also be points of the limit surface, which allows one
to control it in a more intuitive manner. Unfortunately, the
quality of surfaces produced by interpolating subdivision
schemes is not as high as the quality of surfaces produced by
approximating subdivision schemes because approximating
schemes reduce to C2 splines on a regular mesh and interpo-
lating schemes are much more sensitive to the irregularities
in the initial mesh [30]. So their appearance is hard to con-
trol and they produce more bulges and unwanted folds.

To interpolate an initial mesh with more pleasing sur-
faces, many methods on interpolating meshes by approxi-
mating subdivision schemes are proposed. Hoppe et al. [7]
presented a modification of the Loop schemes to force the
limit surface to go through a particular set of control points.
Nasri [23] presented a modification for the Doo–Sabin al-
gorithm and Brunet [1] introduced a set of shape handles
associated with the vertices for shape control in Nasri’s ap-
proach. Halstead et al. [6] proposed an interpolation scheme
using Catmull–Clark surfaces, which minimized a certain
fairness measure. Both Nasri’s method and Halstead et al.’s
method had to construct a linear constraint on the control
points of the initial mesh for each interpolating vertex and
thus established a system of linear equations. The initial
control mesh for the subdivision surface was obtained by

solving the equations. However, it is unclear under what
conditions the linear system is solvable [31]. As pointed
out by Halstead [6], it is possible for the linear system to
be singular or ill-conditioned. Besides, solving a large sys-
tem of linear equations takes a considerable computational
cost. Recently, some new methods to constructing interpo-
lation surface based on Catmull–Clark surfaces were pre-
sented. Claes et al. [4] added carefully chosen ghost points
to the original mesh to make the limit surface of Catmull–
Clark subdivision scheme interpolate some specified ver-
tices. Based on Catmull–Clark subdivision scheme, Zheng
and Cai proposed a two-phase subdivision scheme to in-
terpolate arbitrary topology meshes [28]. The method has
many excellent properties, such as numerical stability, hav-
ing scalar shape handle for local shape control, no need
to solve a system of linear equations, and so on. Similar
method can be applied to Doo–Sabin subdivision scheme
[29]. Maekawa et al. [20] proposed an iterative interpolation
technique similar to the one used in [15] for non-uniform
B-spline surface to subdivision surfaces. But they failed to
prove the convergence of the iterative process. Recently,
surface interpolation based on similarity [10] and blending
technique [11] were presented.

In this paper, we present an efficient new algorithm for
constructing Catmull–Clark surface that interpolates a given
mesh. The basic idea of our new interpolation method is that
we construct a new control mesh, whose limit surface by
Catmull–Clark subdivision scheme interpolates the vertices
of the original mesh. The new control mesh is derived from
one Catmull–Clark subdivision step with modified geomet-
ric rule. How to determine the positions of the vertices of
the new mesh is the key problem of our new interpolation
method. In this paper, two local methods—push-back op-
eration based method and normal-based method—are pre-
sented to determine the positions of new points. Many ex-
amples illustrate that the limit surfaces always have pleas-
ing shape with easily adjustable free parameters. Compared
with existing methods for surface interpolation, advantages
of our method lies in four aspects: (1) Efficiency: we obtain
a generalized cubic B-spline surface to interpolate a given
mesh in a robust and simple manner. (2) Simplicity: we use
only simple geometric rules to construct smooth surface in-
terpolating given vertices. (3) Locality: the perturbation of a
given vertex only influences the surface shape near this ver-
tex. (4) Freedom: for each edge and face of the initial mesh,
there is one degree of freedom to adjust the shape of the limit
surface.

In next section we review Catmull–Clark subdivision sur-
faces and formula of the limit points. Section 3 describes an
algorithm for the construction of a subdivision surface that
interpolates vertices of the input mesh. In Sect. 4 we give
some examples and discuss how to select the free parame-
ters. Conclusions will be drawn in Sect. 5.
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Fig. 1 Geometry rules and
topology rules of Catmull–Clark
schemes (◦: old vertex). (a)
New face point •, (b) new edge
point �, (c) new vertex point �,
(d) new edges (dashed) and new
faces (grouped dashed)

Fig. 2 Two initial control
meshes ((a) and (c)) and their
Catmull–Clark surfaces
((b) and (d))

2 Catmull–Clark subdivision scheme

For convenience, in this paper we restrict our discussion to
closed meshes. Extension to open meshes is straightforward.
A closed mesh we consider is a polyhedron-like configura-
tion of faces, edges and vertices such that each vertex corre-
sponds to a point in 3D space, each edge is a line segment
bounded by two vertices, and each face is bounded by a loop
of edges. We also require that each edge is shared exactly by
two faces, and in each loop adjacent edges share a vertex.

2.1 Catmull–Clark subdivision scheme

The Catmull–Clark subdivision algorithm generates a
smooth surface as the limit of the process of recursive re-
finement [2]. It works on a mesh of arbitrary topological
type. After the first subdivision step, all faces in the refined
mesh become quadrilateral, and the number of extraordi-
nary vertices (i.e., vertices of valence other than 4) will re-
main constant in the subsequent subdivision steps. The limit
surface gives rise to bi-cubic B-spline patches for all faces
except those in the neighborhood of extraordinary points.
Therefore the limit surface is curvature continuous except
at the extraordinary vertices, where theoretical analysis has
shown that the limit surface is tangent plane continuous.

The process for each refinement iteration includes:

1) For each face, compute a new face point as the average
of all of the old points of the face (see Fig. 1(a)).

2) For each edge, compute a new edge point as the av-
erage of two old endpoints of the edges and two new

face points of the faces originally sharing the edge (see
Fig. 1(b)).

3) For each vertex, compute a new vertex point as a linear
combination of the points within the neighborhood of the
vertex (see Fig. 1(c)). Specifically,

n − 2

n
V + 1

n2

n∑

j=1

Ej + 1

n2

n∑

j=1

Fj (1)

where n is the valence of the old vertex; V is the old ver-
tex point; Ej are the end points, other than V , of all edges
incident to the old vertex; and Fj are the face points of
all faces sharing the old vertex.

4) Create new edges by connecting each new face point to
the new edge points of the edges surrounding the face,
and by connecting each new vertex point to the new
edge points of the edges incident to the old vertex (see
Fig. 1(d)).

5) Create new faces that have a loop of new edges (see
Fig. 1(d)).

The above steps 1–3 define the new geometry. We call
these geometry rules and denote as G. Steps 4, 5 define the
connectivity of the new points. We call them topology rules
and denote as T . When these process steps continue, they
yield a sequence of refined meshes which eventually con-
verge to a limit surface, known as the Catmull–Clark sur-
face.

Two examples of Catmull–Clark surfaces with their ini-
tial control meshes are shown in Fig. 2. From these two ex-
amples we can see that the limit surfaces are smooth but
shrink from the initial control meshes.
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Fig. 3 The neighborhood around vertex V 1
i and the limit point of V 1

i

2.2 Formula of the limit point

Given an original mesh M0, we denote the mesh derived
by subdividing with one Catmull–Clark subdivision step as
M1. Obviously, all the polygons of M1 are quadrilateral. For
vertex V 0

i , assume that its corresponding vertex at M1 is
V 1

i , and the new edge vertices and face vertices around V 1
i

are E1
1,E1

2, . . . ,E1
n and F 1

1 ,F 1
2 , . . . ,F 1

n respectively (see
Fig. 3). This topological structure will not change during
the subsequent Catmull–Clark refinement. Using a discrete
Fourier analysis, Halstead et al. [6] showed that this um-
brella converges to a limit point:

V ∞
i = n2V 1

i + 4
∑n

j=1 E1
j + ∑n

j=1 F 1
j

n(n + 5)
. (2)

Equation (2) is used to make the Catmull–Clark surface
to interpolate part or all vertices of the original meshes [4, 6,
10, 20, 29]. But all these methods suffer from the problem
that the computation is complex. In next section, we pro-
pose a very simple surface interpolation method based on
this formula.

3 The interpolation method

Given an initial polyhedron M0 with a set of vertices V 0 =
{V 0

i } (i = 1,2, . . . , n0), we want to construct a Catmull–
Clark surface interpolating these vertices.

3.1 The problem

The essential step of our approach is to construct another

mesh M
1

with a set of vertices V ′ = {V ′
i } (i = 1,2, . . . , n1),

derived by subdividing M0 with a modified geometric rule,
G, and with the same topology rule as Catmull–Clark sub-

division scheme. After that, M
1

is subdivided by traditional
Catmull–Clark subdivision scheme, and its limit surface in-
terpolates the vertices of M0. Compared with traditional

Catmull–Clark subdivision process, we find out that for in-
terpolating purpose, only the geometric rule of the first sub-
division step should be changed.

3.2 Formula of new geometric rule G

The new geometric rule G is defined as follows:

1) For each edge E of M0, select an arbitrary point E′ as
the new edge point of E.

2) For each face F of M0, select an arbitrary point F ′ as the
new face point of F .

3) For each vertex V 0
i , compute a new vertex point V ′

i as a
linear combination of formally selected edge points and
selected face points within the neighborhood of this ver-
tex. To guarantee the interpolation of V 0

i by the subdivi-
sion surface, by the limit point formula (2), we set

V ′
i = n(n + 5)V 0

i − 4
∑n

j=1 E′
j − ∑n

j=1 F ′
j

n2
(3)

where n is the valence of the old vertex; E′
j are the new

edge points of all edges incident to V 0
i ; and F ′

j are the
new face points of all faces sharing V . We note that
the new geometric rule G just replaces new edge point
E1

j , new face point F 1
j and new vertex point V 1

i by one
time of traditional Catmull–Clark subdivision with E′

j ,
F ′

j and V ′
i , respectively.

By (3), we have

n2V ′
i + 4

∑n
j=1 E′

j + ∑n
j=1 F ′

j

n(n + 5)
= V 0

i . (4)

Combining with (2) we know that the limit surface interpo-
lates each vertex V 0

i of M0, though the new edge point E′
and new face point F ′ are selected arbitrary.

As M
1

is the control mesh for the interpolation subdivi-

sion surface, the shape of M
1

plays key role in our inter-
polating method. To make the interpolation surface reflect
the shape of the initial mesh well, in Sects. 3.3 and 3.4 we
propose push-back based method and normal-based method
to determine new edge points and new face points of G, re-
spectively.

3.3 The push-back operation based method for G

Push-back operation is introduced by Maillot and Stam [21]
for tackling the shrinkage issue of approximating subdivi-
sion schemes aiming at applications in multiresolution mod-
eling. Motivated by Maillot and Stam’s work, Li and Ma
[12] propose a method for deriving interpolating subdivi-
sion schemes through conversion from known approximat-
ing subdivisions. A similar method but with simple compu-
tation is also proposed by Lin et al. [16]. Because the push-
back operation is the bridge of the approximating subdivi-
sion schemes and interpolating subdivision scheme, in this
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Fig. 4 New edge point (a) and
new face point (b) of G

paper we use the push-back operation to determine the new
edge point and new face point of G.

For a vertex V 0
i of M0, assume that its corresponding

vertex in M1 is V 1
i . Let the increment of corresponding V 0

i

be �0
i , then

�0
i = V 0

i − V 1
i . (5)

For an edge Eij of M0, assume that its two end vertices are
V 0

i , V 0
j . Then the new edge point E′

ij of Eij is defined as
(see Fig. 4(a))

E′
ij = 1

2

(
V 0

i + V 0
j

) + λij

(
�0

i + �0
j

)
, (6)

where 0 < λij < 1 are the tensor parameter of Eij used to
adjust for the shape of the interpolation surface.

Similarly, the new face point F ′ of a face F is defined as
(see Fig. 4(b))

F ′ =
∑n

j=1 V 0
j

n
+ 2μF

n∑

j=1

�0
j , (7)

where n is the point number of face F ; Vj (j = 1,2, . . . , n)

are the points of the face; �0
j (j = 1,2, . . . , n) are the incre-

ments of V 0
j ; 0 < μF < 1 is a tensor parameter of F used to

adjust for the shape of the interpolation surface.

3.4 The normal-based method for G

Recently, Yang [27] proposed a new geometric subdivi-
sion scheme. It is also named as normal-based subdivision
scheme. Because the new vertices are depending on the lo-
cal geometry, but not the vertex valences, the interpolation
surface inherits the shape of the initial control mesh more

fairly and naturally. Similarly, we accept that normal-based
method for G can provide better interpolation surface. In
this subsection we present a method for determining the new
edge point and new face point of G guided by normal-based
subdivision scheme. In other words, the new edge points and
new face points are determined by local geometric proper-
ties.

Same as in the method proposed by Yang [27], we com-
pute normal vector to every vertex as a weighted average
of normals of its neighboring triangles. Suppose that πj

(j = 0,1, . . . ,mi − 1) are the triangles (for other types of
polygon, we define triangles by consecutive edges shooting
from the vertex) sharing the vertex p0

i . For each triangle πj

we assume the angle at the vertex p0
i is φj and the normal

of the triangle is nj ; then the normal at the vertex V 0
i can be

estimated as

n0
i =

∑mi−1
j=0 φinj

‖∑mi−1
j=0 φinj‖

. (8)

The new edge point E′
ij of edge V 0

i V 0
j is computed as

(see Fig. 5(a))

E′
ij = 1

2

(
V 0

i + V 0
j

) + ωij

d0
i n0

i + d0
j n0

j

2
, (9)

where d0
i = 1

2 (V 0
i − V 0

j )n0
i and d0

j = 1
2 (V 0

j − V 0
i )n0

j . The
parameter 0 < ωij < 1 here is a positive free parameter
which will be used to control the smoothness of the inter-
polation subdivision surface.

Similarly, the new face point F ′ of face F can be com-
puted as (see Fig. 5(b))

F ′ =
∑n

j=1 V 0
j

n
+ υF

∑n
j=1 d0

j n0
j

n
, (10)
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Fig. 5 New edge point (a) and
new face point (b)

where n is the point number of face F ; Vj (j = 1,2, . . . , n)

are the points of the face; d0
j = (V 0

j −
∑n

m=1 V 0
m

n
)n0

j ; 0 <

υF < 1 is a tensor parameter of F to adjust for the shape
of the interpolation surface.

3.5 Shape adjusting by perturbing new edge point and new
face point

By the new geometric rule G, new edge points and new face
points can be selected arbitrarily. It is also potential to adjust
the shape of the interpolation surface by perturbing the new
edge points and new face points interactively.

Assume that the new edge points and face points are de-
termined by the method described in Sect. 3.3 or Sect. 3.4. If
the interpolation surface is not satisfying, some initial edge
points or initial face points should be perturbed. Let us con-
sider a new edge point E′

ij . The end points of edge Eij are

V 0
i , V 0

j . We perturb E′
ij with a displacement vector δij , then

E′
ij is replaced by E′

ij + δij . To guarantee that the refined

subdivision surface still interpolates the original vertices V 0
i

and V 0
j , the vertex points V ′

i , V ′
j will be moved to new posi-

tions V̂ ′
i , V̂ ′

j . By (3), we have

V̂ ′
i = n1(n1 + 5)V 0

i − 4
∑n1

j=1 E′
j − ∑n1

j=1 F ′
j

n1
2

− 4δij

n1
2

= V ′
i − 4δij

n1
2
,

V̂ ′
j = n2(n2 + 5)V 0

j − 4
∑n2

j=1 E′
j − ∑n2

j=1 F ′
j

n2
2

− 4δij

n1
2

= V ′
j − 4δij

n2
2
,

where n1, n2 are the valences of vertices V 0
i and V 0

j , respec-
tively. So when adjusting a new edge point, the effect of it
to new point can be known in advance: when perturbing a
new edge point E′

ij with displacement vector δij , the new
vertex points corresponding to the end vertices will move
with two reverse vectors − 4

n1
2 δij , − 4

n2
2 δij , respectively.

From these two formulae, the displacements of two relative
new vertex points can be forecasted when a new edge point
have been perturbed. This will be very useful for interactive
design.

The effect of perturbing the new face point can be derived
in the same way: when perturbing a new face point F ′ with
displacement vector δF , the new vertex points correspond-
ing to the vertices of the face will be moved with n reverse
vectors − 1

nj
2 δF (j = 1,2, . . . , n), respectively, where n is

the vertex number of face F , and nj (j = 1,2, . . . , n) are
the valences of the vertices of face F .

4 Examples and discussions

In this section we give some examples to demonstrate the
advantageous properties of the subdivision surface interpo-
lation method addressed in Sect. 3.

In Example 1, we subdivide an original mesh with T-like
shape (see Fig. 6(a)). The interpolation surfaces constructed
by push-back operation are presented in Fig. 6, (b)–(d), and
the scale parameters for these three examples are λij = 0.75,
μF = 0.625;λij = μF = 0.5;λij = 0.25, μF = 0.375, re-
spectively. From the figures we can see that the interpolation
surfaces constructed with larger λij , μF bulge out from the
edges and faces. Meanwhile, the interpolation surfaces are
flat near the initial control points. The interpolation surfaces
of normal-based method with different scale parameters ωij ,
υF are presented in Fig. 6(e), (f), respectively. The effects of
ωij , υF are similar as those of λij , μF .
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Fig. 6 Example 1: a T-shaped
mesh: (a) the original mesh;
(b) interpolation surface by
method 1 with λij = 0.75,
μF = 0.625; (c) interpolation
surface with λij = μF = 0.5;
(d) interpolation surface with
λij = 0.25, μF = 0.375;
(e) interpolation surface by
method 2 with ωij = 0.5,
υF = 0.25; (f) interpolation
surface with ωij = 0.25,
υF = 0.125

Fig. 7 Example 2: a triangular
mesh: (a) the original mesh;
(b) interpolation surface by
method 1 with λij = μF = 0.5;
(c) interpolation surface with
λij = 0.25, μF = 0.375;
(d) interpolation surface by
method 2 with ωij = 0.25,
υF = 0.125

In Example 2 we interpolate a triangular mesh by
Catmull–Clark subdivision surfaces (see Fig. 7(a)). The
control points for the subdivision surfaces are given by
push-back operation or normal-based method with various
choices of parameters (see the caption of Fig. 6). From
Fig. 7(b) we can see that for push-back operation method,
the interpolation surfaces may have undulation behaviors.
But the undulation behaviors can be removed by alterna-
tive selections of λij , μF (see Fig. 7(c)). The normal-based
method works well in this example (see Fig. 7(d)).

In Example 3 a compound mesh which consists of both
triangles and quadrilaterals is first given (see Fig. 8). The
limit subdivision surface by Catmull–Clark scheme using
the given mesh is presented in Fig. 8(b). This figure also
demonstrates the confirmation by Stam and Loop [25] that
Catmull–Clark subdivision surfaces may behave poorly with
triangular control meshes. In Fig. 8(c)–(f), several Catmull–
Clark surfaces are constructed interpolating the initial mesh.
The control polyhedron for Fig. 8(c) is constructed using
push-back operation method with λij = μF = 0.5. When
the parameters have been changed to λij = μF = 0.05,
the former undulations are removed effectively. As a con-
trast, the control polyhedron constructed by normal-based

method works well with different choices of ωij , υF (see
Fig. 8(e),(f)).

In Example 4 (see Fig. 9) and Example 5 (Fig. 10)
we interpolate another two complex triangular meshes by
Catmull–Clark subdivision surfaces using our proposed in-
terpolation method. The Catmull–Clark surfaces of the orig-
inal mesh are also presented. Note that for Example 5,
the original mesh is triangular mesh though it seems to be
quadrilateral mesh. From the figures we can see that the
Catmull–Clark surfaces of triangular mesh behave poorly,
but the interpolation surfaces by the proposed methods have
pleasing shapes. In Example 6 (Fig. 11) we interpolate an-
other complex triangular mesh by our new method. All the
interpolation surfaces have pleasing shapes with appropriate
choices of scale parameters. Two other examples are pre-
sented in Examples 7 and 8 (Fig. 12).

From the above examples we can see that with a set of
easily chosen scale parameters, one can obtain pleasing in-
terpolation surfaces by our proposed interpolation method.
Because the method is simple and efficient, one can also
modify the surface shape interactively by changing the free
scale parameters. Just like for B-spline surfaces, the control
mesh of a Catmull–Clark subdivision surface roughly cap-
tures the shape of the surface, too. So the main problem is
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Fig. 8 Example 3: a compound
mesh: (a) the original mesh;
(b) the limit surface of
Catmull–Clark subdivision
scheme; (c) interpolation
surface by method 1 with
λij = μF = 0.5;
(d) interpolation surface with
λij = 0.05, μF = 0.05;
(e) interpolation surface by
method 2 with ωij = 0.5,
υF = 0.25; (f) interpolation
surface with ωij = 0.25,
υF = 0.125

Fig. 9 Example 4: a complex
triangular mesh: (a) the original
mesh; (b) the limit surface of
Catmull–Clark subdivision
scheme; (c) interpolation
surface by method 1 with
λij = 0.05, μF = 0.05;
(d) interpolation surface by
method 2 with ωij = 0.25,
υF = 0.125

Fig. 10 Example 4: a complex
triangular mesh: (a) the original
mesh; (b) the limit surface of
Catmull–Clark subdivision
scheme; (c) interpolation
surface by method 1 with
λij = 0.05, μF = 0.05;
(d) interpolation surface by
method 2 with ωij = 0.25,
υF = 0.125

Fig. 11 Example 6: a complex
triangular mesh: (a) the original
mesh; (b) interpolation surface
by method 1 with
λij = μF = 0.5;
(c) interpolation surface by
method 2 with
ωij = 0.5, υF = 0.25
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Fig. 12 Examples 7 and 8: a
simple triangular mesh (star)
and a complex triangular mesh
(see [24]): (a) and (c) are the
original mesh; (b) and (d) are
interpolation surfaces by
method 2 with ωij = 0.5,
υF = 0.25

that we should get a good initial control mesh M
1

for the
next subdivision steps. In our examples, parameters λij , μF

or ωij , υF are set equal values for each edge and face. In
practical design, they can be selected by the local geomet-
ric properties. From our experience, for simple meshes the
scale parameters should be large and for complex meshes
they should be small, and λij = 0.5μF + 0.25,ωij = 2υF

are good choices for many practical designs. In general, the
normal-based method works better than the push-back based
method in that the new vertices depend on the local geom-
etry instead of the vertex valences, then the interpolation
surface inherits the shape of the initial control mesh more
fairly and naturally (see Fig. 10(c),(d) and Fig. 11(c),(d) for
comparison).

To remove the undulation behavior, Halstead et al. [6]
constructed the interpolation surface that minimized a com-
bination of thin plate and membrane energies. But this
would result in solving a global linear system. This paper
does not address the problem of global optimization. We fo-
cus on developing a simple and safe algorithm using local
geometric properties of the vertices. Even though we obtain
interpolation surfaces with pleasing shapes in most practical
cases. Especially, the control mesh constructed by normal-
based method can always give satisfying results with a set of
default parameters. In case the initial interpolation surface
has some unnecessary undulations, one can improve the sur-
face quality easily by altering a few parameters interactively.

Differently from other methods for subdivision surface
interpolation by which the interpolating surface has approx-
imately the same number of control vertices as that of in-

terpolated mesh, the vertex number of mesh M
1

is about 4
times the number of input vertices. So, our proposed sub-
division surface interpolation method suffers limitation of
data proliferation when the input mesh has large number of
vertices. But practically, the initial mesh usually has a small
size for surface interpolation. Then our proposed algorithm
is promising for applications where data proliferation is not
a major problem.

5 Conclusions and future work

We have described a very simple method for automatic sur-
face interpolation through the vertices of an arbitrary topol-

ogy mesh using Catmull–Clark subdivision surfaces. Main
advantages of our method include robustness, efficiency, lo-
cality and sufficient freedoms. All of these features make
it feasible for our method to be used to design and model
complicated shapes.

Obviously, the parameters λij , μF and ωij , υF for corre-
sponding edges and faces greatly influence the shape of the
limit surface. In this paper we have shown experimentally
their influence on surface shapes. How to set parameters for
these free variables based on some local or global shape cri-
teria should be investigated in the future.
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